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Abstract

New functionals for parameter (model) selection of Suppedtor Ma-
chines are introduced based on the concepts o$paaof support vec-
tors and rescaling of the feature space. It is shown thagubiese func-
tionals, one can both predict the best choice of parametdreanodel
and the relative quality of performance for any value of paater.

1 Introduction

Support Vector Machines (SVMs) implement the followingddethey map input vectors
into a high dimensional feature space, where a maximal mémgperplane is constructed
[6]. It was shown that when training data are separable, tier eate for SVMs can be
characterized by

h = R*/M?, (1)

whereR is the radius of the smallest sphere containing the traidatg and\/ is the mar-
gin (the distance between the hyperplane and the clos@shtyavector in feature space).
This functional estimates the VC dimension of hyperplaregsagating data with a given
margin M.

To perform the mapping and to calculakeand A/ in the SVM technique, one uses a
positive definite kerneK (x,x’) which specifies an inner product in feature space. An
example of such a kernel is the Radial Basis Function (RBF),

K(x,x') = e~ lle=x'l*/20%

This kernel has a free parameteand more generally, most kernels require some param-
eters to be set. When treating noisy data with SVMs, anothempeter, penalizing the
training errors, also needs to be set. The problem of chgdbimvalues of these parame-
ters which minimize the expectation of test error is calleglhodel selection problem.

It was shown that the parameter of the kernel that minimiaestfonal (1) provides a good
choice for the model : the minimum for this functional cothes with the minimum of the
test error [1]. However, the shapes of these curves can tezetit.

In this article we introduce refined functionals that notyospecify the best choice of
parameters (both the parameter of the kernel and the paapetalizing training error),
but also produce curves which better reflect the actual eater



The paper is organized as follows. Section 2 describes thiedaf SVMs, section 3
introduces a new functional based on the concept of the sipsupport vectors, section 4
considers the idea of rescaling data in feature space atidrs&aliscusses experiments of
model selection with these functionals.

2 Support Vector Learning

We introduce some standard notation for SVMs; for a completription, see [6]. Let
(xi,Yi)1<i<¢ be a set of training examples; € R™ which belong to a class labeled by
y; € {—1, 1}. The decision function given by a SVM is :

14
F(x) = sgn <Z %y, K (x;,%) + b) , )
i=1
where the coefficients? are obtained by maximizing the following functional :
4 1 l
W(a) = Zai ~3 Z o, 05y K (x4, %5) (©)]
i=1 ij=1

under constraints
¢
Y ayi=0and0<a; <Ci=1,..,L

=1

C'is a constant which controls the tradeoff between the coxitglef the decision function
and the number of training examples misclassified. SVM aali maximal margin clas-
sifiers in a high-dimensional feature space where the datmapped through a non-linear
function ®(x) such that®(x;) - (x;) = K(x, x;).

The pointsx; with «; > 0 are called support vectors. We distinguish between thotte wi
0 < a; < C and those withy; = C. We call them respectively support vectors of the first
and second category.

3 Prediction using the span of support vectors

The results introduced in this section are based on the-eageout cross-validation esti-
mate. This procedure is usually used to estimate the priityaddi test error of a learning
algorithm.

3.1 Theleave-one-out procedure

Theleave-one-ouprocedure consists of removing from the training data oemenht, con-
structing the decision rule on the basis of the remaininigitrg data and then testing the
removed element. In this fashion one testgalements of the training data (usidglif-
ferent decision rules). Let us denote the number of errotearleave-one-out procedure
by £(x1,1,-..,Xe,ye). Itis known [6] that the the leave-one-out procedure givesia
most unbiased estimate of the probability of test error etkpectation of test error for the
machine trained oA — 1 examples is equal to the expectation%aﬁ(xl, Y1y ooy XoyYp)-

We now provide an analysis of the number of errors made byetineetone-out procedure.
For this purpose, we introduce a new concept, calledpamof support vectors [7].



3.2 Span of support vectors

Since the results presented in this section do not depentieofetiture space, we will
consider without any loss of generality, linear SVMs, I&(x;, x,) = x; - X;.

Suppose thatr’ = (af, ..., a?) is the solution of the optimization problem (3).

For any fixed support vectot, we define the sek,, as constrained linear combinations of
the support vectors of the first categ@sy ),

¢ ¢
A, = Z AiX4, Z Ai=1, 0<af +yypad\i <C . (4)
{i#p/ 0<a?<C} i=1, i#p

Note that)\; can be less than 0.

We also define the quantity,, which we call thespanof the support vectoxk, as the
minimum distance betweex, and this set (see figure 1)

S = d*(xpy Ay) = min (%, = x)*. ©)

Figure 1: Three support vectors with; = as = a3/2. The setA; is the semi-opened
dashed line.

It was shown in [7] that the set,, is not empty and tha$, = d(x,,A,) < Dgv, where
Dgy is the diameter of the smallest sphere containing the stippotors.

Intuitively, the smallerS, = d(x,, A,) is, the less likely the leave-one-out procedure is to
make an error on the vectar,. Formally, the following theorem holds :

Theorem 1 [7] If in the leave-one-out procedure a support vectgy corresponding to
0 < oy < C'is recognized incorrectly, then the following inequalitids

1
ol > .
P 8, max(D,1/VC)

This theorem implies that in the separable caée £ o0), the number of errors
made by the leave-one-out procedure is bounded as followW§x1,y1, ..., Xz, ye) <
>, apmax, S,D = max, S,D/M?, becaus€)_aj = 1/M? [6]. This is already an
improvement compared to functional (1), singe < Dgy . But depending on the geome-
try of the support vectors the value of the sggrcan be much less than the diamefigyy,

of the support vectors and can even be equal to zero.

We can go further under the assumption that the set of suppottrs does not change
during the leave-one-out procedure, which leads us to thewfimg theorem :



Theorem 2 If the sets of support vectors of first and second categogasim the same
during the leave-one-out procedure, then for any suppatorex,, the following equality

holds : ,

yp(fo(xp) - fp(xp)) = agsp
wherefY and f? are the decision function (2) given by the SVM trained reSpely on the
whole training set and after the poisi, has been removed.

The proof of the theorem follows the one of Theorem 1 in [7].

The assumption that the set of support vectors does not etduming the leave-one-out
procedure is obviously not satisfied in most cases. NeJeshgthe proportion of points
which violate this assumption is usually small comparedh® number of support vec-
tors. In this case, Theorem 2 provides a good approximafidimeoresult of the leave-one
procedure, as pointed out by the experiments (see Secfipfidgure 2).

As already noticed in [1], the larger, is, the more “important” in the decision function the
support vectok,, is. Thus, it is not surprising that removing a paigtcauses a change in
the decision function proportional to its Lagrange muiépl,,. The same kind of result as
Theorem 2 has also been derived in [2], where for SVMs withiogshold, the following
inequality has been derivedy, (f(x,) — f?(x,)) < a)K(x,,x,). The spanS, takes
into account the geometry of the support vectors in orderetoagprecise notion of how
“important” is a given point.

The previous theorem enables us to compute the number o§enade by the leave-one-
out procedure :

Corollary 1 Under the assumption of Theorem 2, the test error predicgimen by the
leave-one-out procedure is

1

1
by = Zﬁ(xl7y17 "'7X55y5) = an’rd{p/ agslg > ypfO(Xp)} (6)

Note that points which are not support vectors are corretdlysified by the leave-one-out
procedure. Thereforg defines the number of errors of the leave-one-out procedutieeo
entire training set.

Under the assumption in Theorem 2, the box constraints irdéfimition of A, (4) can

be removed. Moreover, if we consider only hyperplanes pgssirough the origin, the
constrainty_ \; = 1 can also be removed. Therefore, under those assumpti@nsoih-
putation of the spa, is an unconstrained minimization of a quadratic form and lwan
done analytically. For support vectors of the first categtnig leads to the closed form
Sy = 1/(Kgi)pp, WhereK gy is the matrix of dot products between support vectors of the
first category. A similar result has also been obtained in [3]

In Section 5, we use the span-rule (6) for model selectionoith lseparable and non-
separable cases.

4 Rescaling

As we already mentioned, functional (1) bounds the VC dirimengsf a linear margin clas-
sifier. This bound is tight when the data almost “fills” thefage of the sphere enclosing
the training data, but when the data lie on a flat ellipsoiid,lound is poor since the radius
of the sphere takes into account only the components withatgest deviations. The idea
we present here is to make a rescaling of our data in feataesuch that the radius of the
sphere stays constant but the margin increases, and thgnthispgbound to our rescaled
data and hyperplane.



Let us first consider linear SVMs, i.e. without any mappingihigh dimensional space.
The rescaling can be achieved by computing the covariantamfour data and rescaling
according to its eigenvalues. Suppose our data are cerdacetet(p,, ..., ¢,,) be the
normalized eigenvectors of the covariance matrix of ouadatle can then compute the
smallest enclosing box containing our data, centered abtiggth and whose edges are
parallelsto¢, ..., ,,). This box is an approximation of the smallest enclosingstiid.
The length of the edge in the directign, is ur = max; |x; - ¢, |. The rescaling consists
of the following diagonal transformation :

D:ix— Dx=> u(x-¢;) @y
k

Let us considek; = D~ 'x; andw = Dw. The decision function is not changed under
this transformation sinc& - x; = w - x; and the dat; fill a box of side length 1. Thus,
in functional (1), we replacé? by 1 and1/M? by w?2. Since we rescaled our data in a
box, we actually estimated the radius of the enclosing tsfigithel,,-norm instead of
the classical;-norm. Further theoretical works needs to be done to jugttiychange of
norm.

Inthe non-linear case, note that even if we map our data igradimensional feature space,
they lie in the linear subspace spanned by these data. Thins,iumber of training data

is not too large, we can work in this subspace of dimensioncat fin For this purpose, one
can use the tools of kernel PCA [5] : i is the matrix of normalized eigenvectors of the
Gram matrixk;; = K(x;,x;) and()\;) the eigenvalues, the dot produgt ,, is replaced
by v AxAir andw - ¢, becomes/A, Y. Ay Thus, we can still achieve the diagonal
transformationd and finally functional (1) becomes

2 2 2
Xk:/\k m?XAik(zi:Azkyzat) .

5 Experiments

To check these new methods, we performed two series of enpets. One concerns the
choice ofo, the width of the RBF kernel, on a linearly separable databtse postal
database. This dataset consists of 7291 handwritten digiize 16x16 with a test set
of 2007 examples. Following [4], we split the training set?® subsets of 317 training
examples. Our task consists of separating digit O to 4 from® tError bars in figures 2a
and 4 are standard deviations over the 23 trials. In anottparanent, we try to choose
the optimal value of” in a noisy database, the breast-cancer databasee dataset has
been split randomly 100 times into a training set contairlg examples and a test set
containing 77 examples.

Section 5.1 describes experiments of model selection ubmgpan-rule (6), both in the
separable case and in the non-separable one, while Se@ishdws VC bounds for model
selection in the separable case both with and without rieggal

5.1 Modd selection using the span-rule

In this section, we use the prediction of test error derivechfthe span-rule (6) for model
selection. Figure 2a shows the test error and the predigiien by the span for differ-

ent values of the widtls of the RBF kernel on the postal database. Figure 2b plots the
same functions for different values 6f on the breast-cancer database. We can see that
the method predicts the correct value of the minimum. Moegothe prediction is very
accurate and the curves are almost identical.

Available fromht t p: / / horn. fi rst. gnd. de/ ~r aet sch/ dat a/ br east - cancer
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Figure 2:Test error and its prediction using the span-rule (6).

The computation of the span-rule (6) involves computingsibensS,, (5) for every support
vector. Note, however, that we are interested in the inétyusf < y,f(x,)/c), rather
than the exact value of the sp&p. Thus, while minimizingS, = d(x,, A,), if we find a
pointx* € A, such thatl(x,,x*)* < y, f(x,)/cj, we can stop the minimization because
this point will be correctly classified by the leave-one-pracedure.

Figure 3 compares the time required to (a) train the SVM orptistal database, (b) com-
pute the estimate of the leave-one-out procedure givenebgphn-rule (6) and (c) compute
exactly the leave-one-out procedure. In order to have aéairparison, we optimized the
computation of the leave-one-out procedure in the follgwiray : for every support vector
Xp, We take as starting point for the minimization (3) involteccomputef? (the decision
function after having removed the poiny), the solution given by on the whole training
set. The reason is théf and f? are usually “close”.

The results show that the time required to compute the spaotiprohibitive and is very
attractive compared to the leave-one-out procedure.
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Figure 3:Comparison of time required for SVM training, computatidrspan and leave-
one-out on the postal database

5.2 VC dimension with rescaling
In this section, we perform model selection on the postalige using functional (1) and

its rescaled version. Figure 4a shows the values of theictagémundR? /M ? for different
values ofs. This bound predicts the correct value for the minimum, lmgsinot reflect the



actual test error. This is easily understandable sinceafgelvalues of, the data in input

space tend to be mapped in a very flat ellipsoid in featurees@atact which is not taken
into account [4]. Figure 4b shows that by performing a résgabf our data, we manage
to have a much tighter bound and this curve reflects the atetsiagrror, given in figure 2a.
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Figure 4:Bound on the VC dimension for different values @h the postal database. The
shape of the curve with rescaling is very similar to the tesireon figure 2.

6 Conclusion

In this paper, we introduced two new techniques of modettielefor SVMs. One is based

on the span, the other is based on rescaling of the data iwréegppace. We demonstrated
that using these techniques, one can both predict optinha¢sdor the parameters of the
model and evaluate relative performances for differenteslof the parameters. These
functionals can also lead to new learning techniques asdbi&plish that generalization
ability is not only due to margin.
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