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Series Foreword

The goal of building systems that can adapt to their environments and learn from
their experience has attracted researchers from many fields, including computer
science, engineering, mathematics, physics, neuroscience, and cognitive science.
Out of this research has come a wide variety of learning techniques that have
the potential to transform many scientific and industrial fields. Recently, several
research communities have converged on a common set of issues surrounding
supervised, unsupervised, and reinforcement learning problems. The MIT Press
series on Adaptive Computation and Machine Learning seeks to unify the many
diverse strands of machine learning research and to foster high quality research
and innovative applications.

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and
Beyond is an excellent illustration of this convergence of ideas from many fields.
The development of kernel-based learning methods has resulted from a combi-
nation of machine learning theory, optimization algorithms from operations re-
search, and kernel techniques from mathematical analysis. These three ideas have
spread far beyond the original support-vector machine algorithm: Virtually ev-
ery learning algorithm has been redesigned to exploit the power of kernel meth-
ods. Bernhard Schölkopf and Alexander Smola have written a comprehensive, yet
accessible, account of these developments. This volume includes all of the math-
ematical and algorithmic background needed not only to obtain a basic under-
standing of the material but to master it. Students and researchers who study this
book will be able to apply kernel methods in creative ways to solve a wide range
of problems in science and engineering.

Thomas Dietterich



Preface

One of the most fortunate situations a scientist can encounter is to enter a field in
its infancy. There is a large choice of topics to work on, and many of the issues
are conceptual rather than merely technical. Over the last seven years, we have
had the privilege to be in this position with regard to the field of Support Vector
Machines (SVMs). We began working on our respective doctoral dissertations in
1994 and 1996. Upon completion, we decided to combine our efforts and write
a book about SVMs. Since then, the field has developed impressively, and has to
an extent been transformed. We set up a website that quickly became the central
repository for the new community, and a number of workshops were organized
by various researchers. The scope of the field has now widened significantly, both
in terms of new algorithms, such as kernel methods different to SVMs, and in
terms of a deeper theoretical understanding being gained. It has become clear
that kernel methods provide a framework for tackling some rather profound
issues in machine learning theory. At the same time, successful applications have
demonstrated that SVMs not only have a more solid foundation than artificial
neural networks, but are able to serve as a replacement for neural networks that
perform as well or better, in a wide variety of fields. Standard neural network and
pattern recognition textbooks have now started including chapters on SVMs and
kernel PCA (for instance, [235, 153]).

While these developments took place, we were trying to strike a balance be-
tween pursuing exciting new research, and making progress with the slowly grow-
ing manuscript of this book. In the two and a half years that we worked on the
book, we faced a number of lessons that we suspect everyone writing a scientific
monograph — or any other book — will encounter. First, writing a book is more
work than you think, even with two authors sharing the work in equal parts. Sec-
ond, our book got longer than planned. Once we exceeded the initially planned
length of 500 pages, we got worried. In fact, the manuscript kept growing even
after we stopped writing new chapters, and began polishing things and incorpo-
rating corrections suggested by colleagues. This was mainly due to the fact that the
book deals with a fascinating new area, and researchers keep adding fresh material
to the body of knowledge. We learned that there is no asymptotic regime in writ-
ing such a book — if one does not stop, it will grow beyond any bound — unless
one starts cutting. We therefore had to take painful decisions to leave out material
that we originally thought should be in the book. Sadly, and this is the third point,
the book thus contains less material than originally planned, especially on the sub-
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ject of theoretical developments. We sincerely apologize to all researchers who feel
that their contributions should have been included — the book is certainly biased
towards our own work, and does not provide a fully comprehensive overview of
the field. We did, however, aim to provide all the necessary concepts and ideas to
enable a reader equipped with some basic mathematical knowledge to enter the
engaging world of machine learning, using theoretically well-founded kernel al-
gorithms, and to understand and apply the powerful algorithms that have been
developed over the last few years.

The book is divided into three logical parts. Each part consists of a brief intro-
duction and a number of technical chapters. In addition, we include two appen-
dices containing addenda, technical details, and mathematical prerequisites. Each
chapter begins with a short discussion outlining the contents and prerequisites; for
some of the longer chapters, we include a graph that sketches the logical structure
and dependencies between the sections. At the end of most chapters, we include a
set of problems, ranging from simple exercises (marked by ) to hard ones ( ); in
addition, we describe open problems and questions for future research ( ).1 The
latter often represent worthwhile projects for a research publication, or even a the-
sis. References are also included in some of the problems. These references contain
the solutions to the associated problems, or at least significant parts thereof.

The overall structure of the book is perhaps somewhat unusual. Rather than
presenting a logical progression of chapters building upon each other, we occa-
sionally touch on a subject briefly, only to revisit it later in more detail. For readers
who are used to reading scientific monographs and textbooks from cover to cover,
this will amount to some redundancy. We hope, however, that some readers, who
are more selective in their reading habits (or less generous with their time), and
only look at those chapters that they are interested in, will benefit. Indeed, no-
body is expected to read every chapter. Some chapters are fairly technical, and
cover material included for reasons of completeness. Other chapters, which are
more relevant to the central subjects of the book, are kept simpler, and should be
accessible to undergraduate students.

In a way, this book thus contains several books in one. For instance, the first
chapter can be read as a standalone “executive summary” of Support Vector and
kernel methods. This chapter should also provide a fast entry point for practition-
ers. Someone interested in applying SVMs to a pattern recognition problem might
want to read Chapters 1 and 7 only. A reader thinking of building their own SVM
implementation could additionally read Chapter 10, and parts of Chapter 6. Those
who would like to get actively involved in research aspects of kernel methods, for
example by “kernelizing” a new algorithm, should probably read at least Chapters
1 and 2. A one-semester undergraduate course on learning with kernels could in-
clude the material of Chapters 1, 2.1–2.3, 3.1–3.2, 5.1–5.2, 6.1–6.3, 7. If there is more

1. We suggest that authors post their solutions on the book website www.learning-with-
kernels.org.
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time, one of the Chapters 14, 16, or 17 can be added, or 4.1–4.2. A graduate course
could additionally deal with the more advanced parts of Chapters 3, 4, and 5. The
remaining chapters provide ample material for specialized courses and seminars.

As a general time-saving rule, we recommend reading the first chapter and then
jumping directly to the chapter of particular interest to the reader. Chances are
that this will lead to a chapter that contains references to the earlier ones, which
can then be followed as desired. We hope that this way, readers will inadvertently
be tempted to venture into some of the less frequented chapters and research areas.
Explore this book; there is a lot to find, and much more is yet to be discovered in
the field of learning with kernels.

We conclude the preface by thanking those who assisted us in the prepara-
tion of the book. Our first thanks go to our first readers. Chris Burges, Arthur
Gretton, and Bob Williamson have read through various versions of the book,
and made numerous suggestions that corrected or improved the material. A
number of other researchers have proofread various chapters. We would like to
thank Matt Beal, Daniel Berger, Olivier Bousquet, Ben Bradshaw, Nicolò Cesa-
Bianchi, Olivier Chapelle, Dennis DeCoste, Andre Elisseeff, Anita Faul, Arnulf
Graf, Isabelle Guyon, Ralf Herbrich, Simon Hill, Dominik Janzing, Michael Jordan,
Sathiya Keerthi, Neil Lawrence, Ben O’Loghlin, Ulrike von Luxburg, Davide Mat-
tera, Sebastian Mika, Natasa Milic-Frayling, Marta Milo, Klaus Müller, Dave Mu-
sicant, Fernando Pérez Cruz, Ingo Steinwart, Mike Tipping, and Chris Williams.

In addition, a large number of people have contributed to this book in one
way or another, be it by sharing their insights with us in discussions, or by col-
laborating with us on some of the topics covered in the book. In many places,
this strongly influenced the presentation of the material. We would like to thank
Dimitris Achlioptas, Luı́s Almeida, Shun-Ichi Amari, Peter Bartlett, Jonathan Bax-
ter, Tony Bell, Shai Ben-David, Kristin Bennett, Matthias Bethge, Chris Bishop,
Andrew Blake, Volker Blanz, Léon Bottou, Paul Bradley, Chris Burges, Hein-
rich Bülthoff, Olivier Chapelle, Nello Cristianini, Corinna Cortes, Cameron Daw-
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1 A Tutorial Introduction

This chapter describes the central ideas of Support Vector (SV) learning in a
nutshell. Its goal is to provide an overview of the basic concepts.

One such concept is that of a kernel. Rather than going immediately into math-
ematical detail, we introduce kernels informally as similarity measures that ariseOverview
from a particular representation of patterns (Section 1.1), and describe a simple
kernel algorithm for pattern recognition (Section 1.2). Following this, we report
some basic insights from statistical learning theory, the mathematical theory that
underlies SV learning (Section 1.3). Finally, we briefly review some of the main
kernel algorithms, namely Support Vector Machines (SVMs) (Sections 1.4 to 1.6)
and kernel principal component analysis (Section 1.7).

We have aimed to keep this introductory chapter as basic as possible, whilstPrerequisites
giving a fairly comprehensive overview of the main ideas that will be discussed in
the present book. After reading it, readers should be able to place all the remaining
material in the book in context and judge which of the following chapters is of
particular interest to them.

As a consequence of this aim, most of the claims in the chapter are not proven.
Abundant references to later chapters will enable the interested reader to fill in the
gaps at a later stage, without losing sight of the main ideas described presently.

1.1 Data Representation and Similarity

One of the fundamental problems of learning theory is the following: suppose we
are given two classes of objects. We are then faced with a new object, and we have
to assign it to one of the two classes. This problem can be formalized as follows:
we are given empirical dataTraining Data

(x1 y1) (xm ym) 1 (1.1)

Here, is some nonempty set from which the patterns xi (sometimes called cases,
inputs, instances, or observations) are taken, usually referred to as the domain; the yi

are called labels, targets, outputs or sometimes also observations.1 Note that there are

1. Note that we use the term pattern to refer to individual observations. A (smaller) part of
the existing literature reserves the term for a generic prototype which underlies the data. The
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only two classes of patterns. For the sake of mathematical convenience, they are
labelled by 1 and 1, respectively. This is a particularly simple situation, referred
to as (binary) pattern recognition or (binary) classification.

It should be emphasized that the patterns could be just about anything, and we
have made no assumptions on other than it being a set. For instance, the task
might be to categorize sheep into two classes, in which case the patterns xi would
simply be sheep.

In order to study the problem of learning, however, we need an additional type
of structure. In learning, we want to be able to generalize to unseen data points. In
the case of pattern recognition, this means that given some new pattern x , we
want to predict the corresponding y 1 .2 By this we mean, loosely speaking,
that we choose y such that (x y) is in some sense similar to the training examples
(1.1). To this end, we need notions of similarity in and in 1 .

Characterizing the similarity of the outputs 1 is easy: in binary classification,
only two situations can occur: two labels can either be identical or different. The
choice of the similarity measure for the inputs, on the other hand, is a deep
question that lies at the core of the field of machine learning.

Let us consider a similarity measure of the form

k :

(x x ) k(x x ) (1.2)

that is, a function that, given two patterns x and x , returns a real number charac-
terizing their similarity. Unless stated otherwise, we will assume that k is symmet-
ric, that is, k(x x ) k(x x) for all x x . For reasons that will become clear later
(cf. Remark 2.16), the function k is called a kernel [359, 4, 42, 62, 223].

General similarity measures of this form are rather difficult to study. Let us
therefore start from a particularly simple case, and generalize it subsequently. A
simple type of similarity measure that is of particular mathematical appeal is a
dot product. For instance, given two vectors x x N , the canonical dot product isDot Product
defined as

x x :
N

∑
i 1

[x]i[x ]i (1.3)

Here, [x]i denotes the ith entry of x.
Note that the dot product is also referred to as inner product or scalar product, and

sometimes denoted with round brackets and a dot, as (x x ) — this is where the
“dot” in the name comes from. In Section B.2, we give a general definition of dot
products. Usually, however, it is sufficient to think of dot products as (1.3).

latter is probably closer to the original meaning of the term, however we decided to stick
with the present usage, which is more common in the field of machine learning.
2. Doing this for every x amounts to estimating a function f : 1 .
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The geometric interpretation of the canonical dot product is that it computes the
cosine of the angle between the vectors x and x , provided they are normalized to
length 1. Moreover, it allows computation of the length (or norm) of a vector x asLength

x x x (1.4)

Likewise, the distance between two vectors is computed as the length of the
difference vector. Therefore, being able to compute dot products amounts to being
able to carry out all geometric constructions that can be formulated in terms of
angles, lengths and distances.

Note, however, that the dot product approach is not really sufficiently general
to deal with many interesting problems.

First, we have deliberately not made the assumption that the patterns actually
exist in a dot product space. So far, they could be any kind of object. In order to
be able to use a dot product as a similarity measure, we therefore first need to
represent the patterns as vectors in some dot product space (which need not
coincide with N ). To this end, we use a map

Φ :

x x : Φ(x) (1.5)

Second, even if the original patterns exist in a dot product space, we may still
want to consider more general similarity measures obtained by applying a map
(1.5). In that case, Φ will typically be a nonlinear map. An example that we will
consider in Chapter 2 is a map which computes products of entries of the input
patterns.

In both the above cases, the space is called a feature space. Note that we haveFeature Space
used a bold face x to denote the vectorial representation of x in the feature space.
We will follow this convention throughout the book.

To summarize, embedding the data into via Φ has three benefits:

1. It lets us define a similarity measure from the dot product in ,

k(x x ) : x x Φ(x) Φ(x ) (1.6)

2. It allows us to deal with the patterns geometrically, and thus lets us study
learning algorithms using linear algebra and analytic geometry.

3. The freedom to choose the mapping Φ will enable us to design a large variety
of similarity measures and learning algorithms. This also applies to the situation
where the inputs xi already exist in a dot product space. In that case, we might
directly use the dot product as a similarity measure. However, nothing prevents us
from first applying a possibly nonlinear map Φ to change the representation into
one that is more suitable for a given problem. This will be elaborated in Chapter 2,
where the theory of kernels is developed in more detail.
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1.2 A Simple Pattern Recognition Algorithm

We are now in the position to describe a pattern recognition learning algorithm
that is arguably one of the simplest possible. We make use of the structure intro-
duced in the previous section; that is, we assume that our data are embedded into
a dot product space .3 Using the dot product, we can measure distances in this
space. The basic idea of the algorithm is to assign a previously unseen pattern to
the class with closer mean.

We thus begin by computing the means of the two classes in feature space;

c
1

m ∑
i yi 1

xi (1.7)

c
1

m ∑
i yi 1

xi (1.8)

where m and m are the number of examples with positive and negative labels,
respectively. We assume that both classes are non-empty, thus m m 0. We
assign a new point x to the class whose mean is closest (Figure 1.1). This geometric
construction can be formulated in terms of the dot product . Half way between
c and c lies the point c : (c c ) 2. We compute the class of x by checking
whether the vector x c connecting c to x encloses an angle smaller than 2 with
the vector w : c c connecting the class means. This leads to

y sgn (x c) w

sgn (x (c c ) 2) (c c )

sgn ( x c x c b) (1.9)

Here, we have defined the offset

b :
1
2

( c 2 c 2) (1.10)

with the norm x : x x . If the class means have the same distance to the
origin, then b will vanish.

Note that (1.9) induces a decision boundary which has the form of a hyperplane
(Figure 1.1); that is, a set of points that satisfy a constraint expressible as a linear
equation.

It is instructive to rewrite (1.9) in terms of the input patterns xi, using the kernel
k to compute the dot products. Note, however, that (1.6) only tells us how to
compute the dot products between vectorial representations xi of inputs xi. We
therefore need to express the vectors ci and w in terms of x1 xm.

To this end, substitute (1.7) and (1.8) into (1.9) to get the decision functionDecision
Function

3. For the definition of a dot product space, see Section B.2.
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Figure 1.1 A simple geometric classification algorithm: given two classes of points (de-
picted by ‘o’ and ‘+’), compute their means c c and assign a test pattern x to the one
whose mean is closer. This can be done by looking at the dot product between x c (where
c (c c ) 2) and w : c c , which changes sign as the enclosed angle passes through

2. Note that the corresponding decision boundary is a hyperplane (the dotted line) or-
thogonal to w.

y sgn
1

m ∑
i yi 1

x xi
1

m ∑
i yi 1

x xi b

sgn
1

m ∑
i yi 1

k(x xi)
1

m ∑
i yi 1

k(x xi) b (1.11)

Similarly, the offset becomes

b :
1
2

1
m2 ∑

(i j) yi yj 1

k(xi x j)
1

m2 ∑
(i j) yi yj 1

k(xi x j) (1.12)

Surprisingly, it turns out that this rather simple-minded approach contains a well-
known statistical classification method as a special case. Assume that the class
means have the same distance to the origin (hence b 0, cf. (1.10)), and that k can
be viewed as a probability density when one of its arguments is fixed. By this we
mean that it is positive and has unit integral,4

k(x x )dx 1 for all x (1.13)

In this case, (1.11) takes the form of the so-called Bayes classifier separating the two
classes, subject to the assumption that the two classes of patterns were generated
by sampling from two probability distributions that are correctly estimated by the

4. In order to state this assumption, we have to require that we can define an integral on .
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Parzen windows estimators of the two class densities,

p (x) :
1

m ∑
i yi 1

k(x xi) and p (x) :
1

m ∑
i yi 1

k(x xi) (1.14)

where x .Parzen Windows
Given some point x, the label is then simply computed by checking which of

the two values p (x) or p (x) is larger, which leads directly to (1.11). Note that
this decision is the best we can do if we have no prior information about the
probabilities of the two classes.

The classifier (1.11) is quite close to the type of classifier that this book deals with
in detail. Both take the form of kernel expansions on the input domain,

y sgn
m

∑
i 1

ik(x xi) b (1.15)

In both cases, the expansions correspond to a separating hyperplane in a feature
space. In this sense, the i can be considered a dual representation of the hyper-
plane’s normal vector [223]. Both classifiers are example-based in the sense that
the kernels are centered on the training patterns; that is, one of the two arguments
of the kernel is always a training pattern. A test point is classified by comparing it
to all the training points that appear in (1.15) with a nonzero weight.

More sophisticated classification techniques, to be discussed in the remainder
of the book, deviate from (1.11) mainly in the selection of the patterns on which
the kernels are centered and in the choice of weights i that are placed on the
individual kernels in the decision function. It will no longer be the case that all
training patterns appear in the kernel expansion, and the weights of the kernels
in the expansion will no longer be uniform within the classes — recall that in the
current example, cf. (1.11), the weights are either (1 m ) or ( 1 m ), depending
on the class to which the pattern belongs.

In the feature space representation, this statement corresponds to saying that
we will study normal vectors w of decision hyperplanes that can be represented
as general linear combinations (i.e., with non-uniform coefficients) of the training
patterns. For instance, we might want to remove the influence of patterns that are
very far away from the decision boundary, either since we expect that they will not
improve the generalization error of the decision function, or since we would like to
reduce the computational cost of evaluating the decision function (cf. (1.11)). The
hyperplane will then only depend on a subset of training patterns called Support
Vectors.

1.3 Some Insights From Statistical Learning Theory

With the above example in mind, let us now consider the problem of pattern
recognition in a slightly more formal setting [559, 152, 186]. This will allow us
to indicate the factors affecting the design of “better” algorithms. Rather than just
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Figure 1.2 2D toy example of binary classification, solved using three models (the decision
boundaries are shown). The models vary in complexity, ranging from a simple one (left),
which misclassifies a large number of points, to a complex one (right), which “trusts” each
point and comes up with solution that is consistent with all training points (but may not
work well on new points). As an aside: the plots were generated using the so-called soft-
margin SVM to be explained in Chapter 7; cf. also Figure 7.10.

providing tools to come up with new algorithms, we also want to provide some
insight in how to do it in a promising way.

In two-class pattern recognition, we seek to infer a function

f : 1 (1.16)

from input-output training data (1.1). The training data are sometimes also called
the sample.

Figure 1.2 shows a simple 2D toy example of a pattern recognition problem.
The task is to separate the solid dots from the circles by finding a function which
takes the value 1 on the dots and 1 on the circles. Note that instead of plotting
this function, we may plot the boundaries where it switches between 1 and 1.
In the rightmost plot, we see a classification function which correctly separates
all training points. From this picture, however, it is unclear whether the same
would hold true for test points which stem from the same underlying regularity.
For instance, what should happen to a test point which lies close to one of the
two “outliers,” sitting amidst points of the opposite class? Maybe the outliers
should not be allowed to claim their own custom-made regions of the decision
function. To avoid this, we could try to go for a simpler model which disregards
these points. The leftmost picture shows an almost linear separation of the classes.
This separation, however, not only misclassifies the above two outliers, but also
a number of “easy” points which are so close to the decision boundary that
the classifier really should be able to get them right. Finally, the central picture
represents a compromise, by using a model with an intermediate complexity,
which gets most points right, without putting too much trust in any individual
point.

The goal of statistical learning theory is to place these intuitive arguments in
a mathematical framework. To this end, it studies mathematical properties of
learning machines. These properties are usually properties of the function class
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x

g(x)
1

-1

Figure 1.3 A 1D classification problem, with a training set of three points (marked by cir-
cles), and three test inputs (marked on the x-axis). Classification is performed by threshold-
ing real-valued functions g(x) according to sgn ( f (x)). Note that both functions (dotted line,
and solid line) perfectly explain the training data, but they give opposite predictions on the
test inputs. Lacking any further information, the training data alone give us no means to
tell which of the two functions is to be preferred.

that the learning machine can implement.
We assume that the data are generated independently from some unknown (but

fixed) probability distribution P(x y).5 This is a standard assumption in learning
theory; data generated this way is commonly referred to as iid (independent and
identically distributed). Our goal is to find a function f that will correctly classifyIID Data
unseen examples (x y), so that f (x) y for examples (x y) that are also generated
from P(x y).6 Correctness of the classification is measured by means of the zero-one
loss function c(x y f (x)) : 1

2 f (x) y . Note that the loss is 0 if (x y) is classifiedLoss Function
correctly, and 1 otherwise.

If we put no restriction on the set of functions from which we choose our
estimated f , however, then even a function that does very well on the training
data, e.g., by satisfying f (xi) yi for all i 1 m, might not generalize well
to unseen examples. To see this, note that for each function f and any test setTest Data
(x̄1 ȳ1) (x̄m̄ ȳm̄) 1 satisfying x̄1 x̄m̄ x1 xm , there
exists another function f such that f (xi) f (xi) for all i 1 m, yet f (x̄i)
f (x̄i) for all i 1 m̄ (cf. Figure 1.3). As we are only given the training data, we
have no means of selecting which of the two functions (and hence which of the two
different sets of test label predictions) is preferable. We conclude that minimizing
only the (average) training error (or empirical risk),Empirical Risk

Remp[ f ]
1
m

m

∑
i 1

1
2

f (xi) yi (1.17)

does not imply a small test error (called risk), averaged over test examples drawn
from the underlying distribution P(x y),Risk

5. For a definition of a probability distribution, see Section B.1.1.
6. We mostly use the term example to denote a pair consisting of a training pattern x and
the corresponding target y.
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R[ f ]
1
2

f (x) y dP(x y) (1.18)

The risk can be defined for any loss function, provided the integral exists. For the
present zero-one loss function, the risk equals the probability of misclassification.7

Statistical learning theory (Chapter 5, [570, 559, 561, 136, 562, 14]), or VC
(Vapnik-Chervonenkis) theory, shows that it is imperative to restrict the set of
functions from which f is chosen to one that has a capacity suitable for the amountCapacity
of available training data. VC theory provides bounds on the test error. The min-
imization of these bounds, which depend on both the empirical risk and the ca-
pacity of the function class, leads to the principle of structural risk minimization
[559].

The best-known capacity concept of VC theory is the VC dimension, defined asVC dimension
follows: each function of the class separates the patterns in a certain way and thus
induces a certain labelling of the patterns. Since the labels are in 1 , there are
at most 2m different labellings for m patterns. A very rich function class might be
able to realize all 2m separations, in which case it is said to shatter the m points.Shattering
However, a given class of functions might not be sufficiently righ to shatter the
m points. The VC dimension is defined as the largest m such that there exists a
set of m points which the class can shatter, and if no such m exists. It can be
thought of as a one-number summary of a learning machine’s capacity (for an
example, see Figure 1.4). As such, it is necessarily somewhat crude. More accurate
capacity measures are the annealed VC entropy or the growth function. These are
usually considered to be harder to evaluate, but they play a fundamental role in
the conceptual part of VC theory. Another interesting capacity measure, which can
be thought of as a scale-sensitive version of the VC dimension, is the fat shattering
dimension [286, 6]. For further details, cf. Chapters 5 and 12.

Whilst it will be difficult for the non-expert to appreciate the results of VC theory
in this chapter, we will nevertheless briefly describe an example of a VC bound:VC Bound

7. The risk-based approach to machine learning has its roots in statistical decision theory
[582, 166, 43]. In that context, f (x) is thought of as an action, and the loss function measures
the loss incurred by taking action f (x) upon observing x when the true output (state of
nature) is y.

Like many fields of statistics, decision theory comes in two flavors. The present approach
is a frequentist one. It considers the risk as a function of the distribution P and the decision
function f . The Bayesian approach considers parametrized families PΘ to model the distri-
bution. Given a prior over Θ (which need not in general be a finite-dimensional vector),
the Bayes risk of a decision function f is the expected frequentist risk, where the expectation
is taken over the prior. Minimizing the Bayes risk (over decision functions) then leads to
a Bayes decision function. Bayesians thus act as if the parameter Θ were actually a random
variable whose distribution is known. Frequentists, who do not make this (somewhat bold)
assumption, have to resort to other strategies for picking a decision function. Examples
thereof are considerations like invariance and unbiasedness, both used to restrict the class
of decision rules, and the minimax principle. A decision function is said to be minimax if
it minimizes (over all decision functions) the maximal (over all distributions) risk. For a
discussion of the relationship of these issues to VC theory, see Problem 5.9.
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Figure 1.4 A simple VC dimension example. There are 23 8 ways of assigning 3 points
to two classes. For the displayed points in 2, all 8 possibilities can be realized using
separating hyperplanes, in other words, the function class can shatter 3 points. This would
not work if we were given 4 points, no matter how we placed them. Therefore, the VC
dimension of the class of separating hyperplanes in 2 is 3.

if h m is the VC dimension of the class of functions that the learning machine
can implement, then for all functions of that class, independent of the underlying
distribution P generating the data, with a probability of at least 1 over the
drawing of the training sample,8 the bound

R[ f ] Remp[ f ] (h m ) (1.19)

holds, where the confidence term (or capacity term) is defined as

(h m )
1
m

h ln
2m
h

1 ln
4

(1.20)

The bound (1.19) merits further explanation. Suppose we wanted to learn a
“dependency” where patterns and labels are statistically independent, P(x y)
P(x)P(y). In that case, the pattern x contains no information about the label y. If,
moreover, the two classes 1 and 1 are equally likely, there is no way of making
a good guess about the label of a test pattern.

Nevertheless, given a training set of finite size, we can always come up with
a learning machine which achieves zero training error (provided we have no
examples contradicting each other, i.e., whenever two patterns are identical, then
they must come with the same label). To reproduce the random labellings by
correctly separating all training examples, however, this machine will necessarily
require a large VC dimension h. Therefore, the confidence term (1.20), which
increases monotonically with h, will be large, and the bound (1.19) will show

8. Recall that each training example is generated from P(x y), and thus the training data
are subject to randomness.
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that the small training error does not guarantee a small test error. This illustrates
how the bound can apply independent of assumptions about the underlying
distribution P(x y): it always holds (provided that h m), but it does not always
make a nontrivial prediction. In order to get nontrivial predictions from (1.19),
the function class must be restricted such that its capacity (e.g., VC dimension)
is small enough (in relation to the available amount of data). At the same time,
the class should be large enough to provide functions that are able to model the
dependencies hidden in P(x y). The choice of the set of functions is thus crucial for
learning from data. In the next section, we take a closer look at a class of functions
which is particularly interesting for pattern recognition problems.

1.4 Hyperplane Classifiers

In the present section, we shall describe a hyperplane learning algorithm that can
be performed in a dot product space (such as the feature space that we introduced
earlier). As described in the previous section, to design learning algorithms whose
statistical effectiveness can be controlled, one needs to come up with a class of
functions whose capacity can be computed. Vapnik et al. [573, 566, 570] considered
the class of hyperplanes in some dot product space ,

w x b 0 where w b (1.21)

corresponding to decision functions

f (x) sgn ( w x b) (1.22)

and proposed a learning algorithm for problems which are separable by hyper-
planes (sometimes said to be linearly separable), termed the Generalized Portrait, for
constructing f from empirical data. It is based on two facts. First (see Chapter 7),
among all hyperplanes separating the data, there exists a unique optimal hyper-
plane, distinguished by the maximum margin of separation between any training
point and the hyperplane. It is the solution ofOptimal

Hyperplane
maximize

w b
min x xi x w x b 0 i 1 m (1.23)

Second (see Chapter 5), the capacity (as discussed in Section 1.3) of the class of sep-
arating hyperplanes decreases with increasing margin. Hence there are theoretical
arguments supporting the good generalization performance of the optimal hyper-
plane, cf. Chapters 5, 7, 12. In addition, it is computationally attractive, since we
will show below that it can be constructed by solving a quadratic programming
problem for which efficient algorithms exist (see Chapters 6 and 10).

Note that the form of the decision function (1.22) is quite similar to our earlier
example (1.9). The ways in which the classifiers are trained, however, are different.
In the earlier example, the normal vector of the hyperplane was trivially computed
from the class means as w c c .
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Figure 1.5 A binary classification toy problem: separate balls from diamonds. The optimal
hyperplane (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that yi( w xi b) 0 (i 1 m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy w xi b 1, we obtain a
canonical form (w b) of the hyperplane, satisfying yi( w xi b) 1. Note that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1 w . This
can be seen by considering two points x1 x2 on opposite sides of the margin, that is,
w x1 b 1 w x2 b 1, and projecting them onto the hyperplane normal vector

w w .

In the present case, we need to do some additional work to find the normal
vector that leads to the largest margin. To construct the optimal hyperplane, we
have to solve

minimize
w b

(w)
1
2

w 2 (1.24)

subject to yi( w xi b) 1 for all i 1 m (1.25)

Note that the constraints (1.25) ensure that f (xi) will be 1 for yi 1, and 1
for yi 1. Now one might argue that for this to be the case, we don’t actually
need the “ 1” on the right hand side of (1.25). However, without it, it would
not be meaningful to minimize the length of w: to see this, imagine we wrote
“ 0” instead of “ 1.” Now assume that the solution is (w b). Let us rescale this
solution by multiplication with some 0 1. Since 0, the constraints are
still satisfied. Since 1, however, the length of w has decreased. Hence (w b)
cannot be the minimizer of (w).

The “ 1” on the right hand side of the constraints effectively fixes the scaling
of w. In fact, any other positive number would do.

Let us now try to get an intuition for why we should be minimizing the length
of w, as in (1.24). If w were 1, then the left hand side of (1.25) would equal
the distance from xi to the hyperplane (cf. (1.23)). In general, we have to divide
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yi( w xi b) by w to transform it into this distance. Hence, if we can satisfy
(1.25) for all i 1 m with an w of minimal length, then the overall margin will
be maximized.

A more detailed explanation of why this leads to the maximum margin hyper-
plane will be given in Chapter 7. A short summary of the argument is also given
in Figure 1.5.

The function in (1.24) is called the objective function, while (1.25) are called in-
equality constraints. Together, they form a so-called constrained optimization problem.
Problems of this kind are dealt with by introducing Lagrange multipliers i 0 and
a Lagrangian9Lagrangian

L(w b )
1
2

w 2
m

∑
i 1

i yi( xi w b) 1 (1.26)

The Lagrangian L has to be minimized with respect to the primal variables w and b
and maximized with respect to the dual variables i (in other words, a saddle point
has to be found). Note that the constraint has been incorporated into the second
term of the Lagrangian; it is not necessary to enforce it explicitly.

Let us try to get some intuition for this way of dealing with constrained opti-
mization problems. If a constraint (1.25) is violated, then yi( w xi b) 1 0,
in which case L can be increased by increasing the corresponding i. At the
same time, w and b will have to change such that L decreases. To prevent

i yi( w xi b) 1 from becoming an arbitrarily large negative number, the
change in w and b will ensure that, provided the problem is separable, the
constraint will eventually be satisfied. Similarly, one can understand that for
all constraints which are not precisely met as equalities (that is, for which
yi( w xi b) 1 0), the corresponding i must be 0: this is the value of i

that maximizes L. The latter is the statement of the Karush-Kuhn-Tucker (KKT)KKT Conditions
complementarity conditions of optimization theory (Chapter 6).

The statement that at the saddle point, the derivatives of L with respect to the
primal variables must vanish,

b
L(w b ) 0 and

w
L(w b ) 0 (1.27)

leads to
m

∑
i 1

i yi 0 (1.28)

and

w
m

∑
i 1

i yixi (1.29)

9. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
( 1 m).
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The solution vector thus has an expansion (1.29) in terms of a subset of the training
patterns, namely those patterns with non-zero i, called Support Vectors (SVs) (cf.
(1.15) in the initial example). By the KKT conditions,Support Vector

i yi xi w b 1 0 for all i 1 m (1.30)

the SVs lie on the margin (cf. Figure 1.5). All remaining training examples (x j y j)
are irrelevant: their constraint y j( w x j b) 1 (cf. (1.25)) could just as well
be left out, and they do not appear in the expansion (1.29). This nicely captures
our intuition of the problem: as the hyperplane (cf. Figure 1.5) is completely
determined by the patterns closest to it, the solution should not depend on the
other examples.

By substituting (1.28) and (1.29) into the Lagrangian (1.26), one eliminates the
primal variables w and b, arriving at the so-called dual optimization problem, which
is the problem that one usually solves in practice:Dual Problem

maximize
m

W( )
m

∑
i 1

i
1
2

m

∑
i j 1

i j yiy j xi x j (1.31)

subject to i 0 for all i 1 m and
m

∑
i 1

i yi 0 (1.32)

Using (1.29), the hyperplane decision function (1.22) can thus be written asDecision
Function

f (x) sgn
m

∑
i 1

yi i x xi b (1.33)

where b is computed by exploiting (1.30) (for details, cf. Chapter 7).
The structure of the optimization problem closely resembles those that typically

arise in Lagrange’s formulation of mechanics (e.g., [206]). In the latter class of
problem, it is also often the case that only a subset of constraints become active.
For instance, if we keep a ball in a box, then it will typically roll into one of the
corners. The constraints corresponding to the walls which are not touched by the
ball are irrelevant, and those walls could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical
interpretation of optimal margin hyperplanes [87]: If we assume that each SV xiMechanical

Analogy exerts a perpendicular force of size i and direction y j w w on a solid plane
sheet lying along the hyperplane, then the solution satisfies the requirements for
mechanical stability. The constraint (1.28) states that the forces on the sheet sum to
zero, and (1.29) implies that the torques also sum to zero, via ∑i xi yi iw w
w w w 0.10 This mechanical analogy illustrates the physical meaning of the
term Support Vector.

10. Here, the denotes the vector (or cross) product, satisfying v v 0 for all v .
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Figure 1.6 The idea of SVMs: map the training data into a higher-dimensional feature
space via Φ, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it
is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

1.5 Support Vector Classification

We now have all the tools to describe SVMs (Figure 1.6). Everything in the last
section was formulated in a dot product space. We think of this space as the feature
space of Section 1.1. To express the formulas in terms of the input patterns in ,
we thus need to employ (1.6), which expresses the dot product of bold face feature
vectors x x in terms of the kernel k evaluated on input patterns x x ,

k(x x ) x x (1.34)

This substitution, which is sometimes referred to as the kernel trick, was used by
Boser, Guyon, and Vapnik [62] to extend the Generalized Portrait hyperplane clas-
sifier to nonlinear Support Vector Machines. Aizerman, Braverman, and Rozonoér
[4] called the linearization space, and used it in the context of the potential func-
tion classification method to express the dot product between elements of in
terms of elements of the input space.

The kernel trick can be applied since all feature vectors only occurred in dot
products (see (1.31) and (1.33)). The weight vector (cf. (1.29)) then becomes an
expansion in feature space, and therefore will typically no longer correspond to
the Φ-image of a single input space vector (cf. Chapter 18). We obtain decision
functions of the form (cf. (1.33))Decision

Function
f (x) sgn

m

∑
i 1

yi i Φ(x) Φ(xi) b sgn
m

∑
i 1

yi ik(x xi) b (1.35)

and the following quadratic program (cf. (1.31)):

maximize
m

W( )
m

∑
i 1

i
1
2

m

∑
i j 1

i j yi y jk(xi x j) (1.36)

subject to i 0 for all i 1 m and
m

∑
i 1

i yi 0 (1.37)
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Figure 1.7 Example of an SV classifier found using a radial basis function kernel k(x x )
exp( x x 2) (here, the input space is [ 1 1]2). Circles and disks are two classes of
training examples; the middle line is the decision surface; the outer lines precisely meet the
constraint (1.25). Note that the SVs found by the algorithm (marked by extra circles) are not
centers of clusters, but examples which are critical for the given classification task. Gray
values code ∑m

i 1 yi ik(x xi) b , the modulus of the argument of the decision function
(1.35). The top and the bottom lines indicate places where it takes the value 1 (from [471]).

Figure 1.7 shows an example of this approach, using a Gaussian radial basis
function kernel. We will later study the different possibilities for the kernel func-
tion in detail (Chapters 2 and 13).

In practice, a separating hyperplane may not exist, e.g., if a high noise level
causes a large overlap of the classes. To allow for the possibility of examplesSoft Margin

Hyperplane violating (1.25), one introduces slack variables [111, 561, 481]

i 0 for all i 1 m (1.38)

in order to relax the constraints (1.25) to

yi( w xi b) 1 i for all i 1 m (1.39)

A classifier that generalizes well is then found by controlling both the classifier
capacity (via w ) and the sum of the slacks ∑i i. The latter can be shown to
provide an upper bound on the number of training errors.

One possible realization of such a soft margin classifier is obtained by minimizing
the objective function

(w )
1
2

w 2 C
m

∑
i 1

i (1.40)
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subject to the constraints (1.38) and (1.39), where the constant C 0 determines
the trade-off between margin maximization and training error minimization.11

Incorporating a kernel, and rewriting it in terms of Lagrange multipliers, this again
leads to the problem of maximizing (1.36), subject to the constraints

0 i C for all i 1 m and
m

∑
i 1

i yi 0 (1.41)

The only difference from the separable case is the upper bound C on the Lagrange
multipliers i. This way, the influence of the individual patterns (which could be
outliers) gets limited. As above, the solution takes the form (1.35). The threshold
b can be computed by exploiting the fact that for all SVs xi with i C, the slack
variable i is zero (this again follows from the KKT conditions), and hence
m

∑
j 1

j y jk(xi x j) b yi (1.42)

Geometrically speaking, choosing b amounts to shifting the hyperplane, and (1.42)
states that we have to shift the hyperplane such that the SVs with zero slack
variables lie on the 1 lines of Figure 1.5.

Another possible realization of a soft margin variant of the optimal hyperplane
uses the more natural -parametrization. In it, the parameter C is replaced by a
parameter (0 1] which can be shown to provide lower and upper bounds
for the fraction of examples that will be SVs and those that will have non-zero
slack variables, respectively. It uses a primal objective function with the error term

1
m ∑i i instead of C ∑i i (cf. (1.40)), and separation constraints that involve

a margin parameter ,

yi( w xi b) i for all i 1 m (1.43)

which itself is a variable of the optimization problem. The dual can be shown
to consist in maximizing the quadratic part of (1.36), subject to 0 i 1 ( m),
∑i i yi 0 and the additional constraint ∑i i 1. We shall return to these methods
in more detail in Section 7.5.

1.6 Support Vector Regression

Let us turn to a problem slightly more general than pattern recognition. Rather
than dealing with outputs y 1 , regression estimation is concerned with esti-
mating real-valued functions.

To generalize the SV algorithm to the regression case, an analog of the soft
margin is constructed in the space of the target values y (note that we now have

11. It is sometimes convenient to scale the sum in (1.40) by C m rather than C, as done in
Chapter 7 below.
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Figure 1.8 In SV regression, a tube with radius is fitted to the data. The trade-off between
model complexity and points lying outside of the tube (with positive slack variables ) is
determined by minimizing (1.47).

y ) by using Vapnik’s -insensitive loss function [561] (Figure 1.8, see Chapters 3-Insensitive
Loss and 9) . This quantifies the loss incurred by predicting f (x) instead of y as

c(x y f (x)) : y f (x) : max 0 y f (x) (1.44)

To estimate a linear regression

f (x) w x b (1.45)

one minimizes

1
2

w 2 C
m

∑
i 1

yi f (xi) (1.46)

Note that the term w 2 is the same as in pattern recognition (cf. (1.40)); for further
details, cf. Chapter 9.

We can transform this into a constrained optimization problem by introducing
slack variables, akin to the soft margin case. In the present case, we need two types
of slack variable for the two cases f (xi) yi and yi f (xi) . We denote them
by and , respectively, and collectively refer to them as ( ).

The optimization problem is given by

minimize
w ( ) m b

(w ( ))
1
2

w 2 C
m

∑
i 1

( i i ) (1.47)

subject to f (xi) yi i (1.48)
yi f (xi) i (1.49)

i i 0 for all i 1 m (1.50)

Note that according to (1.48) and (1.49), any error smaller than does not require
a nonzero i or i and hence does not enter the objective function (1.47).

Generalization to kernel-based regression estimation is carried out in an analo-
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gous manner to the case of pattern recognition. Introducing Lagrange multipliers,
one arrives at the following optimization problem (for C 0 chosen a priori):

maximize
m

W( )
m

∑
i 1

( i i)
m

∑
i 1

( i i)yi

1
2

m

∑
i j 1

( i i)( j j)k(xi x j)
(1.51)

subject to 0 i i C for all i 1 m and
m

∑
i 1

( i i ) 0 (1.52)

The regression estimate takes the formRegression
Function

f (x)
m

∑
i 1

( i i)k(xi x) b (1.53)

where b is computed using the fact that (1.48) becomes an equality with i 0 if
0 i C, and (1.49) becomes an equality with i 0 if 0 i C (for details,
see Chapter 9). The solution thus looks quite similar to the pattern recognition case
(cf. (1.35) and Figure 1.9).

A number of extensions of this algorithm are possible. From an abstract point of
view, we just need some target function which depends on (w ) (cf. (1.47)). There
are multiple degrees of freedom for constructing it, including some freedom how
to penalize, or regularize. For instance, more general loss functions can be used for

, leading to problems that can still be solved efficiently ([512, 515], cf. Chapter 9).
Moreover, norms other than the 2-norm can be used to regularize the solution
(see Sections 4.9 and 9.4).

Finally, the algorithm can be modified such that need not be specified a priori.
Instead, one specifies an upper bound 0 1 on the fraction of points allowed
to lie outside the tube (asymptotically, the number of SVs) and the corresponding
is computed automatically. This is achieved by using as primal objective function-SV Regression

1
2

w 2 C m
m

∑
i 1

yi f (xi) (1.54)

instead of (1.46), and treating 0 as a parameter over which we minimize. For
more detail, cf. Section 9.3.

1.7 Kernel Principal Component Analysis

The kernel method for computing dot products in feature spaces is not restricted
to SVMs. Indeed, it has been pointed out that it can be used to develop nonlinear
generalizations of any algorithm that can be cast in terms of dot products, such as
principal component analysis (PCA) [480].

Principal component analysis is perhaps the most common feature extraction
algorithm; for details, see Chapter 14. The term feature extraction commonly refers
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to procedures for extracting (real) numbers from patterns which in some sense
represent the crucial information contained in these patterns.

PCA in feature space leads to an algorithm called kernel PCA. By solving an
eigenvalue problem, the algorithm computes nonlinear feature extraction func-
tions

fn(x)
m

∑
i 1

n
i k(xi x) (1.55)

where, up to a normalizing constant, the n
i are the components of the nth eigen-

vector of the kernel matrix Ki j : (k(xi x j)).
In a nutshell, this can be understood as follows. To do PCA in , we wish to

find eigenvectors v and eigenvalues of the so-called covariance matrix C in the
feature space, where

C :
1
m

m

∑
i 1

Φ(xi)Φ(xi) (1.56)

Here, Φ(xi) denotes the transpose of Φ(xi) (see Section B.2.1). In the case when
is very high dimensional, the computational costs of doing this directly are

prohibitive. Fortunately, one can show that all solutions to

Cv v (1.57)

with 0 must lie in the span of Φ-images of the training data. Thus, we may
expand the solution v as

v
m

∑
i 1

iΦ(xi) (1.58)

thereby reducing the problem to that of finding the i. It turns out that this leads
to a dual eigenvalue problem for the expansion coefficients,Kernel PCA

Eigenvalue
Problem m K (1.59)

where ( 1 m) .
To extract nonlinear features from a test point x, we compute the dot product

between Φ(x) and the nth normalized eigenvector in feature space,Feature
Extraction

vn Φ(x)
m

∑
i 1

n
i k(xi x) (1.60)

Usually, this will be computationally far less expensive than taking the dot product
in the feature space explicitly.

A toy example is given in Chapter 14 (Figure 14.4). As in the case of SVMs, the
architecture can be visualized by Figure 1.9.
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Σ

. . .

output σ (Σ υi k (x,xi))

weightsυ1 υ2  υm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product <Φ(x),Φ(xi)>= k(x,xi)<, > <, > <, >

Φ(x1) Φ(x2)

σ ( )

Figure 1.9 Architecture of SVMs and related kernel methods. The input x and the expan-
sion patterns (SVs) xi (we assume that we are dealing with handwritten digits) are nonlin-
early mapped (by Φ) into a feature space where dot products are computed. Through
the use of the kernel k, these two layers are in practice computed in one step. The results
are linearly combined using weights i, found by solving a quadratic program (in pattern
recognition, i yi i; in regression estimation, i i i) or an eigenvalue problem
(Kernel PCA). The linear combination is fed into the function (in pattern recognition,

(x) sgn (x b); in regression estimation, (x) x b; in Kernel PCA, (x) x).

1.8 Empirical Results and Implementations

Having described the basics of SVMs, we now summarize some empirical find-
ings. By the use of kernels, the optimal margin classifier was turned into a high-
performance classifier. Surprisingly, it was observed that the polynomial kernelExamples of

Kernels
k(x x ) x x d (1.61)

the Gaussian

k(x x ) exp
x x 2

2 2 (1.62)

and the sigmoid

k(x x ) tanh x x Θ (1.63)

with suitable choices of d and Θ (here, N ), empirically led to
SV classifiers with very similar accuracies and SV sets (Section 7.8.2). In this sense,
the SV set seems to characterize (or compress) the given task in a manner which
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to some extent is independent of the type of kernel (that is, the type of classifier)
used, provided the kernel parameters are well adjusted.

Initial work at AT&T Bell Labs focused on OCR (optical character recognition),Applications
a problem where the two main issues are classification accuracy and classification
speed. Consequently, some effort went into the improvement of SVMs on these
issues, leading to the Virtual SV method for incorporating prior knowledge about
transformation invariances by transforming SVs (Chapter 7), and the Reduced Set
method (Chapter 18) for speeding up classification. Using these procedures, SVMs
soon became competitive with the best available classifiers on OCR and other
object recognition tasks [87, 57, 419, 438, 134], and later even achieved the world
record on the main handwritten digit benchmark dataset [134].

An initial weakness of SVMs, less apparent in OCR applications which areImplementation
characterized by low noise levels, was that the size of the quadratic programming
problem (Chapter 10) scaled with the number of support vectors. This was due to
the fact that in (1.36), the quadratic part contained at least all SVs — the common
practice was to extract the SVs by going through the training data in chunks
while regularly testing for the possibility that patterns initially not identified as
SVs become SVs at a later stage. This procedure is referred to as chunking; note
that without chunking, the size of the matrix in the quadratic part of the objective
function would be m m, where m is the number of all training examples.

What happens if we have a high-noise problem? In this case, many of the
slack variables i become nonzero, and all the corresponding examples become
SVs. For this case, decomposition algorithms were proposed [398, 409], based
on the observation that not only can we leave out the non-SV examples (the xi

with i 0) from the current chunk, but also some of the SVs, especially those
that hit the upper boundary ( i C). The chunks are usually dealt with using
quadratic optimizers. Among the optimizers used for SVMs are LOQO [555],
MINOS [380], and variants of conjugate gradient descent, such as the optimizers of
Bottou [459] and Burges [85]. Several public domain SV packages and optimizers
are listed on the web page http://www.kernel-machines.org. For more details on
implementations, see Chapter 10.

Once the SV algorithm had been generalized to regression, researchers started
applying it to various problems of estimating real-valued functions. Very good
results were obtained on the Boston housing benchmark [529], and on problems of
times series prediction (see [376, 371, 351]). Moreover, the SV method was applied
to the solution of inverse function estimation problems ([572]; cf. [563, 589]). For
overviews, the interested reader is referred to [85, 472, 504, 125].



 

I CONCEPTS AND TOOLS

The generic can be more intense than the concrete.
J. L. Borges1

We now embark on a more systematic presentation of the concepts and tools
underlying Support Vector Machines and other kernel methods.

In machine learning problems, we try to discover structure in data. For in-
stance, in pattern recognition and regression estimation, we are given a training
set (x1 y1) (xm ym) , and attempt to predict the outputs y for previ-
ously unseen inputs x. This is only possible if we have some measure that tells us
how (x y) is related to the training set. Informally, we want similar inputs to lead
to similar outputs.2 To formalize this, we have to state what we mean by similar.

A particularly simple yet surprisingly useful notion of similarity of inputs — the
one we will use throughout this book — derives from embedding the data into
a Euclidean feature space and utilizing geometrical concepts. Chapter 2 describes
how certain classes of kernels induce feature spaces, and how one can compute
dot products, and thus angles and distances, without having to explicitly work in
these potentially infinite-dimensional spaces. This leads to a rather general class
of similarity measure to be used on the inputs.

1. From A History of Eternity, in The Total Library, Penguin, London, 2001.
2. This procedure can be traced back to an old maxim of law: de similibus ad similia eadem
ratione procedendum est — from things similar to things similar we are to proceed by the
same rule.
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On the outputs, similarity is usually measured in terms of a loss function stating
how “bad” it is if the predicted y does not match the true one. The training
of a learning machine commonly involves a risk functional that contains a term
measuring the loss incurred for the training patterns. The concepts of loss and risk
are introduced in depth in Chapter 3.

This is not the full story, however. In order to generalize well to the test data,
it is not sufficient to “explain” the training data. It is also necessary to control
the complexity of the model used for explaining the training data, a task that is
often accomplished with the help of regularization terms, as explained in Chapter 4.
Specifically, one utilizes objective functions that involve both the empirical loss
term and a regularization term. From a statistical point of view, we can expect
the function minimizing a properly chosen objective function to work well on
test data, as explained by statistical learning theory (Chapter 5). From a practical
point of view, however, it is not at all straightforward to find this minimizer.
Indeed, the quality of a loss function or a regularizer should be assessed not only
on a statistical basis but also in terms of the feasibility of the objective function
minimization problem. In order to be able to assess this, and in order to obtain
a thorough understanding of practical algorithms for this task, we conclude this
part of the book with an in-depth review of optimization theory (Chapter 6).

The chapters in this part of the book assume familiarity with basic concepts
of linear algebra and probability theory. Readers who would like to refresh their
knowledge of these topics may want to consult Appendix B beforehand.



 

2 Kernels

In Chapter 1, we described how a kernel arises as a similarity measure that can
be thought of as a dot product in a so-called feature space. We tried to provide
an intuitive understanding of kernels by introducing them as similarity measures,
rather than immediately delving into the functional analytic theory of the classes
of kernels that actually admit a dot product representation in a feature space.

In the present chapter, we will be both more formal and more precise. We will
study the class of kernels k that correspond to dot products in feature spaces via
a map Φ,

Φ :

x x : Φ(x) (2.1)

that is,

k(x x ) Φ(x) Φ(x ) (2.2)

Regarding the input domain , we need not make assumptions other than it being
a set. For instance, we could consider a set of discrete objects, such as strings.

A natural question to ask at this point is what kind of functions k(x x ) admit a
representation of the form (2.2); that is, whether we can always construct a dot
product space and a map Φ mapping into it such that (2.2) holds true. WeOverview
shall begin, however, by trying to give some motivation as to why kernels are at
all useful, considering kernels that compute dot products in spaces of monomial
features (Section 2.1). Following this, we move on to the questions of how, given
a kernel, an associated feature space can be constructed (Section 2.2). This leads to
the notion of a Reproducing Kernel Hilbert Space, crucial for the theory of kernel
machines. In Section 2.3, we give some examples and properties of kernels, and in
Section 2.4, we discuss a class of kernels that can be used as dissimilarity measures
rather than as similarity measures.

The chapter builds on knowledge of linear algebra, as briefly summarized inPrerequisites
Appendix B. Apart from that, it can be read on its own; however, readers new to
the field will profit from first reading Sections 1.1 and 1.2.
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2.3 Examples and
Properties of Kernels

2.4 Conditionally Positive
Definite Kernels

2.2.4, 2.2.5 Mercer
Representation

2.2.2, 2.2.3 RKHS
Representation

Definite Kernels
2.2.1 Positive2.1 Polynomial

Kernels

2.2.6, 2.2.7 Data
Dependent
Representation

2.1 Product Features

In this section, we think of as a subset of the vector space N , (N ), endowed
with the canonical dot product (1.3).

Suppose we are given patterns x where most information is contained in
the dth order products (so-called monomials) of entries [x] j of x,Monomial

Features
[x] j1 [x] j2 [x] jd

(2.3)

where j1 jd 1 N . Often, these monomials are referred to as product
features. These features form the basis of many practical algorithms; indeed, there
is a whole field of pattern recognition research studying polynomial classifiers [484],
which is based on first extracting product features and then applying learning
algorithms to these features. In other words, the patterns are preprocessed by
mapping into the feature space of all products of d entries. This has proven
quite effective in visual pattern recognition tasks, for instance. To understand the
rationale for doing this, note that visual patterns are usually represented as vectors
whose entries are the pixel intensities. Taking products of entries of these vectors
then corresponds to taking products of pixel intensities, and is thus akin to taking
logical “and” operations on the pixels. Roughly speaking, this corresponds to the
intuition that, for instance, a handwritten “8” constitutes an eight if there is a top
circle and a bottom circle. With just one of the two circles, it is not half an “8,” but
rather a “0.” Nonlinearities of this type are crucial for achieving high accuracies in
pattern recognition tasks.

Let us take a look at this feature map in the simple example of two-dimensional
patterns, for which 2 . In this case, we can collect all monomial feature
extractors of degree 2 in the nonlinear map

Φ : 2 3 (2.4)

([x]1 [x]2) ([x]2
1 [x]2

2 [x]1[x]2) (2.5)

This approach works fine for small toy examples, but it fails for realistically sized
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problems: for N-dimensional input patterns, there exist

N
d N 1

d
(d N 1)!
d!(N 1)!

(2.6)

different monomials (2.3) of degree d, comprising a feature space of dimension
N . For instance, 16 16 pixel input images and a monomial degree d 5 thus
yield a dimension of almost 1010.

In certain cases described below, however, there exists a way of computing dot
products in these high-dimensional feature spaces without explicitly mapping into
the spaces, by means of kernels nonlinear in the input space N . Thus, if the
subsequent processing can be carried out using dot products exclusively, we are
able to deal with the high dimension.

We now describe how dot products in polynomial feature spaces can be com-
puted efficiently, followed by a section in which we discuss more general feature
spaces. In order to compute dot products of the form Φ(x) Φ(x ) , we employ
kernel representations of the formKernel

k(x x ) Φ(x) Φ(x ) (2.7)

which allow us to compute the value of the dot product in without having to
explicitly compute the map Φ.

What does k look like in the case of polynomial features? We start by giving an
example for N d 2, as considered above [561]. For the map

Φ : ([x]1 [x]2) ([x]2
1 [x]2

2 [x]1[x]2 [x]2[x]1) (2.8)

(note that for now, we have considered [x]1[x]2 and [x]2[x]1 as separate features;
thus we are looking at ordered monomials) dot products in take the form

Φ(x) Φ(x ) [x]2
1[x ]2

1 [x]2
2[x ]2

2 2[x]1[x]2[x ]1[x ]2 x x 2 (2.9)

In other words, the desired kernel k is simply the square of the dot product in
input space. The same works for arbitrary N d [62]: as a straightforward
generalization of a result proved in the context of polynomial approximation [412,
Lemma 2.1], we have:

Proposition 2.1 Define Cd to map x N to the vector Cd(x) whose entries are all
possible dth degree ordered products of the entries of x. Then the corresponding kernel
computing the dot product of vectors mapped by Cd is

k(x x ) Cd(x) Cd(x ) x x d (2.10)
Polynomial
Kernel

Proof We directly compute

Cd(x) Cd(x )
N

∑
j1 1

N

∑
jd 1

[x] j1 [x] jd
[x ] j1 [x ] jd

(2.11)
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N

∑
j1 1

[x] j1 [x ] j1

N

∑
jd 1

[x] jd
[x ] jd

N

∑
j 1

[x] j [x ] j

d

x x d

Note that we used the symbol Cd for the feature map. The reason for this is that we
would like to reserve Φd for the corresponding map computing unordered product
features. Let us construct such a map Φd, yielding the same value of the dot
product. To this end, we have to compensate for the multiple occurrence of certain
monomials in Cd by scaling the respective entries of Φd with the square roots of
their numbers of occurrence. Then, by this construction of Φd, and (2.10),

Φd(x) Φd(x ) Cd(x) Cd(x ) x x d (2.12)

For instance, if n of the ji in (2.3) are equal, and the remaining ones are different,
then the coefficient in the corresponding component of Φd is (d n 1)!. For the
general case, see Problem 2.2. For Φ2, this simply means that [561]

Φ2(x) ([x]2
1 [x]2

2 2 [x]1[x]2) (2.13)

The above reasoning illustrates an important point pertaining to the construction
of feature spaces associated with kernel functions. Although they map into dif-
ferent feature spaces, Φd and Cd are both valid instantiations of feature maps for
k(x x ) x x d.

To illustrate how monomial feature kernels can significantly simplify pattern
recognition tasks, let us consider a simple toy example.

Example 2.2 (Monomial Features in 2-D Pattern Recognition) In the example of
Figure 2.1, a non-separable problem is reduced to the construction of a separating hy-Toy Example
perplane by preprocessing the input data with Φ2. As we shall see in later chapters, this
has advantages both from the computational point of view (there exist efficient algo-
rithms for computing the hyperplane) and from the statistical point of view (there exist
guarantees for how well the hyperplane will generalize to unseen test points).

In more realistic cases, e.g., if x represents an image with the entries being pixel
values, polynomial kernels x x d enable us to work in the space spanned by
products of any d pixel values — provided that we are able to do our work solely
in terms of dot products, without any explicit usage of a mapped pattern Φd(x).
Using kernels of the form (2.10), we can take higher-order statistics into account,
without the combinatorial explosion (2.6) of time and memory complexity which
accompanies even moderately high N and d.

To conclude this section, note that it is possible to modify (2.10) such that it maps
into the space of all monomials up to degree d, by defining k(x x ) ( x x 1)d

(Problem 2.17). Moreover, in practice, it is often useful to multiply the kernel by a
scaling factor c to ensure that its numeric range is within some bounded interval,
say [ 1 1]. The value of c will depend on the dimension and range of the data.
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Figure 2.1 Toy example of a binary classification problem mapped into feature space. We
assume that the true decision boundary is an ellipse in input space (left panel). The task
of the learning process is to estimate this boundary based on empirical data consisting of
training points in both classes (crosses and circles, respectively). When mapped into feature
space via the nonlinear map Φ2(x) (z1 z2 z3) ([x]2

1 [x]2
2 2 [x]1[x]2) (right panel), the

ellipse becomes a hyperplane (in the present simple case, it is parallel to the z3 axis, hence
all points are plotted in the (z1 z2) plane). This is due to the fact that ellipses can be written
as linear equations in the entries of (z1 z2 z3). Therefore, in feature space, the problem
reduces to that of estimating a hyperplane from the mapped data points. Note that via the
polynomial kernel (see (2.12) and (2.13)), the dot product in the three-dimensional space
can be computed without computing Φ2. Later in the book, we shall describe algorithms
for constructing hyperplanes which are based on dot products (Chapter 7).

2.2 The Representation of Similarities in Linear Spaces

In what follows, we will look at things the other way round, and start with the
kernel rather than with the feature map. Given some kernel, can we construct a
feature space such that the kernel computes the dot product in that feature space;
that is, such that (2.2) holds? This question has been brought to the attention
of the machine learning community in a variety of contexts, especially during
recent years [4, 152, 62, 561, 480]. In functional analysis, the same problem has
been studied under the heading of Hilbert space representations of kernels. A good
monograph on the theory of kernels is the book of Berg, Christensen, and Ressel
[42]; indeed, a large part of the material in the present chapter is based on this
work. We do not aim to be fully rigorous; instead, we try to provide insight into
the basic ideas. As a rule, all the results that we state without proof can be found
in [42]. Other standard references include [16, 455].

There is one more aspect in which this section differs from the previous one:
the latter dealt with vectorial data, and the domain was assumed to be a subset
of N . By contrast, the results in the current section hold for data drawn from
domains which need no structure, other than their being nonempty sets. This
generalizes kernel learning algorithms to a large number of situations where a
vectorial representation is not readily available, and where one directly works
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with pairwise distances or similarities between non-vectorial objects [246, 467,
154, 210, 234, 585]. This theme will recur in several places throughout the book,
for instance in Chapter 13.

2.2.1 Positive Definite Kernels

We start with some basic definitions and results. As in the previous chapter, indices
i and j are understood to run over 1 m.

Definition 2.3 (Gram Matrix) Given a function k : 2 (where or )
and patterns x1 xm , the m m matrix K with elementsGram Matrix

Ki j : k(xi x j) (2.14)

is called the Gram matrix (or kernel matrix) of k with respect to x1 xm.

Definition 2.4 (Positive Definite Matrix) A complex m m matrix K satisfyingPD Matrix

∑
i j

cic̄ jKi j 0 (2.15)

for all ci is called positive definite.1 Similarly, a real symmetric m m matrix K
satisfying (2.15) for all ci is called positive definite.

Note that a symmetric matrix is positive definite if and only if all its eigenvalues
are nonnegative (Problem 2.4). The left hand side of (2.15) is often referred to as
the quadratic form induced by K.

Definition 2.5 ((Positive Definite) Kernel) Let be a nonempty set. A function k on
which for all m and all x1 xm gives rise to a positive definite Gram

matrix is called a positive definite (pd) kernel. Often, we shall refer to it simply as aPD Kernel
kernel.

Remark 2.6 (Terminology) The term kernel stems from the first use of this type of
function in the field of integral operators as studied by Hilbert and others [243, 359, 112].
A function k which gives rise to an operator Tk via

(Tk f )(x) k(x x ) f (x ) dx (2.16)

is called the kernel of Tk.
In the literature, a number of different terms are used for positive definite kernels, such

as reproducing kernel, Mercer kernel, admissible kernel, Support Vector kernel,
nonnegative definite kernel, and covariance function. One might argue that the term
positive definite kernel is slightly misleading. In matrix theory, the term definite is
sometimes reserved for the case where equality in (2.15) only occurs if c1 cm 0.

1. The bar in c̄ j denotes complex conjugation; for real numbers, it has no effect.



2.2 The Representation of Similarities in Linear Spaces 31

Simply using the term positive kernel, on the other hand, could be mistaken as referring
to a kernel whose values are positive. Finally, the term positive semidefinite kernel
becomes rather cumbersome if it is to be used throughout a book. Therefore, we follow
the convention used for instance in [42], and employ the term positive definite both for
kernels and matrices in the way introduced above. The case where the value 0 is only
attained if all coefficients are 0 will be referred to as strictly positive definite.

We shall mostly use the term kernel. Whenever we want to refer to a kernel k(x x )
which is not positive definite in the sense stated above, it will be clear from the context.

The definitions for positive definite kernels and positive definite matrices differ in
the fact that in the former case, we are free to choose the points on which the kernel
is evaluated — for every choice, the kernel induces a positive definite matrix.

Positive definiteness implies positivity on the diagonal (Problem 2.12),

k(x x) 0 for all x (2.17)

and symmetry (Problem 2.13),

k(xi x j) k(x j xi) (2.18)

To also cover the complex-valued case, our definition of symmetry includes com-
plex conjugation. The definition of symmetry of matrices is analogous; that is,
Ki j K ji.

For real-valued kernels it is not sufficient to stipulate that (2.15) hold for real
coefficients ci. To get away with real coefficients only, we must additionally requireReal-Valued

Kernels that the kernel be symmetric (Problem 2.14); k(xi x j) k(x j xi) (cf. Problem 2.13).
It can be shown that whenever k is a (complex-valued) positive definite kernel,

its real part is a (real-valued) positive definite kernel. Below, we shall largely be
dealing with real-valued kernels. Most of the results, however, also apply for
complex-valued kernels.

Kernels can be regarded as generalized dot products. Indeed, any dot product
is a kernel (Problem 2.5); however, linearity in the arguments, which is a standard
property of dot products, does not carry over to general kernels. However, another
property of dot products, the Cauchy-Schwarz inequality, does have a natural
generalization to kernels:

Proposition 2.7 (Cauchy-Schwarz Inequality for Kernels) If k is a positive definite
kernel, and x1 x2 , then

k(x1 x2) 2 k(x1 x1) k(x2 x2) (2.19)

Proof For sake of brevity, we give a non-elementary proof using some basic facts
of linear algebra. The 2 2 Gram matrix with entries Ki j k(xi x j) (i j 1 2 )
is positive definite. Hence both its eigenvalues are nonnegative, and so is their
product, the determinant of K. Therefore

0 K11K22 K12K21 K11K22 K12K12 K11K22 K12
2 (2.20)
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Φ

. .
Φ(x) Φ(x')x x'

Figure 2.2 One instantiation of the fea-
ture map associated with a kernel is the
map (2.21), which represents each pattern
(in the picture, x or x ) by a kernel-shaped
function sitting on the pattern. In this sense,
each pattern is represented by its similar-
ity to all other patterns. In the picture, the
kernel is assumed to be bell-shaped, e.g., a
Gaussian k(x x ) exp( x x 2 (2 2)).
In the text, we describe the construction of
a dot product on the function space
such that k(x x ) Φ(x) Φ(x ) .

Substituting k(xi x j) for Ki j, we get the desired inequality.

We now show how the feature spaces in question are defined by the choice of
kernel function.

2.2.2 The Reproducing Kernel Map

Assume that k is a real-valued positive definite kernel, and a nonempty set. We
define a map from into the space of functions mapping into , denoted as

: f : , viaFeature Map

Φ :

x k( x) (2.21)

Here, Φ(x) denotes the function that assigns the value k(x x) to x , i.e.,
Φ(x)( ) k( x) (as shown in Figure 2.2).

We have thus turned each pattern into a function on the domain . In this sense,
a pattern is now represented by its similarity to all other points in the input domain

. This seems a very rich representation; nevertheless, it will turn out that the
kernel allows the computation of the dot product in this representation. Below,
we show how to construct a feature space associated with Φ, proceeding in the
following steps:

1. Turn the image of Φ into a vector space,

2. define a dot product; that is, a strictly positive definite bilinear form, and

3. show that the dot product satisfies k(x x ) Φ(x) Φ(x ) .

We begin by constructing a dot product space containing the images of the input
patterns under Φ. To this end, we first need to define a vector space. This is done
by taking linear combinations of the formVector Space

f ( )
m

∑
i 1

ik( xi) (2.22)

Here, m , i and x1 xm are arbitrary. Next, we define a dot product
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between f and another function

g( )
m

∑
j 1

jk( x j) (2.23)

where m , j and x1 xm , asDot Product

f g :
m

∑
i 1

m

∑
j 1

i jk(xi x j) (2.24)

This expression explicitly contains the expansion coefficients, which need not be
unique. To see that it is nevertheless well-defined, note that

f g
m

∑
j 1

j f (x j) (2.25)

using k(xj xi) k(xi x j). The sum in (2.25), however, does not depend on the
particular expansion of f . Similarly, for g, note that

f g
m

∑
i 1

ig(xi) (2.26)

The last two equations also show that is bilinear. It is symmetric, as f g
g f . Moreover, it is positive definite, since positive definiteness of k implies that

for any function f , written as (2.22), we have

f f
m

∑
i j 1

i jk(xi x j) 0 (2.27)

The latter implies that is actually itself a positive definite kernel, defined
on our space of functions. To see this, note that given functions f1 fn, and
coefficients 1 n , we have

n

∑
i j 1

i j fi f j

n

∑
i 1

i fi

n

∑
j 1

j f j 0 (2.28)

Here, the left hand equality follows from the bilinearity of , and the right hand
inequality from (2.27). For the last step in proving that it qualifies as a dot product,
we will use the following interesting property of Φ, which follows directly from
the definition: for all functions (2.22), we have

k( x) f f (x) (2.29)

— k is the representer of evaluation. In particular,

k( x) k( x ) k(x x ) (2.30)

By virtue of these properties, positive definite kernels k are also called reproducing
kernels [16, 42, 455, 578, 467, 202]. By (2.29) and Proposition 2.7, we haveReproducing

Kernel
f (x) 2 k( x) f 2 k(x x) f f (2.31)
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Therefore, f f 0 directly implies f 0, which is the last property that required
proof in order to establish that is a dot product (cf. Section B.2).

The case of complex-valued kernels can be dealt with using the same construc-
tion; in that case, we will end up with a complex dot product space [42].

The above reasoning has shown that any positive definite kernel can be thought
of as a dot product in another space: in view of (2.21), the reproducing kernel
property (2.30) amounts to

Φ(x) Φ(x ) k(x x ) (2.32)

Therefore, the dot product space constructed in this way is one possible instan-
tiation of the feature space associated with a kernel.

Above, we have started with the kernel, and constructed a feature map. Let usKernels from
Feature Maps now consider the opposite direction. Whenever we have a mapping Φ from into

a dot product space, we obtain a positive definite kernel via k(x x ) : Φ(x) Φ(x ) .
This can be seen by noting that for all ci xi i 1 m, we have

∑
i j

cic jk(xi x j) ∑
i

ciΦ(xi) ∑
j

c jΦ(x j) ∑
i

ciΦ(xi)
2

0 (2.33)

due to the nonnegativity of the norm.
This has two consequences. First, it allows us to give an equivalent definition ofEquivalent

Definition of
PD Kernels

positive definite kernels as functions with the property that there exists a map
Φ into a dot product space such that (2.32) holds true. Second, it allows us to
construct kernels from feature maps. For instance, it is in this way that powerful
linear representations of 3D heads proposed in computer graphics [575, 59] give
rise to kernels. The identity (2.32) forms the basis for the kernel trick:

Remark 2.8 (“Kernel Trick”) Given an algorithm which is formulated in terms of a
positive definite kernel k, one can construct an alternative algorithm by replacing k by
another positive definite kernel k̃.Kernel Trick

In view of the material in the present section, the justification for this procedure is
the following: effectively, the original algorithm can be thought of as a dot prod-
uct based algorithm operating on vectorial data Φ(x1) Φ(xm). The algorithm
obtained by replacing k by k̃ then is exactly the same dot product based algorithm,
only that it operates on Φ̃(x1) Φ̃(xm).

The best known application of the kernel trick is in the case where k is the dot
product in the input domain (cf. Problem 2.5). The trick is not limited to that case,
however: k and k̃ can both be nonlinear kernels. In general, care must be exercised
in determining whether the resulting algorithm will be useful: sometimes, an
algorithm will only work subject to additional conditions on the input data, e.g.,
the data set might have to lie in the positive orthant. We shall later see that certain
kernels induce feature maps which enforce such properties for the mapped data
(cf. (2.73)), and that there are algorithms which take advantage of these aspects
(e.g., in Chapter 8). In such cases, not every conceivable positive definite kernel
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will make sense.
Even though the kernel trick had been used in the literature for a fair amount ofHistorical

Remarks time [4, 62], it took until the mid 1990s before it was explicitly stated that any al-
gorithm that only depends on dot products, i.e., any algorithm that is rotationally
invariant, can be kernelized [479, 480]. Since then, a number of algorithms have
benefitted from the kernel trick, such as the ones described in the present book, as
well as methods for clustering in feature spaces [479, 215, 199].

Moreover, the machine learning community took time to comprehend that the
definition of kernels on general sets (rather than dot product spaces) greatly
extends the applicability of kernel methods [467], to data types such as texts and
other sequences [234, 585, 23]. Indeed, this is now recognized as a crucial feature
of kernels: they lead to an embedding of general data types in linear spaces.

Not surprisingly, the history of methods for representing kernels in linear spaces
(in other words, the mathematical counterpart of the kernel trick) dates back
significantly further than their use in machine learning. The methods appear to
have first been studied in the 1940s by Kolmogorov [304] for countable and
Aronszajn [16] in the general case. Pioneering work on linear representations of
a related class of kernels, to be described in Section 2.4, was done by Schoenberg
[465]. Further bibliographical comments can be found in [42].

We thus see that the mathematical basis for kernel algorithms has been around
for a long time. As is often the case, however, the practical importance of mathe-
matical results was initially underestimated.2

2.2.3 Reproducing Kernel Hilbert Spaces

In the last section, we described how to define a space of functions which is a
valid realization of the feature spaces associated with a given kernel. To do this,
we had to make sure that the space is a vector space, and that it is endowed with
a dot product. Such spaces are referred to as dot product spaces (cf. Appendix B),
or equivalently as pre-Hilbert spaces. The reason for the latter is that one can turn
them into Hilbert spaces (cf. Section B.3) by a fairly simple mathematical trick. This
additional structure has some mathematical advantages. For instance, in Hilbert
spaces it is always possible to define projections. Indeed, Hilbert spaces are one of
the favorite concepts of functional analysis.

So let us again consider the pre-Hilbert space of functions (2.22), endowed with
the dot product (2.24). To turn it into a Hilbert space (over ), one completes it in
the norm corresponding to the dot product, f : f f . This is done by adding
the limit points of sequences that are convergent in that norm (see Appendix B).

2. This is illustrated by the following quotation from an excellent machine learning text-
book published in the seventies (p. 174 in [152]): “The familiar functions of mathematical physics
are eigenfunctions of symmetric kernels, and their use is often suggested for the construction of po-
tential functions. However, these suggestions are more appealing for their mathematical beauty than
their practical usefulness.”



36 Kernels

In view of the properties (2.29) and (2.30), this space is usually called a reproducingRKHS
kernel Hilbert space (RKHS).

In general, an RKHS can be defined as follows.

Definition 2.9 (Reproducing Kernel Hilbert Space) Let be a nonempty set (often
called the index set) and by a Hilbert space of functions f : . Then is called
a reproducing kernel Hilbert space endowed with the dot product (and the norm

f : f f ) if there exists a function k : with the following properties.

1. k has the reproducing property3Reproducing
Property

f k(x ) f (x) for all f ; (2.34)

in particular,

k(x ) k(x ) k(x x ) (2.35)

2. k spans , i.e. span k(x ) x where X denotes the completion of the set XClosed Space
(cf. Appendix B).

On a more abstract level, an RKHS can be defined as a Hilbert space of functions
f on such that all evaluation functionals (the maps f f (x ), where x ) are
continuous. In that case, by the Riesz representation theorem (e.g., [429]), for each
x there exists a unique function of x, called k(x x ), such that

f (x ) f k( x ) (2.36)

It follows directly from (2.35) that k(x x ) is symmetric in its arguments (see
Problem 2.28) and satisfies the conditions for positive definiteness.

Note that the RKHS uniquely determines k. This can be shown by contradiction:
assume that there exist two kernels, say k and k , spanning the same RKHS .
From Problem 2.28 we know that both k and k must be symmetric. Moreover,Uniqueness of k
from (2.34) we conclude that

k(x ) k (x ) k(x x ) k (x x) (2.37)

In the second equality we used the symmetry of the dot product. Finally, symme-
try in the arguments of k yields k(x x ) k (x x ) which proves our claim.

2.2.4 The Mercer Kernel Map

Section 2.2.2 has shown that any positive definite kernel can be represented as a
dot product in a linear space. This was done by explicitly constructing a (Hilbert)
space that does the job. The present section will construct another Hilbert space.

3. Note that this implies that each f is actually a single function whose values at any
x are well-defined. In contrast, L2 Hilbert spaces usually do not have this property. The
elements of these spaces are equivalence classes of functions that disagree only on sets of
measure 0; cf. footnote 15 in Section B.3.
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One could argue that this is superfluous, given that any two separable Hilbert
spaces are isometrically isomorphic, in other words, it is possible to define a one-
to-one linear map between the spaces which preserves the dot product. However,
the tool that we shall presently use, Mercer’s theorem, has played a crucial role
in the understanding of SVMs, and it provides valuable insight into the geometry
of feature spaces, which more than justifies its detailed discussion. In the SVM
literature, the kernel trick is usually introduced via Mercer’s theorem.

We start by stating the version of Mercer’s theorem given in [606]. We assume
( ) to be a finite measure space.4 The term almost all (cf. Appendix B) means
except for sets of measure zero. For the commonly used Lebesgue-Borel measure,
countable sets of individual points are examples of zero measure sets. Note thatMercer’s

Theorem the integral with respect to a measure is explained in Appendix B. Readers who
do not want to go into mathematical detail may simply want to think of the d (x )
as a dx , and of as a compact subset of N . For further explanations of the terms
involved in this theorem, cf. Appendix B, especially Section B.3.

Theorem 2.10 (Mercer [359, 307]) Suppose k L ( 2) is a symmetric real-valued
function such that the integral operator (cf. (2.16))

Tk : L2( ) L2( )

(Tk f )(x) : k(x x ) f (x ) d (x ) (2.38)

is positive definite; that is, for all f L2( ), we have

2
k(x x ) f (x) f (x ) d (x)d (x ) 0 (2.39)

Let j L2( ) be the normalized orthogonal eigenfunctions of Tk associated with the
eigenvalues j 0, sorted in non-increasing order. Then

1. ( j) j 1,

2. k(x x ) ∑N
j 1 j j(x) j(x ) holds for almost all (x x ). Either N , or N ;

in the latter case, the series converges absolutely and uniformly for almost all (x x ).

For the converse of Theorem 2.10, see Problem 2.23. For a data-dependent approx-
imation and its relationship to kernel PCA (Section 1.7), see Problem 2.26.

From statement 2 it follows that k(x x ) corresponds to a dot product in N
2 ,

since k(x x ) Φ(x) Φ(x ) with

Φ : N
2

x ( j j(x)) j 1 N
(2.40)

for almost all x . Note that we use the same Φ as in (2.21) to denote the feature

4. A finite measure space is a set with a -algebra (Definition B.1) defined on it, and a
measure (Definition B.2) defined on the latter, satisfying ( ) (so that, up to a scaling
factor, is a probability measure).



38 Kernels

map, although the target spaces are different. However, this distinction is not
important for the present purposes — we are interested in the existence of some
Hilbert space in which the kernel corresponds to the dot product, and not in what
particular representation of it we are using.

In fact, it has been noted [467] that the uniform convergence of the series implies
that given any 0, there exists an n such that even if N , k can be
approximated within accuracy as a dot product in n : for almost all x x

, k(x x ) Φn(x) Φn(x ) , where Φn : x ( 1 1(x) n n(x)). The
feature space can thus always be thought of as finite-dimensional within some
accuracy . We summarize our findings in the following proposition.

Proposition 2.11 (Mercer Kernel Map) If k is a kernel satisfying the conditions of
Theorem 2.10, we can construct a mapping Φ into a space where k acts as a dot product,Mercer Feature

Map
Φ(x) Φ(x ) k(x x ) (2.41)

for almost all x x . Moreover, given any 0, there exists a map Φn into an n-
dimensional dot product space (where n depends on ) such that

k(x x ) Φn(x) Φn(x ) (2.42)

for almost all x x .

Both Mercer kernels and positive definite kernels can thus be represented as dot
products in Hilbert spaces. The following proposition, showing a case where the
two types of kernels coincide, thus comes as no surprise.

Proposition 2.12 (Mercer Kernels are Positive Definite [359, 42]) Let [a b] be
a compact interval and let k : [a b] [a b] be continuous. Then k is a positive definite
kernel if and only if

b

a

b

a
k(x x ) f (x) f (x ) dx dx 0 (2.43)

for each continuous function f : .

Note that the conditions in this proposition are actually more restrictive than
those of Theorem 2.10. Using the feature space representation (Proposition 2.11),
however, it is easy to see that Mercer kernels are also positive definite (for almost
all x x ) in the more general case of Theorem 2.10: given any c m , we have

∑
i j

cic jk(xi x j) ∑
i j

cic j Φ(xi) Φ(x j) ∑
i

ciΦ(xi)
2

0 (2.44)

Being positive definite, Mercer kernels are thus also reproducing kernels.
We next show how the reproducing kernel map is related to the Mercer kernel

map constructed from the eigenfunction decomposition [202, 467]. To this end, let
us consider a kernel which satisfies the condition of Theorem 2.10, and construct
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a dot product such that k becomes a reproducing kernel for the Hilbert space
containing the functions

f (x) ∑
i 1

ik(x xi) ∑
i 1

i

N

∑
j 1

j j(x) j(xi) (2.45)

By linearity, which holds for any dot product, we have

f k( x ) ∑
i 1

i

N

∑
j n 1

j j(xi) j n n n(x ) (2.46)

Since k is a Mercer kernel, the i (i 1 N ) can be chosen to be orthogonal
with respect to the dot product in L2( ). Hence it is straightforward to choose
such that

j n jn j (2.47)

(using the Kronecker symbol jn, see (B.30)), in which case (2.46) reduces to the
reproducing kernel property (2.36) (using (2.45)). For a coordinate representation
in the RKHS, see Problem 2.29.

The above connection between the Mercer kernel map and the RKHS map is
instructive, but we shall rarely make use of it. In fact, we will usually identifyEquivalence of

Feature Spaces the different feature spaces. Thus, to avoid confusion in subsequent chapters, the
following comments are necessary. As described above, there are different ways
of constructing feature spaces for any given kernel. In fact, they can even differ in
terms of their dimensionality (cf. Problem 2.22). The two feature spaces that we
will mostly use in this book are the RKHS associated with k (Section 2.2.2) and
the Mercer 2 feature space. We will mostly use the same symbol for all feature
spaces that are associated with a given kernel. This makes sense provided that
everything we do, at the end of the day, reduces to dot products. For instance, let
us assume that Φ1 Φ2 are maps into the feature spaces 1 2 respectively, both
associated with the kernel k; in other words,

k(x x ) Φi(x) Φi(x )
i

for i 1 2 (2.48)

Then it will usually not be the case that Φ1(x) Φ2(x); due to (2.48), however,
we always have Φ1(x) Φ1(x )

1
Φ2(x) Φ2(x )

2
. Therefore, as long as we are

only interested in dot products, the two spaces can be considered identical.
An example of this identity is the so-called large margin regularizer that is

usually used in SVMs, as discussed in the introductory chapter (cf. also Chapters
4 and 7),

w w where w
m

∑
i 1

iΦ(xi) (2.49)

No matter whether Φ is the RKHS map Φ(xi) k( xi) (2.21) or the Mercer map
Φ(xi) ( j j(x)) j 1 N (2.40), the value of w 2 will not change.

This point is of great importance, and we hope that all readers are still with us.
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It is fair to say, however, that Section 2.2.5 can be skipped at first reading.

2.2.5 The Shape of the Mapped Data in Feature Space

Using Mercer’s theorem, we have shown that one can think of the feature map
as a map into a high- or infinite-dimensional Hilbert space. The argument in the
remainder of the section shows that this typically entails that the mapped data
Φ( ) lie in some box with rapidly decaying side lengths [606]. By this we mean
that the range of the data decreases as the dimension index j increases, with a rate
that depends on the size of the eigenvalues.

Let us assume that for all j , we have supx j j(x) 2 . Define the
sequence

l j : sup
x

j j(x) 2 (2.50)

Note that if

Ck : sup
j

sup
x

j(x) (2.51)

exists (see Problem 2.24), then we have l j jC2
k . However, if the j decay rapidly,

then (2.50) can be finite even if (2.51) is not.
By construction, Φ( ) is contained in an axis parallel parallelepiped in N

2 with
side lengths 2 l j (cf. (2.40)).5

Consider an example of a common kernel, the Gaussian, and let (see The-
orem 2.10) be the Lebesgue measure. In this case, the eigenvectors are sine and
cosine functions (with supremum one), and thus the sequence of the lj coincides
with the sequence of the eigenvalues j. Generally, whenever supx j(x) 2 is fi-
nite, the l j decay as fast as the j. We shall see in Sections 4.4, 4.5 and Chapter 12
that for many common kernels, this decay is very rapid.

It will be useful to consider operators that map Φ( ) into balls of some radius
R centered at the origin. The following proposition characterizes a class of such
operators, determined by the sequence (l j) j . Recall that denotes the space of
all real sequences.

Proposition 2.13 (Mapping Φ( ) into 2) Let S be the diagonal map

S :

(x j) j S(x j) j (s jx j) j
(2.52)

where (s j) j . If s j l j j 2, then S maps Φ( ) into a ball centered at the origin

whose radius is R sj l j j .

5. In fact, it is sufficient to use the essential supremum in (2.50). In that case, subsequent
statements also only hold true almost everywhere.
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Proof Suppose s j l j j 2. Using the Mercer map (2.40), we have

SΦ(x) 2 ∑
j

s2
j j j(x) 2 ∑

j
s2

j l j R (2.53)

for any x . Hence SΦ( ) 2.

The converse is not necessarily the case. To see this, note that if s j l j j 2,
amounting to saying that

∑
j

s2
j sup

x
j j(x) 2 (2.54)

is not finite, then there need not always exist an x such that SΦ(x)
s j j j(x) j 2, i.e., that

∑
j

s2
j j j(x) 2 (2.55)

is not finite.
To see how the freedom to rescale Φ( ) effectively restricts the class of functions

we are using, we first note that everything in the feature space N
2 is done

in terms of dot products. Therefore, we can compensate any invertible symmetric
linear transformation of the data in by the inverse transformation on the set
of admissible weight vectors in . In other words, for any invertible symmetric
operator S on , we have S 1w SΦ(x) w Φ(x) for all x

As we shall see below (cf. Theorem 5.5, Section 12.4, and Problem 7.5), there
exists a class of generalization error bound that depends on the radius R of the
smallest sphere containing the data. If the (li)i decay rapidly, we are not actually
“making use” of the whole sphere. In this case, we may construct a diagonal
scaling operator S which inflates the sides of the above parallelepiped as much
as possible, while ensuring that it is still contained within a sphere of the original
radius R in (Figure 2.3). By effectively reducing the size of the function class, this
will provide a way of strengthening the bounds. A similar idea, using kernel PCA
(Section 14.2) to determine empirical scaling coefficients, has been successfully
applied by [101].

We conclude this section with another useful insight that characterizes a prop-
erty of the feature map Φ. Note that most of what was said so far applies to the
case where the input domain is a general set. In this case, it is not possible to
make nontrivial statements about continuity properties of Φ. This changes if we
assume to be endowed with a notion of closeness, by turning it into a so-called
topological space. Readers not familiar with this concept will be reassured to hear
that Euclidean vector spaces are particular cases of topological spaces.Continuity of Φ

Proposition 2.14 (Continuity of the Feature Map [402]) If is a topological space
and k is a continuous positive definite kernel on , then there exists a Hilbert space

and a continuous map Φ : such that for all x x , we have k(x x )
Φ(x) Φ(x ) .
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Figure 2.3 Since everything is done in terms of dot products, scaling up the data by
an operator S can be compensated by scaling the weight vectors with S 1 (cf. text). By
choosing S such that the data are still contained in a ball of the same radius R, we effectively
reduce our function class (parametrized by the weight vector), which can lead to better
generalization bounds, depending on the kernel inducing the map Φ.

2.2.6 The Empirical Kernel Map

The map Φ, defined in (2.21), transforms each input pattern into a function on ,
that is, into a potentially infinite-dimensional object. For any given set of points,
however, it is possible to approximate Φ by only evaluating it on these points (cf.
[232, 350, 361, 547, 474]):

Definition 2.15 (Empirical Kernel Map) For a given set z 1 zn , n , we
callEmpirical Kernel

Map
Φn : N n where x k( x) z1 zn

(k(z1 x) k(zn x)) (2.56)

the empirical kernel map w.r.t. z1 zn .

As an example, consider first the case where k is a positive definite kernel, and
z1 zn x1 xm ; we thus evaluate k( x) on the training patterns. If we

carry out a linear algorithm in feature space, then everything will take place in
the linear span of the mapped training patterns. Therefore, we can represent the
k( x) of (2.21) as Φm(x) without losing information. The dot product to use in that
representation, however, is not simply the canonical dot product in m , since the
Φ(xi) will usually not form an orthonormal system. To turn Φm into a feature map
associated with k, we need to endow m with a dot product m such that

k(x x ) Φm(x) Φm(x ) m (2.57)

To this end, we use the ansatz m M , with M being a positive definite
matrix.6 Enforcing (2.57) on the training patterns, this yields the self-consistency
condition [478, 512]

K KMK (2.58)

6. Every dot product in m can be written in this form. We do not require strict definiteness
of M, as the null space can be projected out, leading to a lower-dimensional feature space.
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where K is the Gram matrix. The condition (2.58) can be satisfied for instance
by the (pseudo-)inverse M K 1. Equivalently, we could have incorporated this
rescaling operation, which corresponds to a Kernel PCA “whitening” ([478, 547,
474], cf. Section 11.4), directly into the map, by whitening (2.56) to getKernel PCA Map

Φw
m : x K

1
2 (k(x1 x) k(xm x)) (2.59)

This simply amounts to dividing the eigenvector basis vectors of K by i, where
the i are the eigenvalues of K.7 This parallels the rescaling of the eigenfunctions
of the integral operator belonging to the kernel, given by (2.47). It turns out that
this map can equivalently be performed using kernel PCA feature extraction (see
Problem 14.8), which is why we refer to this map as the kernel PCA map.

Note that we have thus constructed a data-dependent feature map into an m-
dimensional space which satisfies Φw

m(x) Φw
m(x ) k(x x ), i.e., we have found an

m-dimensional feature space associated with the given kernel. In the case where K
is invertible, Φw

m(x) computes the coordinates of Φ(x) when represented in a basis
of the m-dimensional subspace spanned by Φ(x1) Φ(xm).

For data sets where the number of examples is smaller than their dimension,
it can actually be computationally attractive to carry out Φw

m explicitly, rather
than using kernels in subsequent algorithms. Moreover, algorithms which are not
readily “kernelized” may benefit from explicitly carrying out the kernel PCA map.

We end this section with two notes which illustrate why the use of (2.56) need
not be restricted to the special case we just discussed.

More general kernels. When using non-symmetric kernels k in (2.56), together with
the canonical dot product, we effectively work with the positive definite matrix
K K. Note that each positive definite matrix can be written as K K. Therefore,
working with positive definite kernels leads to an equally rich set of nonlinearities
as working with an empirical kernel map using general non-symmetric kernels.
If we wanted to carry out the whitening step, we would have to use (K K) 1 4 (cf.
footnote 7 concerning potential singularities).

Different evaluation sets. Things can be sped up by using expansion sets of the
form z1 zn , mapping into an n-dimensional space, with n m, as done in
[100, 228]. In that case, one modifies (2.59) to

Φw
n : x K

1
2

n (k(z1 x) k(zn x)) (2.60)

where (Kn)i j : k(zi z j). The expansion set can either be a subset of the training
set,8 or some other set of points. We will later return to the issue of how to choose

7. It is understood that if K is singular, we use the pseudo-inverse of K1 2 in which case we
get an even lower dimensional subspace.
8. In [228] it is recommended that the size n of the expansion set is chosen large enough to
ensure that the smallest eigenvalue of Kn is larger than some predetermined 0. Alter-
natively, one can start off with a larger set, and use kernel PCA to select the most important
components for the map, see Problem 14.8. In the kernel PCA case, the map (2.60) is com-



44 Kernels

the best set (see Section 10.2 and Chapter 18). As an aside, note that in the case of
Kernel PCA (see Section 1.7 and Chapter 14 below), one does not need to worry
about the whitening step in (2.59) and (2.60): using the canonical dot product in

m (rather than ) will simply lead to diagonalizing K2 instead of K, which
yields the same eigenvectors with squared eigenvalues. This was pointed out by
[350, 361]. The study [361] reports experiments where (2.56) was employed to
speed up Kernel PCA by choosing z1 zn as a subset of x1 xm .

2.2.7 A Kernel Map Defined from Pairwise Similarities

In practice, we are given a finite amount of data x1 xm. The following simple
observation shows that even if we do not want to (or are unable to) analyze a given
kernel k analytically, we can still compute a map Φ such that k corresponds to a
dot product in the linear span of the Φ(xi):

Proposition 2.16 (Data-Dependent Kernel Map [467]) Suppose the data x 1 xm

and the kernel k are such that the kernel Gram matrix Ki j k(xi x j) is positive definite.
Then it is possible to construct a map Φ into an m-dimensional feature space such that

k(xi x j) Φ(xi) Φ(x j) (2.61)

Conversely, given an arbitrary map Φ into some feature space , the matrix Ki j

Φ(xi) Φ(x j) is positive definite.

Proof First assume that K is positive definite. In this case, it can be diagonalized
as K SDS , with an orthogonal matrix S and a diagonal matrix D with nonneg-
ative entries. Then

k(xi x j) (SDS )i j Si DSj DSi DSj (2.62)

where we have defined the Si as the rows of S (note that the columns of S would be
K’s eigenvectors). Therefore, K is the Gram matrix of the vectors Dii Si.9 Hence
the following map Φ, defined on x1 xm will satisfy (2.61)

Φ : xi Dii Si (2.63)

Thus far, Φ is only defined on a set of points, rather than on a vector space.
Therefore, it makes no sense to ask whether it is linear. We can, however, ask
whether it can be extended to a linear map, provided the xi are elements of a vector
space. The answer is that if the xi are linearly dependent (which is often the case),
then this will not be possible, since a linear map would then typically be over-

puted as D 1 2
n Un (k(z1 x) k(zn x)), where Un DnUn is the eigenvalue decomposition of

Kn. Note that the columns of Un are the eigenvectors of Kn. We discard all columns that cor-
respond to zero eigenvalues, as well as the corresponding dimensions of Dn. To approximate
the map, we may actually discard all eigenvalues smaller than some 0.
9. In fact, every positive definite matrix is the Gram matrix of some set of vectors [46].
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determined by the m conditions (2.63).
For the converse, assume an arbitrary m , and compute

m

∑
i j 1

i j Ki j

m

∑
i 1

iΦ(xi)
m

∑
j 1

jΦ(x j)
m

∑
i 1

iΦ(xi)
2

0 (2.64)

In particular, this result implies that given data x1 xm, and a kernel k which
gives rise to a positive definite matrix K, it is always possible to construct a feature
space of dimension at most m that we are implicitly working in when using
kernels (cf. Problem 2.32 and Section 2.2.6).

If we perform an algorithm which requires k to correspond to a dot product in
some other space (as for instance the SV algorithms described in this book), it is
possible that even though k is not positive definite in general, it still gives rise to
a positive definite Gram matrix K with respect to the training data at hand. In this
case, Proposition 2.16 tells us that nothing will go wrong during training when we
work with these data. Moreover, if k leads to a matrix with some small negative
eigenvalues, we can add a small multiple of some strictly positive definite kernel
k (such as the identity k (xi x j) i j) to obtain a positive definite matrix. To see
this, suppose that min 0 is the minimal eigenvalue of k’s Gram matrix. Note that
being strictly positive definite, the Gram matrix K of k satisfies

min
1

K min 0 (2.65)

where min denotes its minimal eigenvalue, and the first inequality follows from
Rayleigh’s principle (B.57). Therefore, provided that min min 0, we have

(K K ) K K 2
min min 0 (2.66)

for all m , rendering (K K ) positive definite.

2.3 Examples and Properties of Kernels

For the following examples, let us assume that N . Besides homogeneous
polynomial kernels (cf. Proposition 2.1),Polynomial

k(x x ) x x d (2.67)

Boser, Guyon, and Vapnik [62, 223, 561] suggest the usage of Gaussian radial basis
function kernels [26, 4],Gaussian

k(x x ) exp
x x 2

2 2 (2.68)

where 0, and sigmoid kernels,Sigmoid

k(x x ) tanh( x x ) (2.69)
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where 0 and 0. By applying Theorem 13.4 below, one can check that the
latter kernel is not actually positive definite (see Section 4.6 and [85, 511] and the
discussion in Example 4.25). Curiously, it has nevertheless successfully been used
in practice. The reasons for this are discussed in [467].

Other useful kernels include the inhomogeneous polynomial,Inhomogeneous
Polynomial

k(x x ) x x c d (2.70)

(d c 0) and the Bn-spline kernel [501, 572] (IX denoting the indicator (or
characteristic) function on the set X, and the convolution operation, ( f g)(x) :

f (x )g(x x)dx ),Bn-Spline of Odd
Order

k(x x ) B2p 1( x x ) with Bn :
n

i 1

I[ 1
2

1
2 ] (2.71)

The kernel computes B-splines of order 2p 1 (p ), defined by the (2p 1)-fold
convolution of the unit interval [ 1 2 1 2]. See Section 4.4.1 for further details
and a regularization theoretic analysis of this kernel.

Note that all these kernels have the convenient property of unitary invariance,Invariance
of Kernels k(x x ) k(Ux Ux ) if U U 1, for instance if U is a rotation. If we consider com-

plex numbers, then we have to use the adjoint U : U instead of the transpose.
Radial basis function (RBF) kernels are kernels that can be written in the formRBF Kernels

k(x x ) f (d(x x )) (2.72)

where d is a metric on , and f is a function on 0 . Examples thereof are the
Gaussians and B-splines mentioned above. Usually, the metric arises from the
dot product; d(x x ) x x x x x x . In this case, RBF kernels are
unitary invariant, too. In addition, they are translation invariant; in other words,
k(x x ) k(x x0 x x0) for all x0 .

In some cases, invariance properties alone can distinguish particular kernels: in
Section 2.1, we explained how using polynomial kernels x x d corresponds to
mapping into a feature space whose dimensions are spanned by all possible dth
order monomials in input coordinates. The different dimensions are scaled with
the square root of the number of ordered products of the respective d entries (e.g.,

2 in (2.13)). These scaling factors precisely ensure invariance under the group
of all orthogonal transformations (rotations and mirroring operations). In many
cases, this is a desirable property: it ensures that the results of a learning procedure
do not depend on which orthonormal coordinate system (with fixed origin) we use
for representing our input data.

Proposition 2.17 (Invariance of Polynomial Kernels [480]) Up to a scaling factor,
the kernel k(x x ) x x d is the only kernel inducing a map into a space of all monomi-
als of degree d which is invariant under orthogonal transformations of N .

Some interesting additional structure exists in the case of a Gaussian RBF kernel kProperties of
RBF Kernels (2.68). As k(x x) 1 for all x , each mapped example has unit length, Φ(x)
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1 (Problem 2.18 shows how to achieve this for general kernels). Moreover, as
k(x x ) 0 for all x x , all points lie inside the same orthant in feature space. To
see this, recall that for unit length vectors, the dot product (1.3) equals the cosine
of the enclosed angle. We obtain

cos( (Φ(x) Φ(x ))) Φ(x) Φ(x ) k(x x ) 0 (2.73)

which amounts to saying that the enclosed angle between any two mapped exam-
ples is smaller than 2.

The above seems to indicate that in the Gaussian case, the mapped data lie in
a fairly restricted area of feature space. However, in another sense, they occupy a
space which is as large as possible:

Theorem 2.18 (Full Rank of Gaussian RBF Gram Matrices [360]) Suppose that
x1 xm are distinct points, and 0. The matrix K given by

Ki j : exp
xi x j

2

2 2 (2.74)

has full rank.

In other words, the points Φ(x1) Φ(xm) are linearly independent (provided
no two xi are the same). They span an m-dimensional subspace of . Therefore
a Gaussian kernel defined on a domain of infinite cardinality, with no a priori
restriction on the number of training examples, produces a feature space of infinite
dimension. Nevertheless, an analysis of the shape of the mapped data in featureInfinite-

Dimensional
Feature Space

space shows that capacity is distributed in a way that ensures smooth and simple
estimates whenever possible (see Section 12.4).

The examples given above all apply to the case of vectorial data. Let us next give
an example where is not a vector space [42].

Proposition 2.19 (Similarity of Probabilistic Events) If ( P) is a probability
space with -algebra and probability measure P, then

k(A B) P(A B) P(A)P(B) (2.75)

is a positive definite kernel on .

Proof To see this, we define a feature map

Φ : A (IA P(A)) (2.76)

where IA is the characteristic function on A. On the feature space, which consists
of functions on taking values in [ 1 1], we use the dot product

f g : f g dP (2.77)

The result follows by noticing IA IB P(A B) and IA P(B) P(A)P(B).
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Further examples include kernels for string matching, as proposed by [585, 234,
23]. We shall describe these, and address the general problem of designing kernel
functions, in Chapter 13.

The next section will return to the connection between kernels and feature
spaces. Readers who are eager to move on to SV algorithms may want to skip
this section, which is somewhat more technical.

2.4 The Representation of Dissimilarities in Linear Spaces

2.4.1 Conditionally Positive Definite Kernels

We now proceed to a larger class of kernels than that of the positive definite ones.
This larger class is interesting in several regards. First, it will turn out that some
kernel algorithms work with this class, rather than only with positive definite
kernels. Second, its relationship to positive definite kernels is a rather interesting
one, and a number of connections between the two classes provide understanding
of kernels in general. Third, they are intimately related to a question which is
a variation on the central aspect of positive definite kernels: the latter can be
thought of as dot products in feature spaces; the former, on the other hand, can
be embedded as distance measures arising from norms in feature spaces.

The present section thus attempts to extend the utility of the kernel trick by
looking at the problem of which kernels can be used to compute distances in
feature spaces. The underlying mathematical results have been known for quite
a while [465]; some of them have already attracted interest in the kernel methods
community in various contexts [515, 234].

Clearly, the squared distance Φ(x) Φ(x ) 2 in the feature space associated with
a pd kernel k can be computed, using k(x x ) Φ(x) Φ(x ) , as

Φ(x) Φ(x ) 2 k(x x) k(x x ) 2k(x x ) (2.78)

Positive definite kernels are, however, not the full story: there exists a larger class
of kernels that can be used as generalized distances, and the present section will
describe why and how [468].

Let us start by considering how a dot product and the corresponding distance
measure are affected by a translation of the data, x x x0. Clearly, x x 2 is
translation invariant while x x is not. A short calculation shows that the effect
of the translation can be expressed in terms of 2 as

(x x0) (x x0)
1
2

x x 2 x x0
2 x0 x 2 (2.79)

Note that this, just like x x , is still a pd kernel: ∑i j cic j (xi x0) (x j x0)
∑i ci(xi x0) 2 0 holds true for any ci. For any choice of x0 , we thus get a

similarity measure (2.79) associated with the dissimilarity measure x x .
This naturally leads to the question of whether (2.79) might suggest a connection
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that also holds true in more general cases: what kind of nonlinear dissimilarity
measure do we have to substitute for 2 on the right hand side of (2.79), to
ensure that the left hand side becomes positive definite? To state the answer, we
first need to define the appropriate class of kernels.

The following definition differs from Definition 2.4 only in the additional con-
straint on the sum of the ci. Below, is a shorthand for or ; the definitions are
the same in both cases.

Definition 2.20 (Conditionally Positive Definite Matrix) A symmetric m m ma-
trix K (m 2) taking values in and satisfying

m

∑
i j 1

cic̄ jKi j 0 for all ci with
m

∑
i 1

ci 0 (2.80)

is called conditionally positive definite (cpd).

Definition 2.21 (Conditionally Positive Definite Kernel) Let be a nonempty set.
A function k : which for all m 2 x1 xm gives rise to a conditionally
positive definite Gram matrix is called a conditionally positive definite (cpd) kernel.

Note that symmetry is also required in the complex case. Due to the additional
constraint on the coefficients ci, it does not follow automatically anymore, as it
did in the case of complex positive definite matrices and kernels. In Chapter 4, we
will revisit cpd kernels. There, we will actually introduce cpd kernels of different
orders. The definition given in the current chapter covers the case of kernels which
are cpd of order 1.

Proposition 2.22 (Constructing PD Kernels from CPD Kernels [42]) Let x 0 ,
and let k be a symmetric kernel on . ThenConnection PD

— CPD
k̃(x x ) :

1
2

(k(x x ) k(x x0) k(x0 x ) k(x0 x0))

is positive definite if and only if k is conditionally positive definite.

The proof follows directly from the definitions and can be found in [42]. This
result does generalize (2.79): the negative squared distance kernel is indeed cpd,
since ∑i ci 0 implies ∑i j cic j xi x j

2 ∑i ci ∑ j c j x j
2 ∑ j c j ∑i ci xi

2

2 ∑i j cic j xi x j 2 ∑i j cic j xi x j 2 ∑i cixi
2 0 In fact, this implies that all

kernels of the form

k(x x ) x x 0 2 (2.81)

are cpd (they are not pd),10 by application of the following result (note that the
case 0 is trivial):

10. Moreover, they are not cpd if 2 [42].
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Proposition 2.23 (Fractional Powers and Logs of CPD Kernels [42]) If k :
( 0] is cpd, then so are ( k) (0 1) and ln(1 k).

To state another class of cpd kernels that are not pd, note first that as a trivial
consequence of Definition 2.20, we know that (i) sums of cpd kernels are cpd, and
(ii) any constant b is a cpd kernel. Therefore, any kernel of the form k b,
where k is cpd and b , is also cpd. In particular, since pd kernels are cpd, we
can take any pd kernel and offset it by b, and it will still be at least cpd. For further
examples of cpd kernels, cf. [42, 578, 205, 515].

2.4.2 Hilbert Space Representation of CPD Kernels

We now return to the main flow of the argument. Proposition 2.22 allows us to
construct the feature map for k from that of the pd kernel k̃. To this end, fix x0

and define k̃ according to Proposition 2.22. Due to Proposition 2.22, k̃ is positive
definite. Therefore, we may employ the Hilbert space representation Φ : of
k̃ (cf. (2.32)), satisfying Φ(x) Φ(x ) k̃(x x ); hence,

Φ(x) Φ(x ) 2 k̃(x x) k̃(x x ) 2k̃(x x ) (2.82)

Substituting Proposition 2.22 yields

Φ(x) Φ(x ) 2 k(x x )
1
2

k(x x) k(x x ) (2.83)

This implies the following result [465, 42].

Proposition 2.24 (Hilbert Space Representation of CPD Kernels) Let k be a real-Feature Map for
CPD Kernels valued CPD kernel on , satisfying k(x x) 0 for all x . Then there exists a Hilbert

space of real-valued functions on , and a mapping Φ : , such that

Φ(x) Φ(x ) 2 k(x x ) (2.84)

If we drop the assumption k(x x) 0, the Hilbert space representation reads

Φ(x) Φ(x ) 2 k(x x )
1
2

k(x x) k(x x ) (2.85)

It can be shown that if k(x x) 0 for all x , then

d(x x ) : k(x x ) Φ(x) Φ(x ) (2.86)

is a semi-metric: clearly, it is nonnegative and symmetric; additionally, it satisfies
the triangle inequality, as can be seen by computing d(x x ) d(x x ) Φ(x)
Φ(x ) Φ(x ) Φ(x ) Φ(x) Φ(x ) d(x x ) [42].

It is a metric if k(x x ) 0 for x x . We thus see that we can rightly think of k
as the negative of a distance measure.

We next show how to represent general symmetric kernels (thus in particular
cpd kernels) as symmetric bilinear forms Q in feature spaces. This generalization
of the previously known feature space representation for pd kernels comes at a
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cost: Q will no longer be a dot product. For our purposes, we can get away with
this. The result will give us an intuitive understanding of Proposition 2.22: we
can then write k̃ as k̃(x x ) : Q(Φ(x) Φ(x0) Φ(x ) Φ(x0)). Proposition 2.22 thus
essentially adds an origin in feature space which corresponds to the image Φ(x0)
of one point x0 under the feature map.

Proposition 2.25 (Vector Space Representation of Symmetric Kernels) Let k be aFeature Map for
General
Symmetric
Kernels

real-valued symmetric kernel on . Then there exists a linear space of real-valued
functions on , endowed with a symmetric bilinear form Q( ), and a mapping Φ :

, such that k(x x ) Q(Φ(x) Φ(x )).

Proof The proof is a direct modification of the pd case. We use the map (2.21) and
linearly complete the image as in (2.22). Define Q( f g) : ∑m

i 1 ∑m
j 1 i jk(xi x j). To

see that it is well-defined, although it explicitly contains the expansion coefficients
(which need not be unique), note that Q( f g) ∑m

j 1 j f (x j), independent of the
i. Similarly, for g, note that Q( f g) ∑i ig(xi), hence it is independent of j. The

last two equations also show that Q is bilinear; clearly, it is symmetric.

Note, moreover, that by definition of Q, k is a reproducing kernel for the fea-
ture space (which is not a Hilbert space): for all functions f (2.22), we have
Q(k( x) f ) f (x); in particular, Q(k( x) k( x )) k(x x )

Rewriting k̃ as k̃(x x ) : Q(Φ(x) Φ(x0) Φ(x ) Φ(x0)) suggests an immediate
generalization of Proposition 2.22: in practice, we might want to choose other
points as origins in feature space — points that do not have a pre-image x0 in
the input domain, such as the mean of a set of points (cf. [543]). This will be useful
when considering kernel PCA. It is only crucial that the behavior of our reference
point under translation is identical to that of individual points. This is taken care
of by the constraint on the sum of the ci in the following proposition.

Proposition 2.26 (Exercise 2.23 in [42]) Let K be a symmetric matrix, e m be theMatrix Centering
vector of all ones, 1 the m m identity matrix, and let c m satisfy e c 1. Then

K̃ : (1 ec )K(1 ce ) (2.87)

is positive definite if and only if K is conditionally positive definite.11

Proof “ ”: suppose K̃ is positive definite. Thus for any a m which satisfies
a e e a 0, we have 0 a K̃a a Ka a ec Kce a a Kce a a ec Ka a Ka.
This means that 0 a Ka, proving that K is conditionally positive definite.

“ ”: suppose K is conditionally positive definite. This means that we have to
show that a K̃a 0 for all a m . We have

a K̃a a (1 ec )K(1 ce )a s Ks for s (1 ce )a (2.88)

11. c is the vector obtained by transposing and taking the complex conjugate of c.
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All we need to show is e s 0, since then we can use the fact that K is cpd to
obtain s Ks 0. This can be seen as follows e s e (1 ce )a (e (e c)e )a
(e e )a 0.

This result directly implies a corresponding generalization of Proposition 2.22:

Proposition 2.27 (Adding a General Origin) Let k be a symmetric kernel, x1 xmKernel Centering
, and let ci satisfy ∑m

i 1 ci 1. Then

k̃(x x ) :
1
2

k(x x )
m

∑
i 1

cik(x xi)
m

∑
i 1

cik(xi x )
m

∑
i j 1

cic jk(xi x j)

is positive definite if and only if k is conditionally positive definite.

Proof Consider a set of m points x1 xm , and let K be the (m m )
(m m ) Gram matrix based on x1 xm x1 xm . Apply Proposition 2.26
using cm 1 cm m 0.

The above results show that conditionally positive definite kernels are a naturalApplication to
SVMs choice whenever we are dealing with a translation invariant problem, such as the

SVM: maximization of the margin of separation between two classes of data is
independent of the position of the origin. Seen in this light, it is not surprising that
the structure of the dual optimization problem (cf. [561]) allows cpd kernels: as
noted in [515, 507], the constraint ∑m

i 1 i yi 0 projects out the same subspace as
(2.80) in the definition of conditionally positive definite matrices.

Another example of a kernel algorithm that works with conditionally positiveApplication to
Kernel PCA definite kernels is Kernel PCA (Chapter 14), where the data are centered, thus

removing the dependence on the origin in feature space. Formally, this follows
from Proposition 2.26 for ci 1 m.

Let us consider another example. One of the simplest distance-based classifica-Application to
Parzen Windows
Classifiers

tion algorithms proceeds as follows. Given m points labelled with 1, m points
labelled with 1, and a mapped test point Φ(x), we compute the mean squared
distances between the latter and the two classes, and assign it to the one for which
this mean is smaller;

y sgn
1

m ∑
yi 1

Φ(x) Φ(xi) 2 1
m ∑

yi 1
Φ(x) Φ(xi) 2 (2.89)

We use the distance kernel trick (Proposition 2.24) to express the decision function
as a kernel expansion in the input domain: a short calculation shows that

y sgn
1

m ∑
yi 1

k(x xi)
1

m ∑
yi 1

k(x xi) b (2.90)

with the constant offset

b
1

2m ∑
yi 1

k(xi xi)
1

2m ∑
yi 1

k(xi xi) (2.91)
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Note that for some cpd kernels, such as (2.81), k(xi xi) is always 0, and thus b 0.
For others, such as the commonly used Gaussian kernel, k(xi xi) is a nonzero con-
stant, in which case b vanishes provided that m m . For normalized Gaussians,
the resulting decision boundary can be interpreted as the Bayes decision based on
two Parzen window density estimates of the classes; for general cpd kernels, the
analogy is merely a formal one; that is, the decision functions take the same form.

Many properties of positive definite kernels carry over to the more general caseProperties of
CPD Kernels of conditionally positive definite kernels, such as Proposition 13.1.

Using Proposition 2.22, one can prove an interesting connection between the
two classes of kernels:

Proposition 2.28 (Connection PD — CPD [465]) A kernel k is conditionally positive
definite if and only if exp(tk) is positive definite for all t 0.

Positive definite kernels of the form exp(tk) (t 0) have the interesting property
that their nth root (n ) is again a positive definite kernel. Such kernels are
called infinitely divisible. One can show that, disregarding some technicalities, the
logarithm of an infinitely divisible positive definite kernel mapping into 0 is a
conditionally positive definite kernel.

2.4.3 Higher Order CPD Kernels

For the sake of completeness, we now present some material which is of interest to
one section later in the book (Section 4.8), but not central for the present chapter.
We follow [341, 204].

Definition 2.29 (Conditionally Positive Definite Functions of Order q) A contin-
uous function h, defined on [0 ), is called conditionally positive definite (cpd) of order q
on N if for any distinct points x1 xm

N , the quadratic form,
m

∑
i j 1

i jh( xi x j
2) (2.92)

is nonnegative, provided that the scalars 1 m satisfy ∑m
i 1 i p(xi) 0, for all

polynomials p( ) on N of degree lower than q.

Let ΠN
q denote the space of polynomials of degree lower than q on N . By

definition, every cpd function h of order q generates a positive definite kernel for
SV expansions in the space of functions orthogonal to ΠN

q , by setting k(x x ) :
h( x x 2).

There exists also an analogue to the positive definiteness of the integral operator
in the conditions of Mercer’s theorem. In [157, 341] it is shown that for cpd
functions h of order q, we have

h( x x 2) f (x) f (x )dxdx 0 (2.93)

provided that the projection of f onto ΠN
q is zero.
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Figure 2.4 Conditionally positive definite functions, as described in Table 2.1. Where
applicable, we set the free parameter c to 1; is set to 2. Note that cpd kernels need not
be positive anywhere (e.g., the Multiquadric kernel).

Table 2.1 Examples of Conditionally Positive Definite Kernels. The fact that the exponen-
tial kernel is pd (i.e., cpd of order 0) follows from (2.81) and Proposition 2.28.

Kernel Order

e c x x , 0 2 0 Exponential
1

x x 2 c2
0 Inverse Multiquadric

x x 2 c2 1 Multiquadric

x x 2n ln x x n Thin Plate Spline

Definition 2.30 (Completely Monotonic Functions) A function h(x) is called com-
pletely monotonic of order q if

( 1)n dn

dxn h(x) 0 for all x [0 ) and n q (2.94)

It can be shown [464, 465, 360] that a function h(x2) is conditionally positive
definite if and only if h(x) is completely monotonic of the same order. This gives a
(sometimes simpler) criterion for checking whether a function is cpd or not.

If we use cpd kernels in learning algorithms, we must ensure orthogonality of
the estimate with respect to ΠN

q . This is usually done via constraints ∑m
i 1 i p(xi)

0 for all polynomials p( ) on N of degree lower than q (see Section 4.8).
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2.5 Summary

The crucial ingredient of SVMs and other kernel methods is the so-called kernel
trick (see (2.7) and Remark 2.8), which permits the computation of dot products in
high-dimensional feature spaces, using simple functions defined on pairs of input
patterns. This trick allows the formulation of nonlinear variants of any algorithm
that can be cast in terms of dot products, SVMs being but the most prominent ex-
ample. The mathematical result underlying the kernel trick is almost a century old
[359]. Nevertheless, it was only much later that it was exploited by the machine
learning community for the analysis [4] and construction of algorithms [62], and
that it was described as a general method for constructing nonlinear generaliza-
tions of dot product algorithms [480].

The present chapter has reviewed the mathematical theory of kernels. We
started with the class of polynomial kernels, which can be motivated as com-
puting a combinatorially large number of monomial features rather efficiently.
This led to the general question of which kernel can be used, or: which kernel
can be represented as a dot product in a linear feature space. We defined this class
and discussed some of its properties. We described several ways how, given such a
kernel, one can construct a representation in a feature space. The most well-known
representation employs Mercer’s theorem, and represents the feature space as an

2 space defined in terms of the eigenfunctions of an integral operator associated
with the kernel. An alternative representation uses elements of the theory of re-
producing kernel Hilbert spaces, and yields additional insights, representing the
linear space as a space of functions written as kernel expansions. We gave an in-
depth discussion of the kernel trick in its general form, including the case where
we are interested in dissimilarities rather than similarities; that is, when we want
to come up with nonlinear generalizations of distance-based algorithms rather
than dot-product-based algorithms.

In both cases, the underlying philosophy is the same: we are trying to express a
complex nonlinear algorithm in terms of simple geometrical concepts, and we are
then dealing with it in a linear space. This linear space may not always be readily
available; in some cases, it may even be hard to construct explicitly. Nevertheless,
for the sake of design and analysis of the algorithms, it is sufficient to know that
the linear space exists, empowering us to use the full potential of geometry, linear
algebra and functional analysis.

2.6 Problems

2.1 (Monomial Features in 2 ) Verify the second equality in (2.9).

2.2 (Multiplicity of Monomial Features in N [515] ) Consider the monomial ker-
nel k(x x ) x x d (where x x N ), generating monomial features of order d. Prove
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that a valid feature map for this kernel can be defined coordinate-wise as

Φm(x)
d!

∏n
i 1[m]i!

n

∏
i 1

[x][m]i
i (2.95)

for every m n ∑n
i 1[m]i d (i.e., every such m corresponds to one dimension of ).

2.3 (Inhomogeneous Polynomial Kernel ) Prove that the kernel (2.70) induces a
feature map into the space of all monomials up to degree d. Discuss the role of c.

2.4 (Eigenvalue Criterion of Positive Definiteness ) Prove that a symmetric matrix
is positive definite if and only if all its eigenvalues are nonnegative (see Appendix B).

2.5 (Dot Products are Kernels ) Prove that dot products (Definition B.7) are positive
definite kernels.

2.6 (Kernels on Finite Domains ) Prove that for finite , say x 1 xm , k is
a kernel if and only if the m m matrix (k(xi x j))i j is positive definite.

2.7 (Positivity on the Diagonal ) From Definition 2.5, prove that a kernel satisfies
k(x x) 0 for all x .

2.8 (Cauchy-Schwarz for Kernels ) Give an elementary proof of Proposition 2.7.
Hint: start with the general form of a symmetric 2 2 matrix, and derive conditions for

its coefficients that ensure that it is positive definite.

2.9 (PD Kernels Vanishing on the Diagonal ) Use Proposition 2.7 to prove that a
kernel satisfying k(x x) for all x is identically zero.

How does the RKHS look in this case? Hint: use (2.31).

2.10 (Two Kinds of Positivity ) Give an example of a kernel which is positive definite
according to Definition 2.5, but not positive in the sense that k(x x ) 0 for all x x .

Give an example of a kernel where the contrary is the case.

2.11 (General Coordinate Transformations ) Prove that if : is a bijection,
and k(x x ) is a kernel, then k( (x) (x )) is a kernel, too.

2.12 (Positivity on the Diagonal ) Prove that positive definite kernels are positive on
the diagonal, k(x x) 0 for all x . Hint: use m 1 in (2.15).

2.13 (Symmetry of Complex Kernels ) Prove that complex-valued positive definite
kernels are symmetric (2.18).

2.14 (Real Kernels vs. Complex Kernels ) Prove that a real matrix satisfies (2.15) for
all ci if and only if it is symmetric and it satisfies (2.15) for real coefficients ci.

Hint: decompose each ci in (2.15) into real and imaginary parts.
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2.15 (Rank-One Kernels ) Prove that if f is a real-valued function on , then k(x x ) :
f (x) f (x ) is a positive definite kernel.

2.16 (Bayes Kernel ) Consider a binary pattern recognition problem. Specialize the
last problem to the case where f : 1 equals the Bayes decision function y(x),
i.e., the classification with minimal risk subject to an underlying distribution P(x y)
generating the data.

Argue that this kernel is particularly suitable since it renders the problem linearly
separable in a 1D feature space: State a decision function (cf. (1.35)) that solves the problem
(hint: you just need one parameter , and you may set it to 1; moreover, use b 0) [124].

The final part of the problem requires knowledge of Chapter 16: Consider now the
situation where some prior P( f ) over the target function class is given. What would the
optimal kernel be in this case? Discuss the connection to Gaussian processes.

2.17 (Inhomogeneous Polynomials ) Prove that the inhomogeneous polynomial (2.70)
is a positive definite kernel, e.g., by showing that it is a linear combination of homogeneous
polynomial kernels with positive coefficients. What kind of features does this kernel com-
pute [561]?

2.18 (Normalization in Feature Space ) Given a kernel k, construct a corresponding
normalized kernel k̃ by normalizing the feature map Φ̃ such that for all x , Φ̃(x) 1
(cf. also Definition 12.35). Discuss the relationship between normalization in input space
and normalization in feature space for Gaussian kernels and homogeneous polynomial
kernels.

2.19 (Cosine Kernel ) Suppose is a dot product space, and x x . Prove that
k(x x ) cos( (x x)) is a positive definite kernel. Hint: use Problem 2.18.

2.20 (Alignment Kernel ) Let K K F : ∑i j Ki jKi j be the Frobenius dot product
of two matrices. Prove that the empirical alignment of two Gram matrices [124],
A(K K ) : K K F K K F K K F, is a positive definite kernel.

Note that the alignment can be used for model selection, putting Ki j : yiy j (cf.
Problem 2.16) and Ki j : sgn (k(xi x j)) or Ki j : sgn (k(xi x j)) b (cf. [124]).

2.21 (Equivalence Relations as Kernels ) Consider a similarity measure k :
0 1 with

k(x x) 1 for all x (2.96)

Prove that k is a positive definite kernel if and only if, for all x x x ,

k(x x ) 1 k(x x) 1 and (2.97)

k(x x ) k(x x ) 1 k(x x ) 1 (2.98)

Equations (2.96) to (2.98) amount to saying that k I T, where T is an equiva-
lence relation.
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As a simple example, consider an undirected graph, and let (x x ) T whenever x and x
are in the same connected component of the graph. Show that T is an equivalence relation.

Find examples of equivalence relations that lend themselves to an interpretation as
similarity measures. Discuss whether there are other relations that one might want to use
as similarity measures.

2.22 (Different Feature Spaces for the Same Kernel ) Give an example of a kernel
with two valid feature maps Φ1 Φ2, mapping into spaces 1 2 of different dimensions.

2.23 (Converse of Mercer’s Theorem ) Prove that if an integral operator kernel k
admits a uniformly convergent dot product representation on some compact set ,

k(x x ) ∑
i 1

i(x) i(x ) (2.99)

then it is positive definite. Hint: show that

∑
i 1

i(x) i(x ) f (x) f (x ) dx dx ∑
i 1

i(x) f (x) dx
2

0

Argue that in particular, polynomial kernels (2.67) satisfy Mercer’s conditions.

2.24 ( -Norm of Mercer Eigenfunctions ) Prove that under the conditions of The-
orem 2.10, we have, up to sets of measure zero,

sup
j

j j k (2.100)

Hint: note that k k(x x) up to sets of measures zero, and use the series expansion
given in Theorem 2.10. Show, moreover, that it is not generally the case that

sup
j

j (2.101)

Hint: consider the case where , ( n ) : 2 n, and k(i j) : i j. Show that

1. Tk((a j)) (a j2 j) for (a j) L2( ),

2. Tk satisfies (a j) Tk(a j) ∑ j(a j2 j)2 0 and is thus positive definite,

3. j 2 j and j 2 j 2e j form an orthonormal eigenvector decomposition of Tk (here,
e j is the jth canonical unit vector in 2), and

4. j 2 j 2 1 2
j .

Argue that the last statement shows that (2.101) is wrong and (2.100) is tight. 12

2.25 (Generalized Feature Maps ) Via (2.38), Mercer kernels induce compact (in-
tegral) operators. Can you generalize the idea of defining a feature map associated with an

12. Thanks to S. Smale and I. Steinwart for this exercise.
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operator to more general bounded positive definite operators T? Hint: use the multiplica-
tion operator representation of T [467].

2.26 (Nyström Approximation (cf. [603]) ) Consider the integral operator obtained
by substituting the distribution P underlying the data into (2.38), i.e.,

(Tk f )(x) k(x x ) f (x) dP(x) (2.102)

If the conditions of Mercer’s theorem are satisfied, then k can be diagonalized as

k(x x )
N

∑
j 1

j j(x) j(x ) (2.103)

where j and j satisfy the eigenvalue equation

k(x x ) j(x) dP(x) j j(x ) (2.104)

and the orthonormality conditions

i(x) j(x)dP(x) i j (2.105)

Show that by replacing the integral by a summation over an iid sample X x1 xm

from P(x), one can recover the kernel PCA eigenvalue problem (Section 1.7). Hint: Start
by evaluating (2.104) for x X, to obtain m equations. Next, approximate the integral by
a sum over the points in X, replacing k(x x ) j(x) dP(x) by 1

m ∑m
n 1 k(xn x ) j(xn).

Derive the orthogonality condition for the eigenvectors ( j(xn))n 1 m from (2.105).

2.27 (Lorentzian Feature Spaces ) If a finite number of eigenvalues is negative, the
expansion in Theorem 2.10 is still valid. Show that in this case, k corresponds to a
Lorentzian symmetric bilinear form in a space with indefinite signature [467].

Discuss whether this causes problems for learning algorithms utilizing these kernels. In
particular, consider the cases of SV machines (Chapter 7) and Kernel PCA (Chapter 14).

2.28 (Symmetry of Reproducing Kernels ) Show that reproducing kernels (Defini-
tion 2.9) are symmetric. Hint: use (2.35) and exploit the symmetry of the dot product.

2.29 (Coordinate Representation in the RKHS ) Write as a dot product of
coordinate vectors by expressing the functions of the RKHS in the basis ( n n)n 1 N ,
which is orthonormal with respect to , i.e.,

f (x)
N

∑
n 1

n n n(x) (2.106)

Obtain an expression for the coordinates n, using (2.47) and n f n n Show
that has the structure of a RKHS in the sense that for f and g given by (2.106), and

g(x)
N

∑
j 1

j j j(x) (2.107)
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we have f g Show, moreover, that f (x) Φ(x) in . In other words,
Φ(x) is the coordinate representation of the kernel as a function of one argument.

2.30 (Equivalence of Regularization Terms ) Using (2.36) and (2.41), prove that
w 2, where w ∑m

i 1 iΦ(xi), is the same no matter whether Φ denotes the RKHS fea-
ture map (2.21) or the Mercer feature map (2.40).

2.31 (Approximate Inversion of Gram Matrices ) Use the kernel PCA map (2.59)
to derive a method for approximately inverting a large Gram matrix.

2.32 (Effective Dimension of Feature Space ) Building on Section 2.2.7, argue that
for a finite data set, we are always effectively working in a finite-dimensional feature space.

2.33 (Translation of a Dot Product ) Prove (2.79).

2.34 (Example of a CPD Kernel ) Argue that the hyperbolic tangent kernel (2.69) is
effectively conditionally positive definite, if the input values are suitably restricted, since
it can be approximated by k b, where k is a polynomial kernel (2.67) and b . Discuss
how this explains that hyperbolic tangent kernels can be used for SVMs although, as
pointed out in number of works (e.g., [86], cf. the remark following (2.69)), they are not
positive definite.

2.35 (Polarization Identity ) Prove the polarization identity, stating that for any
symmetric bilinear form : , we have, for all x x ,

x x
1
4

x x x x x x x x (2.108)

Now consider the special case where is a Euclidean dot product and x x x x
is the squared Euclidean distance between x and x . Discuss why the polarization identity
does not imply that the value of the dot product can be recovered from the distances alone.
What else does one need?

2.36 (Vector Space Representation of CPD Kernels ) Specialize the vector space
representation of symmetric kernels (Proposition 2.25) to the case of cpd kernels. Can you
identify a subspace on which a cpd kernel is actually pd?

2.37 (Parzen Windows Classifiers in Feature Space ) Assume that k is a positive
definite kernel. Compare the algorithm described in Section 1.2 with the one of (2.89). Con-
struct situations where the two algorithms give different results. Hint: consider datasets
where the class means coincide.

2.38 (Canonical Distortion Kernel ) Can you define a kernel based on Baxter’s
canonical distortion metric [28]?



 

3 Risk and Loss Functions

One of the most immediate requirements in any learning problem is to specify
what exactly we would like to achieve, minimize, bound, or approximate. In other
words, we need to determine a criterion according to which we will assess the
quality of an estimate f : obtained from data.

This question is far from trivial. Even in binary classification there exist ample
choices. The selection criterion may be the fraction of patterns classified correctly,
it could involve the confidence with which the classification is carried out, or it
might take into account the fact that losses are not symmetric for the two classes,
such as in health diagnosis problems. Furthermore, the loss for an error may be
input-dependent (for instance, meteorological predictions may require a higher ac-
curacy in urban regions), and finally, we might want to obtain probabilities rather
than a binary prediction of the class labels 1 and 1. Multi class discrimination and
regression add even further levels of complexity to the problem. Thus we need a
means of encoding these criteria.

The chapter is structured as follows: in Section 3.1, we begin with a briefOverview
overview of common loss functions used in classification and regression algo-
rithms. This is done without much mathematical rigor or statistical justification,
in order to provide basic working knowledge for readers who want to get a quick
idea of the default design choices in the area of kernel machines. Following this,
Section 3.2 formalizes the idea of risk. The risk approach is the predominant tech-
nique used in this book, and most of the algorithms presented subsequently mini-
mize some form of a risk functional. Section 3.3 treats the concept of loss functions
from a statistical perspective, points out the connection to the estimation of den-
sities and introduces the notion of efficiency. Readers interested in more detail
should also consider Chapter 16, which discusses the problem of estimation from
a Bayesian perspective. The later parts of this section are intended for readers in-
terested in the more theoretical details of estimation. The concept of robustness is
introduced in Section 3.4. Several commonly used loss functions, such as Huber’s
loss and the -insensitive loss, enjoy robustness properties with respect to rather
general classes of distributions. Beyond the basic relations, will show how to ad-
just the -insensitive loss in such a way as to accommodate different amounts of
variance automatically. This will later lead to the construction of so-called Sup-
port Vector Algorithms (see Chapters 7, 8, and 9).

While technical details and proofs can be omitted for most of the present chap-
ter, we encourage the reader to review the practical implications of this section.
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3.1.1 Classification 3.3.1 Maximum Likelihood

3.4.3, 3.4.4 Adaptive
Loss functions & ν

3.4.2 ε−insensitive loss

3.2 Empirical
Risk Functional

3.1.2 Regression
3.3.2 Efficiency3.4 Robustness

As usual, exercises for all sections can be found at the end. The chapter requiresPrerequisites
knowledge of probability theory, as introduced in Section B.1.

3.1 Loss Functions

Let us begin with a formal definition of what we mean by the loss incurred by a
function f at location x, given an observation y.

Definition 3.1 (Loss Function) Denote by (x y f (x)) the triplet consist-
ing of a pattern x, an observation y and a prediction f (x). Then the map c :
[0 ) with the property c(x y y) 0 for all x and y will be called a loss function.

Note that we require c to be a nonnegative function. This means that we will never
get a payoff from an extra good prediction. If the latter was the case, we could
always recover non-negativity (provided the loss is bounded from below), by
using a simple shift operation (possibly depending on x). Likewise we can always
satisfy the condition that exact predictions ( f (x) y) never cause any loss. The
advantage of these extra conditions on c is that we know that the minimum of the
loss is 0 and that it is obtainable, at least for a given x y.

Next we will formalize different kinds of loss, as described informally in the
introduction of the chapter. Note that the incurred loss is not always the quantityMinimized Loss

Incurred Loss that we will attempt to minimize. For instance, for algorithmic reasons, some loss
functions will prove to be infeasible (the binary loss, for instance, can lead to NP-
hard optimization problems [367]). Furthermore, statistical considerations such as
the desire to obtain confidence levels on the prediction (Section 3.3.1) will also
influence our choice.

3.1.1 Binary Classification

The simplest case to consider involves counting the misclassification error if pat-
tern x is classified wrongly we incur loss 1, otherwise there is no penalty.:Misclassification

Error
c(x y f (x))

0 if y f (x)

1 otherwise
(3.1)
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This definition of c does not distinguish between different classes and types of
errors (false positive or negative).1

A slight extension takes the latter into account. For the sake of simplicity let usAsymmetric and
Input-Dependent
Loss

assume, as in (3.1), that we have a binary classification problem. This time, how-
ever, the loss may depend on a function c̃(x) which accounts for input-dependence,
i.e.

c(x y f (x))
0 if y f (x)

c̃(x) otherwise
(3.2)

A simple (albeit slightly contrived) example is the classification of objects into
rocks and diamonds. Clearly, the incurred loss will depend largely on the weight
of the object under consideration.

Analogously, we might distinguish between errors for y 1 and y 1 (see,
e.g., [331] for details). For instance, in a fraud detection application, we would like
to be really sure about the situation before taking any measures, rather than losing
potential customers. On the other hand, a blood bank should consider even the
slightest suspicion of disease before accepting a donor.

Rather than predicting only whether a given object x belongs to a certain class
y, we may also want to take a certain confidence level into account. In this case,Confidence Level
f (x) becomes a real-valued function, even though y 1 1 .

In this case, sgn ( f (x)) denotes the class label, and the absolute value f (x) the
confidence of the prediction. Corresponding loss functions will depend on the
product y f (x) to assess the quality of the estimate. The soft margin loss function, asSoft Margin Loss
introduced by Bennett and Mangasarian [40, 111], is defined as

c(x y f (x)) max(0 1 y f (x))
0 if y f (x) 1

1 y f (x) otherwise
(3.3)

In some cases [348, 125] (see also Section 10.6.2) the squared version of (3.3)
provides an expression that can be minimized more easily;

c(x y f (x)) max(0 1 y f (x))2 (3.4)

The soft margin loss closely resembles the so-called logistic loss function (cf.Logistic Loss
[251], as well as Problem 3.1 and Section 16.1.1);

c(x y f (x)) ln 1 exp y f (x) (3.5)

We will derive this loss function in Section 3.3.1. It is used in order to associate a
probabilistic meaning with f (x).

Note that in both (3.3) and (3.5) (nearly) no penalty occurs if y f (x) is sufficiently
large, i.e. if the patterns are classified correctly with large confidence. In particular,
in (3.3) a minimum confidence of 1 is required for zero loss. These loss functions

1. A false positive is a point which the classifier erroneously assigns to class 1, a false negative
is erroneously assigned to class 1.
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Figure 3.1 From left to right: 0-1 loss, linear soft margin loss, logistic regression, and
quadratic soft margin loss. Note that both soft margin loss functions are upper bounds
on the 0-1 loss.

led to the development of large margin classifiers (see [491, 460, 504] and Chapter 5
for further details). Figure 3.1 depicts various popular loss functions.2

Matters are more complex when dealing with more than two classes. EachMulti Class
Discrimination type of misclassification could potentially incur a different loss, leading to an

M M matrix (M being the number of classes) with positive off-diagonal and zero
diagonal entries. It is still a matter of ongoing research in which way a confidence
level should be included in such cases (cf. [41, 311, 593, 161, 119]).

3.1.2 Regression

When estimating real-valued quantities, it is usually the size of the difference
y f (x), i.e. the amount of misprediction, rather than the product y f (x), which
is used to determine the quality of the estimate. For instance, this can be the actual
loss incurred by mispredictions (e.g., the loss incurred by mispredicting the value
of a financial instrument at the stock exchange), provided the latter is known and
computationally tractable.3 Assuming location independence, in most cases the
loss function will be of the type

c(x y f (x)) c̃( f (x) y) (3.7)

See Figure 3.2 below for several regression loss functions. Below we list the ones
most common in kernel methods.

2. Other popular loss functions from the generalized linear model context include the
inverse complementary log-log function. It is given by

c(x y f (x)) 1 exp( exp(y f (x))) (3.6)

This function, unfortunately, is not convex and therefore it will not lead to a convex opti-
mization problem. However, it has nice robustness properties and therefore we think that
it should be investigated in the present context.
3. As with classification, computational tractability is one of the primary concerns. This is
not always satisfying from a statistician’s point of view, yet it is crucial for any practical
implementation of an estimation algorithm.
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The popular choice is to minimize the sum of squares of the residuals f (x) y.Squared Loss
As we shall see in Section 3.3.1, this corresponds to the assumption that we have
additive normal noise corrupting the observations yi. Consequently we minimize

c(x y f (x)) ( f (x) y)2 or equivalently c̃( ) 2 (3.8)

For convenience of subsequent notation, 1
2

2 rather than 2 is often used.
An extension of the soft margin loss (3.3) to regression is the -insensitive loss-insensitive

Loss and 1 Loss function [561, 572, 562]. It is obtained by symmetrization of the “hinge” of (3.3),

c̃( ) max( 0) : (3.9)

The idea behind (3.9) is that deviations up to should not be penalized, and all
further deviations should incur only a linear penalty. Setting 0 leads to an 1

loss, i.e., to minimization of the sum of absolute deviations. This is written

c̃( ) (3.10)

We will study these functions in more detail in Section 3.4.2.
For efficient implementations of learning procedures, it is crucial that loss func-Practical

Considerations tions satisfy certain properties. In particular, they should be cheap to compute,
have a small number of discontinuities (if any) in the first derivative, and be con-
vex in order to ensure the uniqueness of the solution (see Chapter 6 and also Prob-
lem 3.6 for details). Moreover, we may want to obtain solutions that are compu-
tationally efficient, which may disregard a certain number of training points. This
leads to conditions such as vanishing derivatives for a range of function values
f (x). Finally, requirements such as outlier resistance are also important for the con-
struction of estimators.

3.2 Test Error and Expected Risk

Now that we have determined how errors should be penalized on specific in-
stances (x y f (x)), we have to find a method to combine these (local) penalties.
This will help us to assess a particular estimate f .

In the following, we will assume that there exists a probability distribution
P(x y) on which governs the data generation and underlying functional
dependency. Moreover, we denote by P(y x) the conditional distribution of y given
x, and by dP(x y) and dP(y x) the integrals with respect to the distributions P(x y)
and P(y x) respectively (cf. Section B.1.3).

3.2.1 Exact Quantities

Unless stated otherwise, we assume that the data (x y) are drawn iid (independent
and identically distributed, see Section B.1) from P(x y). Whether or not we have
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knowledge of the test patterns at training time4 makes a significant difference in
the design of learning algorithms. In the latter case, we will want to minimize the
test error on that specific test set; in the former case, the expected error over all possible
test sets.

Definition 3.2 (Test Error) Assume that we are not only given the training data
x1 xm along with target values y1 ym but also the test patterns x1 xm

on which we would like to predict yi (i 1 m ). Since we already know xi, all we
should care about is to minimize the expected error on the test set. We formalize this in
the following definitionTransduction

Problem
Rtest[ f ] :

1
m

m

∑
i 1

c(xi y f (xi))dP(y xi) (3.11)

Unfortunately, this problem, referred to as transduction, is quite difficult to address,
both computationally and conceptually, see [562, 267, 37, 211]. Instead, one typi-
cally considers the case where no knowledge about test patterns is available, as
described in the following definition.

Definition 3.3 (Expected Risk) If we have no knowledge about the test patterns (or
decide to ignore them) we should minimize the expected error over all possible training
patterns. Hence we have to minimize the expected loss with respect to P and c

R[ f ] : E Rtest[ f ] E c(x y f (x)) c(x y f (x))dP(x y) (3.12)

Here the integration is carried out with respect to the distribution P(x y). Again,
just as (3.11), this problem is intractable, since we do not know P(x y) explicitly.
Instead, we are only given the training patterns (xi yi). The latter, however, allow
us to replace the unknown distribution P(x y) by its empirical estimate.

To study connections between loss functions and density models, it will be
convenient to assume that there exists a density p(x y) corresponding to P(x y).
This means that we may replace dP(x y) by p(x y)dxdy and the appropriate
measure on . Such a density p(x y) need not always exist (see Section B.1 for
more details) but we will not give further heed to these concerns at present.

3.2.2 Approximations

Unfortunately, this change in notation did not solve the problem. All we have at
our disposal is the actual training data. What one usually does is replace p(x y) by
the empirical densityEmpirical

Density
pemp(x y) :

1
m

m

∑
i 1

xi (x) yi(y) (3.13)

4. The test outputs, however, are not available during training.
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Here x (x) denotes the -distribution, satisfying x (x) f (x)dx f (x ). The hope
is that replacing p by pemp will lead to a quantity that is “reasonably close” to the
expected risk. This will be the case if the class of possible solutions f is sufficiently
limited [568, 571]. The issue of closeness with regard to different estimators will be
discussed in further detail in Chapters 5 and 12. Substituting pemp(x y) into (3.12)
leads to the empirical risk:

Definition 3.4 (Empirical Risk) The empirical risk is defined as

Remp[ f ] : c(x y f (x))pemp(x y)dxdy
1
m

m

∑
i 1

c(xi yi f (xi)) (3.14)

This quantity has the advantage that, given the training data, we can readily
compute and also minimize it. This constitutes a particular case of what is called an
M-estimator in statistics. Estimators of this type are studied in detail in the field ofM-Estimator
empirical processes [554]. As pointed out in Section 3.1, it is crucial to understand
that although our particular M-estimator is built from minimizing a loss, this need
not always be the case. From a decision-theoretic point of view, the question of
which loss to choose is a separate issue, which is dictated by the problem at hand
as well as the goal of trying to evaluate the performance of estimation methods,
rather than by the problem of trying to define a particular estimation method
[582, 166, 43].

These considerations aside, it may appear as if (3.14) is the answer to ourIll-Posed
Problems problems, and all that remains to be done is to find a suitable class of functions

f such that we can minimize Remp[ f ] with respect to . Unfortunately, determining
is quite difficult (see Chapters 5 and 12 for details). Moreover, the minimization

of Remp[ f ] can lead to an ill-posed problem [538, 370]. We will show this with a
simple example.

Assume that we want to solve a regression problem using the quadratic lossExample of an
Ill-Posed
Problem

function (3.8) given by c(x y f (x) (y f (x))2. Moreover, assume that we are
dealing with a linear class of functions,5 say

: f f (x)
n

∑
i 1

i fi(x) with i (3.15)

where the fi are functions mapping to .
We want to find the minimizer of Remp, i.e.,

minimize
f

Remp[ f ] minimize
n

1
m

m

∑
i 1

yi

n

∑
j 1

j f j(xi)
2

(3.16)

5. In the simplest case, assuming is contained in a vector space, these could be functions
that extract coordinates of x; in other words, would be the class of linear functions on .
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Computing the derivative of Remp[ f ] with respect to and defining Fi j : fi(x j),
we can see that the minimum of (3.16) is achieved if

F y F F (3.17)

A sufficient condition for (3.17) is F F 1 F y where F F 1 denotes the
(pseudo-)inverse of the matrix.

If F F has a bad condition number (i.e. the quotient between the largest and theCondition of a
Matrix smallest eigenvalue of F F is large), it is numerically difficult [423, 530] to solve

(3.17) for . Furthermore, if n m, i.e. if we have more basis functions f i than
training patterns xi, there will exist a subspace of solutions with dimension at least
n m, satisfying (3.17). This is undesirable both practically (speed of computation)
and theoretically (we would have to deal with a whole class of solutions rather
than a single one).

One might also expect that if is too rich, the discrepancy between Remp[ f ] and
R[ f ] could be large. For instance, if F is an m m matrix of full rank, contains
an f that predicts all target values yi correctly on the training data. Nevertheless,
we cannot expect that we will also obtain zero prediction error on unseen points.
Chapter 4 will show how these problems can be overcome by adding a so-called
regularization term to Remp[ f ].

3.3 A Statistical Perspective

Given a particular pattern x̃, we may want to ask what risk we can expect for it,
and with which probability the corresponding loss is going to occur. In other words,
instead of (or in addition to) E c(x̃ y f (x̃) for a fixed x̃, we may want to know the
distribution of y given x̃, i.e., P(y x̃).

(Bayesian) statistics (see [338, 432, 49, 43] and also Chapter 16) often attempt
to estimate the density corresponding to the random variables (x y), and in some
cases, we may really need information about p(x y) to arrive at the desired conclu-
sions given the training data (e.g., medical diagnosis). However, we always have
to keep in mind that if we model the density p first, and subsequently, based on
this approximation, compute a minimizer of the expected risk, we will have to
make two approximations. This could lead to inferior or at least not easily pre-
dictable results. Therefore, wherever possible, we should avoid solving a more
general problem, since additional approximation steps might only make the esti-
mates worse [561].

3.3.1 Maximum Likelihood Estimation

All this said, we still may want to compute the conditional density p(y x). For
this purpose we need to model how y is generated, based on some underlying
dependency f (x); thus, we specify the functional form of p(y x f (x))and maximize
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the expression with respect to f . This will provide us with the function f that is
most likely to have generated the data.

Definition 3.5 (Likelihood) The likelihood of a sample (x 1 y1) (xm ym) given an
underlying functional dependency f is given by

p( x1 xm y1 ym f )
m

∏
i 1

p(xi yi f )
m

∏
i 1

p(yi xi f )p(xi) (3.18)

Strictly speaking the likelihood only depends on the values f (x1) f (xm) rather
than being a functional of f itself. To keep the notation simple, however, we
write p( x1 xm y1 ym f ) instead of the more heavyweight expression
p( x1 xm y1 ym f (x1) f (xm) ).

For practical reasons, we convert products into sums by taking the negative
logarithm of P( x1 xm y1 ym f ), an expression which is then conve-
niently minimized. Furthermore, we may drop the p(xi) from (3.18), since they do
not depend on f . Thus maximization of (3.18) is equivalent to minimization of the
Log-LikelihoodLog-Likelihood

[ f ] :
m

∑
i 1

ln p(yi xi f ) (3.19)

Remark 3.6 (Regression Loss Functions) Minimization of [ f ] and of R emp[ f ] coin-Regression
cide if the loss function c is chosen according to

c(x y f (x)) ln p(y x f ) (3.20)

Assuming that the target values y were generated by an underlying functional dependency
f plus additive noise with density p , i.e. yi ftrue(xi) i, we obtain

c(x y f (x)) ln p (y f (x)) (3.21)

Things are slightly different in classification. Since all we are interested in is the
probability that pattern x has label 1 or 1 (assuming binary classification), we
can transform the problem into one of estimating the logarithm of the probability
that a pattern assumes its correct label.Classification

Remark 3.7 (Classification Loss Functions) We have a finite set of labels, which al-
lows us to model P(y f (x)) directly, instead of modelling a density. In the binary classi-
fication case (classes 1 and 1) this problem becomes particularly easy, since all we have
to do is assume functional dependency underlying P(1 f (x)): this immediately gives us
P( 1 f (x)) 1 P(1 f (x)). The link to loss functions is established via

c(x y f (x)) ln P(y f (x)) (3.22)

The same result can be obtained by minimizing the cross entropy6 between the classifica-

6. In the case of discrete variables the cross entropy between two distributions P and Q is
defined as ∑i P(i) ln Q(i).
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Table 3.1 Common loss functions and corresponding density models according to Re-
mark 3.6. As a shorthand we use c̃( f (x) y) : c(x y f (x)).

loss function c̃( ) density model p( )

-insensitive 1
2(1 ) exp( )

Laplacian 1
2 exp( )

Gaussian 1
2

2 1
2

exp(
2

2 )

Huber’s
robust loss

1
2 ( )2 if

2 otherwise
exp(

2

2 ) if
exp( 2 ) otherwise

Polynomial 1
d

d d
2Γ(1 d) exp( d)

Piecewise
polynomial

1
d d 1

d if
d 1

d otherwise
exp(

d

d d 1 ) if
exp( d 1

d ) otherwise

tion labels yi and the probabilities p(y f (x)), as is typically done in a generalized linear
models context (see e.g., [355, 232, 163]). For binary classification (with y 1 ) we
obtain

c(x y f (x))
1 y

2
ln P(y 1 f (x))

1 y
2

ln P(y 1 f (x)) (3.23)

When substituting the actual values for y into (3.23), this reduces to (3.22).

At this point we have a choice in modelling P(y 1 f (x)) to suit our needs.
Possible models include the logistic transfer function, the probit model, the inverse
complementary log-log model. See Section 16.3.5 for a more detailed discussion of
the choice of such link functions. Below we explain connections in some more detail
for the logistic link function.

For a logistic model, where P(y 1 x f ) exp( 1
2 f (x)), we obtain after nor-

malization

P(y 1 x f ) :
exp( f (x))

1 exp( f (x))
(3.24)

and consequently ln P(y 1 x f ) ln(1 exp( f (x))). We thus recover (3.5) as
the loss function for classification. Choices other than (3.24) for a map [0 1]
will lead to further loss functions for classification. See [579, 179, 596] and Section
16.1.1 for more details on this subject.

It is important to note that not every loss function used in classification corre-
sponds to such a density model (recall that in this case, the probabilities have to
add up to 1 for any value of f (x)). In fact, one of the most popular loss functions,
the soft margin loss (3.3), does not enjoy this property. A discussion of these issues
can be found in [521].

Table 3.1 summarizes common loss functions and the corresponding densityExamples
models as defined by (3.21), some of which were already presented in Section
3.1. It is an exhaustive list of the loss functions that will be used in this book for
regression. Figure 3.2 contains graphs of the functions.
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Figure 3.2 Graphs of loss functions and corresponding density models. upper left: Gaus-
sian, upper right: Laplacian, lower left: Huber’s robust, lower right: -insensitive.

We conclude with a few cautionary remarks. The loss function resulting fromPractical
Considerations a maximum likelihood reasoning might be non-convex. This might spell trouble

when we try to find an efficient solution of the corresponding minimization prob-
lem. Moreover, we made a very strong assumption by claiming to know P(y x f )
explicitly, which was necessary in order to evaluate (3.20).

Finally, the solution we obtain by minimizing the log-likelihood depends on
the class of functions . So we are in no better situation than by minimizing
Remp[ f ], albeit with the additional constraint, that the loss functions c(x y f (x))
must correspond to a probability density.

3.3.2 Efficiency

The above reasoning could mislead us into thinking that the choice of loss func-
tion is rather arbitrary, and that there exists no good means of assessing the per-
formance of an estimator. In the present section we will develop tools which can
be used to compare estimators that are derived from different loss functions. For
this purpose we need to introduce additional statistical concepts which deal with
the efficiency of an estimator. Roughly speaking, these give an indication of how
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“noisy” an estimator is with respect to a reference estimator.
We begin by formalizing the concept of an estimator. Denote by P(y ) a dis-

tribution of y depending (amongst other variables) on the parameters , and by
Y y1 ym an m-sample drawn iid from P(y ). Note that the use of the sym-
bol y bears no relation to the yi that are outputs of some functional dependency
(cf. Chapter 1). We employ this symbol because some of the results to be derived
will later be applied to the outputs of SV regression.

Next, we introduce the estimator ˆ (Y) of the parameters , based on Y. ForEstimator
instance, P(y ) could be a Gaussian with fixed variance and mean , and ˆ(Y)
could be the estimator (1 m) ∑m

i 1 yi.
To avoid cumbersome notation, we use the shorthand

E (y) : EP(y ) (y) (y)dP(y ) (3.25)

to express expectations of a random variable (y) with respect to P(y ). One
criterion that we might impose on an estimator is that it be unbiased, i.e., that
on average, it tells us the correct value of the parameter it attempts to estimate.

Definition 3.8 (Unbiased Estimator) An unbiased estimator ˆ (Y) of the parameters
in P(y ) satisfies

E ˆ (Y) (3.26)

In this section, we will focus on unbiased estimators. In general, however, the
estimators we are dealing with in this book will not be unbiased. In fact, they
will have a bias towards ‘simple’, low-complexity functions. Properties of such
estimators are more difficult to deal with, which is why, for the sake of simplicity,
we restrict ourselves to the unbiased case in this section. Note, however, that
“biasedness” is not a bad property by itself. On the contrary, there exist cases as
the one described by James and Stein [262] where biased estimators consistently
outperform unbiased estimators in the finite sample size setting, both in terms of
variance and prediction error.

A possible way to compare unbiased estimators is to compute their variance.
Other quantities such as moments of higher order or maximum deviation prop-
erties would be valid criteria as well, yet for historical and practical reasons the
variance has become a standard tool to benchmark estimators. The Fisher infor-
mation matrix is crucial for this purpose since it will tell us via the Cramér-Rao
bound (Theorem 3.11) the minimal possible variance for an unbiased estimator.
The idea is that the smaller the variance, the lower (typically) the probability that
ˆ(Y) will deviate from by a large amount. Therefore, we can use the variance as
a possible one number summary to compare different estimators.

Definition 3.9 (Score Function, Fisher Information, Covariance) Assume there ex-
ists a density p(y ) for the distribution P(y ) such that ln p(y ) is differentiable with
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respect to . The score V (Y) of P(y ) is a random variable defined by7Score Function

V (Y) : ln p(Y )
m

∑
i 1

ln p(yi )
m

∑
i 1

p(yi )
p(yi )

(3.27)

This score tells us how much the likelihood of the data depends on the different components
of , and thus, in the maximum likelihood procedure, how much the data affect the choice
of . The covariance of V (Y) is called the Fisher information matrix I. It is given byFisher

Information
Ii j : E

i
ln p(Y )

j
ln p(Y ) (3.28)

and the covariance matrix B of the estimator ˆ (Y) is defined byCovariance

Bi j : E ˆ
i E ˆ

i
ˆ

j E ˆ
j (3.29)

The covariance matrix B tells us the amount of variation of the estimator. It can
therefore be used (e.g., by Chebychev’s inequality) to bound the probability that
ˆ(Y) deviates from by more than a certain amount.

Remark 3.10 (Expected Value of Fisher Score) One can check that the expected value
of V (Y) is 0 since

E [V (Y)] p(Y ) ln p(Y )dY p(Y )dY 1 0 (3.30)

In other words, the contribution of Y to the adjustment of averages to 0 over all possibleAverage Fisher
Score Vanishes Y, drawn according to P(Y ). Equivalently we could say that the average likelihood for Y

drawn according to P(Y ) is extremal, provided we choose : the derivative of the expected
likelihood of the data E ln P(Y ) with respect to vanishes. This is also what we expect,
namely that the “proper” distribution is on average the one with the highest likelihood.

The following theorem gives a lower bound on the variance of an estimator, i.e.
B is found in terms of the Fisher information I. This is useful to determine how
well a given estimator performs with respect to the one with the lowest possible
variance.

Theorem 3.11 (Cramér and Rao [425]) Any unbiased estimator ˆ (Y) satisfies

det IB 1 (3.31)

Proof We prove (3.31) for the scalar case. The extension to matrices is left as an
exercise (see Problem 3.10). Using the Cauchy-Schwarz inequality, we obtain

E (V (Y) E [V (Y)]) ˆ (Y) E ˆ (Y)
2

(3.32)

E (V (Y) E [V (Y)])2 E ˆ (Y) E ˆ (Y)
2

IB (3.33)

7. Recall that p(Y ) is the gradient of p(Y ) with respect to the parameters 1 n.
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At the same time, E [V (Y)] 0 implies that

E (V (Y) E [V (Y)]) ˆ (Y) E ˆ (Y)
2

(3.34)

E V (Y) ˆ(Y)
2

(3.35)

p(Y )V (Y) ˆ (Y)dY
2

p(Y ) ˆ(Y)dY
2

( )2 1 (3.36)

since we may interchange integration by Y and .

Eq. (3.31) lends itself to the definition of a one-number summary of the properties
of an estimator, namely how closely the inequality is met.

Definition 3.12 (Efficiency) The statistical efficiency e of an estimator ˆ (Y) is defined as

e : 1 det IB (3.37)

The closer e is to 1, the lower the variance of the corresponding estimator ˆ(Y).
For a special class of estimators minimizing loss functions, the following theorem
allows us to compute B and e efficiently.

Theorem 3.13 (Murata, Yoshizawa, Amari [379, Lemma 3]) Assume that ˆ is de-
fined by ˆ (Y) : argmin d(Y ) and that d is a twice differentiable function in .
Then asymptotically, for increasing sample size m , the variance B is given by
B Q 1GQ 1. HereAsymptotic

Variance
Gi j : cov

i
d (Y )

j
d (Y ) and (3.38)

Qi j : E 2
i j

d(Y ) (3.39)

and therefore e (det Q)2 (det IG).

This means that for the class of estimators defined via d, the evaluation of their
asymptotic efficiency can be conveniently achieved via (3.38) and (3.39). For scalar
valued estimators (Y) , these expressions can be greatly simplified to

I ln p(Y ) 2 dP(Y ) (3.40)

G ( d(Y ))2 dP(Y ) (3.41)

Q 2d(Y )dP(Y ) (3.42)

Finally, in the case of continuous densities, Theorem 3.13 may be extended to
piecewise twice differentiable continuous functions d, by convolving the latter
with a twice differentiable smoothing kernel, and letting the width of the smooth-
ing kernel converge to zero. We will make use of this observation in the next sec-
tion when studying the efficiency of some estimators.
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The current section concludes with the proof that the maximum likelihood
estimator meets the Cramér-Rao bound.

Theorem 3.14 (Efficiency of Maximum Likelihood [118, 218, 43]) The maximum
likelihood estimator (cf. (3.18) and (3.19)) given by

ˆ (Y) : argmax ln p(Y ) argmin [ ] (3.43)

is asymptotically efficient (e 1).

To keep things simple we will prove (3.43) only for the class of twice differentiable
continuous densities by applying Theorem 3.13. For a more general proof see
[118, 218, 43].

Proof By construction, G is equal to the Fisher information matrix, if we choose
d according to (3.43). Hence a sufficient condition is that Q I, which is what
we show below. To this end we expand the integrand of (3.42),

2d(Y ) 2 ln p(Y )
2 p(Y )
p(Y )

p(Y )
p(Y )

2 2 p(Y )
p(Y )

V2(Y) (3.44)

The expectation of the second term in (3.44) equals I. We now show that the
expectation of the first term vanishes;

p(Y )
2p(Y )
p(Y )

dY 2 p(Y )dY 21 0 (3.45)

Hence Q I and thus e Q2 (IG) 1. This proves that the maximum likelihood
estimator is asymptotically efficient.

It appears as if the best thing we could do is to use the maximum likelihood (ML)
estimator. Unfortunately, reality is not quite as simple as that. First, the above
statement holds only asymptotically. This leads to the (justified) suspicion that
for finite sample sizes we may be able to do better than ML estimation. Second,
practical considerations such as the additional goal of sparse decomposition may
lead to the choice of a non-optimal loss function.

Finally, we may not know the true density model, which is required for the
definition of the maximum likelihood estimator. We can try to make an educated
guess; bad guesses of the class of densities, however, can lead to large errors in the
estimation (see, e.g., [251]). This prompted the development of robust estimators.

3.4 Robust Estimators

So far, in order to make any practical predictions, we had to assume a certain
class of distributions from which P(Y) was chosen. Likewise, in the case of risk
functionals, we also assumed that training and test data are identically distributed.
This section provides tools to safeguard ourselves against cases where the above
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assumptions are not satisfied.
More specifically, we would like to avoid a certain fraction of ‘bad’ obser-Outliers

vations (often also referred to as ‘outliers’) seriously affecting the quality of the
estimate. This implies that the influence of individual patterns should be bounded
from above. Huber [250] gives a detailed list of desirable properties of a robust
estimator. We refrain from reproducing this list at present, or committing to a par-
ticular definition of robustness.

As usual for the estimation of location parameter context (i.e. estimation of the
expected value of a random variable) we assume a specific parametric form of
p(Y ), namely

p(Y )
m

∏
i 1

p(yi )
m

∏
i 1

p(yi ) (3.46)

Unless stated otherwise, this is the formulation we will use throughout this sec-
tion.

3.4.1 Robustness via Loss Functions

Huber’s idea [250] in constructing a robust estimator was to take a loss function as
provided by the maximum likelihood framework, and modify it in such a way
as to limit the influence of each individual pattern. This is done by providing
an upper bound on the slope of ln p(Y ). We shall see that methods such
as the trimmed mean or the median are special cases thereof. The -insensitive
loss function can also be viewed as a trimmed estimator. This will lead to the
development of adaptive loss functions in the subsequent sections. We begin with
the main theorem of this section.

Theorem 3.15 (Robust Loss Functions (Huber [250])) Let be a class of densities
formed byMixture

Densities
: p p (1 )p0 p1 where (0 1) and p0 are known (3.47)

Moreover assume that both p0 and p1 are symmetric with respect to the origin, their
logarithms are twice continuously differentiable, ln p0 is convex and known, and p1 is
unknown. Then the density

p̄( ) : (1 )
p0( ) if 0

p0( 0)e k( 0) otherwise
(3.48)

is robust in the sense that the maximum likelihood estimator corresponding to (3.48) has
minimum variance with respect to the “worst” possible density pworst (1 )p0 p1:
it is a saddle point (located at pworst) in terms of variance with respect to the true density
p and the density p̄ used in estimating the location parameter. This means that
no density p has larger variance than pworst and that for p pworst no estimator is better
than the one where p̄ pworst, as used in the robust estimator.

The constants k 0 and 0 are obtained by the normalization condition, that p̄ be a
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proper density and that the first derivative in ln p̄ be continuous.

Proof To show that p̄ is a saddle point in we have to prove that (a) no estima-
tion procedure other than the one using ln p̄ as the loss function has lower variance
for the density p̄, and that (b) no density has higher variance than p̄ if ln p̄ is used
as loss function. Part (a) follows immediately from the Cramér-Rao theorem (Th.
3.11); part (b) can be proved as follows.

We use Theorem 3.13, and a proof technique pointed out in [559], to compute
the variance of an estimator using ln p̄ as loss function;

B
ln p̄(y ) 2 (1 )p0(y ) p (y ) dy

2 ln p̄(y ) (1 )p0(y ) p (y ) dy
(3.49)

Here p is an arbitrary density which we will choose such that B is maximized. By
construction,

ln p̄(y ) 2 ln p0(y ) 2 k2 if y 0

k2 otherwise,
(3.50)

2 ln p̄(y )
2 ln p0(y ) 0 if y 0

0 otherwise.
(3.51)

Thus any density p which is 0 in [ 0 0] will minimize the denominator (the
term depending on p will be 0, which is the lowest obtainable value due to (3.51)),
and maximize the numerator, since in the latter the contribution of p is always
limited to k2 . Now 1 p̄ (1 )p0 is exactly such a density. Hence the saddle
point property holds.

Remark 3.16 (Robustness Classes) If we have more knowledge about the class of den-
sities , a different loss function will have the saddle point property. For instance, using
a similar argument as above, one can show that the normal distribution is robust in the
class of all distributions with bounded variance. This implies that among all possible dis-
tributions with bounded variance, the estimator of the mean of a normal distribution has
the highest variance.

Likewise, the Laplacian distribution is robust in the class of all symmetric distributions
with density p(0) c for some fixed c 0 (see [559, 251] for more details).

Hence, even though a loss function defined according to Theorem 3.15 is generally
desirable, we may be less cautious, and use a different loss function for improved
performance, when we have additional knowledge of the distribution.

Remark 3.17 (Mean and Median) Assume we are dealing with a mixture of a normal
distribution with variance 2 and an additional unknown distribution with weight at most

. It is easy to check that the application of Theorem 3.15 to normal distributions yields
Huber’s robust loss function from Table 3.1.

The maximizer of the likelihood (see also Problem 3.17) is a trimmed mean estimator
which discards of the data: effectively all i deviating from the mean by more than are



78 Risk and Loss Functions

ignored and the mean is computed from the remaining data. Hence Theorem 3.15 gives a
formal justification for this popular type of estimator.

If we let 1 we recover the median estimator which stems from a Laplacian distribu-
tion. Here, all patterns but the median one are discarded.

Besides the classical examples of loss functions and density models, we might also
consider a slightly unconventional estimation procedure: use the average between
the k-smallest and the k-largest of all observations observations as the estimatedTrimmed Interval

Estimator mean of the underlying distribution (for sorted observations i with i j for
1 i j m the estimator computes ( k m k 1) 2). This procedure makes
sense, for instance, when we are trying to infer the mean of a random variable
generated by roundoff noise (i.e., noise whose density is constant within some
bounded interval) plus an additional unknown amount of noise.

Note that both the patterns strictly inside or outside an interval of size [ ]
around the estimate have no direct influence on the outcome. Only patterns on the
boundary matter. This is a very similar situation to the behavior of Support Vector
Machines in regression, and one can show that it corresponds to the minimizerSupport Patterns
of the -insensitive loss function (3.9). We will study the properties of the latter in
more detail in the following section and thereafter show how it can be transformed
into an adaptive risk functional.

3.4.2 Efficiency and the -Insensitive Loss Function

The tools of Section 3.3.2 allow us to analyze the -insensitive loss function in more
detail. Even though the asymptotic estimation of a location parameter setting is a
gross oversimplification of what is happening in a SV regression estimator (where
we estimate a nonparametric function, and moreover have only a limited number
of observations at our disposition), it will provide us with useful insights into this
more complex case [510, 481].

In a first step, we compute the efficiency of an estimator, for several noise models
and amounts of variance, using a density corresponding to the -insensitive loss
function (cf. Table 3.1);

p (y )
1

2 2
exp( y )

1
2 2

1 if y

exp( y ) otherwise.
(3.52)

For this purpose we have to evaluate the quantities G (3.41) and Q (3.42) of
Theorem 3.13. We obtain

G m ln p(y ) 2 dP(y ) m 1 p(y )dy (3.53)

Q m 2 ln p(y )dP(y ) m p( ) p( ) (3.54)

The Fisher information I of m iid random variables distributed according to p is
m-times the value of a single random variable. Thus all dependencies on m in e
cancel out and we can limit ourselves to the case of m 1 for the analysis of the
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efficiency of estimators.
Now we may check what happens if we use the -insensitive loss function for

different types of noise model. For the sake of simplicity we begin with Gaussian
noise.

Example 3.18 (Gaussian Noise) Assume that y is normally distributed with zero mean
(i.e. 0) and variance . By construction, the minimum obtainable variance is I 1 2

(recall that m 1). Moreover (3.53) and (3.54) yield

G
Q2

2 exp
2

2 1 erf
2

(3.55)

The efficiency e Q2

GI is maximized for 0 6120 . This means that if the underlying
noise model is Gaussian with variance and we have to use an -insensitive loss function
to estimate a location parameter, the most efficient estimator from this family is given by

0 6120 .

The consequence of (3.55) is that the optimal value of scales linearly with .
Of course, we could just use squared loss in such a situation, but in general, we
will not know the exact noise model, and squared loss does not lead to robust
estimators. The following lemma (which will come handy in the next section)
shows that this is a general property of the -insensitive loss.

Lemma 3.19 (Linear Dependency between -Tube Width and Variance) Denote
by p a symmetric density with variance 0. Then the optimal value of (i.e. the value
that achieves maximum asymptotic efficiency) for an estimator using the -insensitive loss
is given by

opt argmin
1

pstd( ) pstd( ) 2 1 pstd( )d (3.56)

where pstd( ) : p( ) is the standardized version of p(y ), i.e. it is obtained by
rescaling p(y ) to zero mean and unit variance.

Since pstd is independent of , we have a linear dependency between opt and .
The scaling factor depends on the noise model.

Proof We prove (3.56) by rewriting the efficiency e( ) in terms of pstd via p(y )
1 pstd( 1(y )). This yields

e( )
Q2

IG

1 pstd( 1 ) 1 pstd( 1 ) 2

2 1 1 pstd( 1 )d
pstd( 1 ) pstd( 1 ) 2

1
1

1 pstd( )d

The maximum of e( ) does not depend directly on , but on 1 (which is
independent of ). Hence we can find argmax e( ) by solving (3.56).

Lemma 3.19 made it apparent that in order to adjust we have to know be-
forehand. Unfortunately, the latter is usually unknown at the beginning of the
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estimation procedure.8 The solution to this dilemma is to make adaptive.

3.4.3 Adaptive Loss Functions

We again consider the trimmed mean estimator, which discards a predefined
fraction of largest and smallest samples. This method belongs to the more general
class of quantile estimators, which base their estimates on the value of samples
in a certain quantile. The latter methods do not require prior knowledge of the
variance, and adapt to whatever scale is required. What we need is a technique
which connects (in Huber’s robust loss function) or (in the -insensitive loss
case) with the deviations between the estimate ˆ and the random variables yi.

Let us analyze what happens to the negative log likelihood, if, in the -
insensitive case, we change to (with ) while keeping ˆ fixed. In par-
ticular we assume that is chosen sufficiently small such that for all i 1 m,

ˆ yi
if ˆ yi

if ˆ yi
(3.57)

Moreover denote by m m m the number of samples for which ˆ yi is less
than, equal to, or greater than , respectively. Then
m

∑
i 1

ˆ yi ∑
ˆ yi

ˆ yi ∑
ˆ yi

ˆ yi m ∑
ˆ yi

ˆ yi

m

∑
i 1

ˆ yi
m if 0

(m m ) otherwise.
(3.58)

In other words, the amount by which the loss changes depends only on the
quantiles at . What happens if we make itself a variable of the optimization
problem? By the scaling properties of (3.58) one can see that for [0 1]

minimize
ˆ

1
m

m

∑
i 1

ˆ yi (3.59)

is minimized if is chosen such that-Property
m
m

m m
m

(3.60)

This relation holds since at the solution (ˆ ) the solution also has to be optimal
wrt. alone while keeping ˆ fixed. In the latter case, however, the derivatives of

8. The obvious question is why one would ever like to choose an -insensitive loss in the
presence of Gaussian noise in the first place. If the complexity of the function expansion is
of no concern and the highest accuracy is required, squared loss is to be preferred. In most
cases, however, it is not quite clear what exactly the type of the additive noise model is. This
is when we would like to have a more conservative estimator. In practice, the -insensitive
loss has been shown to work rather well on a variety of tasks (Chapter 9).
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the log-likelihood (i.e. error) term wrt. at the solution are given by m
m and m m

m
on the left and right hand side respectively.9 These have to cancel with which
proves the claim. Furthermore, computing the derivative of (3.59) with respect to
ˆ shows that the number of samples outside the interval [ ] has to be
equal on both halves ( ) and ( ). We have the following theorem:

Theorem 3.20 (Quantile Estimation as Optimization Problem [481]) A quantile
procedure to estimate the mean of a distribution by taking the average of the samples
at the 2 th and (1 2 )th quantile is equivalent to minimizing (3.59). In particular,

1. is an upper bound on the fraction of samples outside the interval [ ].

2. is a lower bound on the fraction of samples outside the interval ] [.

3. If the distribution p( ) is continuous, for all [0 1]

lim
m

P
m
m

1 for all 0 (3.61)

One might question the practical advantage of this method over direct trimming
of the sample Y. In fact, the use of (3.59) is not recommended if all we want is to
estimate . That said, (3.59) does allow us to employ trimmed estimation in the
nonparametric case, cf. Chapter 9.

Unfortunately, we were unable to find a similar method for Huber’s robust loss
function, since in this case the change in the negative log-likelihood incurred byExtension to

General Robust
Estimators

changing not only involves the (statistical) rank of yi, but also the exact location
of samples with yi .

One way to overcome this problem is re-estimate adaptively while minimizing
a term similar to (3.59) (see [180] for details in the context of boosting, Section 10.6.3
for a discussion of online estimation techniques, or [251] for a general overview).

3.4.4 Optimal Choice of

Let us return to the -insensitive loss. A combination of Theorems 3.20, 3.13 and
Lemma 3.19 allows us to compute optimal values of for various distributions,
provided that an -insensitive loss function is to be used in the estimation proce-
dure.10

The idea is to determine the optimal value of for a fixed density p(y ) via
(3.56), and compute the corresponding fraction of patterns outside the interval
[ ].

9. Strictly speaking, the derivative is not defined at ; the lhs and rhs values are defined,
however, which is sufficient for our purpose.
10. This is not optimal in the sense of Theorem 3.15, which suggests the use of a more
adapted loss function. However (as already stated in the introduction of this chapter),
algorithmic or technical reasons such as computationally efficient solutions or limited
memory may provide sufficient motivation to use such a loss function.
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Table 3.2 Optimal and for various degrees of polynomial additive noise.

Polynomial Degree d 1 2 3 4 5
Optimal 1 0.5405 0.2909 0.1898 0.1384
Optimal for unit variance 0 0.6120 1.1180 1.3583 1.4844

Polynomial Degree d 6 7 8 9 10
Optimal 0.1080 0.0881 0.0743 0.0641 0.0563
Optimal for unit variance 1.5576 1.6035 1.6339 1.6551 1.6704

Theorem 3.21 (Optimal Choice of ) Denote by p a symmetric density with variance
0 and by pstd the corresponding rescaled density with zero mean and unit variance.

Then the optimal value of (i.e. the value that achieves maximum asymptotic efficiency)
for an estimator using the -insensitive loss is given by

1 pstd(y)dy (3.62)

where is chosen according to (3.56). This expression is independent of .

Proof The independence of follows from the fact that depends only on pstd.
Next we show (3.62). For a given density p, the asymptotically optimal value of

is given by Lemma 3.19. The average fraction of patterns outside the interval
[ˆ opt ˆ opt] is

1
opt

opt

p(y )dy 1
1

opt

1
opt

pstd(y)dy (3.63)

which depends only on 1
opt and is thus independent of . Combining (3.63)

with (3.56) yields the theorem.

This means that given the type of additive noise, we can determine the value of
such that it yields the asymptotically most efficient estimator independent of the

level of the noise. These theoretical predictions have since been confirmed rather
accurately in a set of regression experiments [95].

Let us now look at some special cases.

Example 3.22 (Optimal for Polynomial Noise) Arbitrary polynomial noise models
( e

d
) with unit variance can be written as

p(y) cp exp cp y p where cp
1
2

Γ 3 d
Γ 1 d

d
Γ 1 d

and cp
Γ 3 d
Γ 1 d

d

where Γ(x) is the gamma function. Figure 3.3 shows opt for polynomial degrees in the
interval [1 10]. For convenience, the explicit numerical values are repeated in Table 3.2.

Observe that as the distribution becomes “lighter-tailed”, the optimal decreases; in
other words, we may then use a larger amount of the data for the purpose of estimation.Heavy Tails

Large This is reasonable since it is only for very long tails of the distribution (data with many
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Figure 3.3 Optimal and for various degrees of polynomial additive noise.

outliers) that we have to be conservative and discard a large fraction of observations.

Even though we derived these relations solely for the case where a single number
( ) has to be estimated, experiments show that the same scaling properties hold
for the nonparametric case. It is still an open research problem to establish this
connection exactly.

As we shall see, in the nonparametric case, the effect of will be that it both
determines the number of Support Vectors (i.e., the number of basis functions
needed to expand the solution) and also the fraction of function values f (xi) with
deviation larger than from the corresponding observations. Further information
on this topic, both from the statistical and the algorithmic point of view, can be
found in Section 9.3.

3.5 Summary

We saw in this chapter that there exist two complementary concepts as to how risk
and loss functions should be designed. The first one is data driven and uses the
incurred loss as its principal guideline, possibly modified in order to suit the need
of numerical efficiency. This leads to loss functions and the definitions of empirical
and expected risk.

A second method is based on the idea of estimating (or at least approximating)
the distribution which may be responsible for generating the data. We showed
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that in a Maximum Likelihood setting this concept is rather similar to the notions
of risk and loss, with c(x y f (x)) ln p(y x f (x)) as the link between both quan-
tities.

This point of view allowed us to analyze the properties of estimators in more
detail and provide lower bounds on the performance of unbiased estimators, i.e.
the Cramér-Rao theorem. The latter was then used as a benchmarking tool for
various loss functions and density models, such as the -insensitive loss. The
consequence of this analysis is a corroboration of experimental findings that there
exists a linear correlation between the amount of noise in the observations and the
optimal width of .

This, in turn, allowed us to construct adaptive loss functions which adjust
themselves to the amount of noise, much like trimmed mean estimators. These
formulations can be used directly in mathematical programs, leading to -SV
algorithms in subsequent chapters. The question of which choices are optimal in a
finite sample size setting remains an open research problem.

3.6 Problems

3.1 (Soft Margin and Logistic Regression ) The soft margin loss function c soft and
the logistic loss clogist are asymptotically almost the same; show that

lim
f

csoft(x 1 f ) clogist(x 1 f ) 1 (3.64)

lim
f

csoft(x 1 f ) clogist(x 1 f ) 0 (3.65)

3.2 (Multi-class Discrimination ) Assume you have to solve a classification problem
with M different classes. Discuss how the number of functions used to solve this task
affects the quality of the solution.

How would the loss function look if you were to use only one real-valued function
f : . Which symmetries are violated in this case (hint: what happens if you permute
the classes)?

How many functions do you need if each of them makes a binary decision f : 0 1 ?

How many functions do you need in order to make the solution permutation symmetric
with respect to the class labels?

How should you assess the classification error? Is it a good idea to use the misclassifica-
tion rate of one individual function as a performance criterion (hint: correlation of errors)?
By how much can this error differ from the total misclassification error?

3.3 (Mean and Median ) Assume 8 people want to gather for a meeting; 5 of them live
in Stuttgart and 3 in Munich. Where should they meet if (a) they want the total distance
traveled by all people to be minimal, (b) they want the average distance traveled per person
to be minimal, or (c) they want the average squared distance to be minimal? What happens
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to the meeting points if one of the 3 people moves from Munich to Sydney?

3.4 (Locally Adaptive Loss Functions ) Assume that the loss function c(x y f (x))
varies with x. What does this mean for the expected loss? Can you give a bound on the
latter even if you know p(y x) and f at every point but know c only on a finite sample
(hint: construct a counterexample)? How will things change if c cannot vary much with
x?

3.5 (Transduction Error ) Assume that we want to minimize the test error of mis-
classification Rtest[ f ], given a training sample (x1 y1) (xm ym) , a test sample

x1 xm and a loss function c(x y f (x)).
Show that any loss function c (x f (x )) on the test sample has to be symmetric in f ,

i.e. c (x f (x )) c (x f (x )). Prove that no non-constant convex function can satisfy
this property. What does this mean for the practical solution of optimization problem? See
[267, 37, 211, 103] for details.

3.6 (Convexity and Uniqueness ) Show that the problem of estimating a location
parameter (a single scalar) has an interval [a b] of equivalent global minima if the
loss functions are convex. For non-convex loss functions construct an example where this
is not the case.

3.7 (Linearly Dependent Parameters ) Show that in a linear model f ∑i i fi on
it is impossible to find a unique set of optimal parameters i if the functions fi are not

linearly independent. Does this have any effect on f itself?

3.8 (Ill-posed Problems ) Assume you want to solve the problem Ax y where A
is a symmetric positive definite matrix, i.e., a matrix with nonnegative eigenvalues. If you
change y to y , how much will the solution x of Ax y differ from x . Give lower and
upper bounds on this quantity. Hint: decompose y into the eigensystem of A.

3.9 (Fisher Map [258] ) Show that the map

U (x) : I
1
2 ln p(x ) (3.66)

maps x into vectors with zero mean and unit variance. Chapter 13 will use this map to
design kernels.

3.10 (Cramér-Rao Inequality for Multivariate Estimators ) Prove equation (3.31).
Hint: start by applying the Cauchy-Schwarz inequality to

det E ¯ [( ˆ ( ) E ¯ ˆ ( ))(T ( ) E ¯ T ( )) ] (3.67)

to obtain I and B and compute the expected value coefficient-wise.

3.11 (Soft Margin Loss and Conditional Probabilities [521] ) What is the con-
ditional probability p(y x) corresponding to the soft margin loss function c(x y f (x))
max(0 1 y f (x))?
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How can you fix the problem that the probabilities p( 1 x) and p(1 x) have to sum up
to 1?

How does the introduction of a third class (“don’t know”) change the problem? What is
the problem with this approach? Hint: What is the behavior for large f (x) ?

3.12 (Label Noise ) Denote by P(y 1 f (x)) and P(y 1 f (x)) the conditional
probabilities of labels 1 for a classifier output f (x). How will P change if we randomly
flip labels with (0 1) probability? How should you adapt your density model?

3.13 (Unbiased Estimators ) Prove that the least mean square estimator is unbiased
for arbitrary symmetric distributions. Can you extend the result to arbitrary symmetric
losses?

3.14 (Efficiency of Huber’s Robust Estimator ) Compute the efficiency of Huber’s
Robust Estimator in the presence of pure Gaussian noise with unit variance.

3.15 (Influence and Robustness ) Prove that for robust estimators using (3.48) as
their density model, the maximum change in the minimizer of the empirical risk is bounded
by k

m if a sample i is changed to i . What happens in the case of Gaussian density
models (i.e., squared loss)?

3.16 (Robustness of Gaussian Distributions [559] ) Prove that the normal distri-
bution with variance 2 is robust among the class of distributions with bounded variance
(by 2). Hint: show that we have a saddle point analogous to Theorem 3.15 by exploiting
Theorems 3.13 and Theorem 3.14.

3.17 (Trimmed Mean ) Show that under the assumption of an unknown distribution
contributing at most , Huber’s robust loss function for normal distributions leads to a
trimmed mean estimator which discards of the data.

3.18 (Optimal for Gaussian Noise ) Give an explicit solution for the optimal in
the case of additive Gaussian noise.

3.19 (Optimal for Discrete Distribution ) Assume that we have a noise model
with a discrete distribution of , where P( ) P( ) p1, P( 2 ) P(

2 ) p2, 2(p1 p2) 1, and p1 p2 0. Compute the optimal value of .



 

4 Regularization

Minimizing the empirical risk can lead to numerical instabilities and bad general-
ization performance. A possible way to avoid this problem is to restrict the class of
admissible solutions, for instance to a compact set. This technique was introduced
by Tikhonov and Arsenin [538] for solving inverse problems and has since been
applied to learning problems with great success. In statistics, the corresponding
estimators are often referred to as shrinkage estimators [262].

Kernel methods are best suited for two special types of regularization: a coef-
ficient space constraint on the expansion coefficients of the weight vector in feature
space [343, 591, 37, 517, 189], or, alternatively, a function space regularization di-
rectly penalizing the weight vector in feature space [573, 62, 561]. In this chapter we
will discuss the connections between regularization, Reproducing Kernel Hilbert
Spaces (RKHS), feature spaces, and regularization operators. The connection to
Gaussian Processes will be explained in more detail in Section 16.3. These differ-
ent viewpoints will help us to gain insight into the success of kernel methods.

We start by introducing regularized risk functionals (Section 4.1), followed by aOverview
discussion of the Representer Theorem describing the functional form of the mini-
mizers of a certain class of such risk functionals (Section 4.2). Section 4.3 introduces
regularization operators and details their connection to SV kernels. Sections 4.4
through 4.6 look at this connection for specific classes of kernels. Following that,
we have several sections dealing with various regularization issues of interest for
machine learning: vector-valued functions (Section 4.7), semiparametric regular-
ization (Section 4.8), and finally, coefficient-based regularization (Section 4.9).

This chapter may not be be easy to digest for some of our readers. We recom-Prerequisites
mend that most readers should nevertheless consider going through Sections 4.1
and 4.2. Those two sections are accessible with the background given in Chapters
1 and Chapter 2. The following Section 4.3 is somewhat more technical, since it is
using the concept of Green’s functions and operators, but should nevertheless still
be looked at. A background in functional analysis will be helpful.

Sections 4.4, 4.5, and 4.6 are more difficult, and require a solid knowledge of
Fourier integrals and elements of the theory of special functions. To understand
Section 4.7, some basic notions of group theory are beneficial. Finally, Sections 4.8
and Section 4.9 do not require additional knowledge beyond the basic concepts
put forward in the introductory chapters. Yet, some readers may find it beneficial
to read these two last sections after they gained a deeper insight into classification,
regression and mathematical programming, as provided by Chapters 6, 7, and 9.
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4.1 The Regularized Risk Functional

The key idea in regularization is to restrict the class of possible minimizers (with
f ) of the empirical risk functional Remp[ f ] such that becomes a compact set.
While there exist various characterizations for compact sets and we may define
a large variety of such sets which will suit different assumptions on the type
of estimates we get, the common key idea is compactness. In addition, we will
assume that Remp[ f ] is continuous in f .Continuity

Assumption Note that this is a stronger assumption than it may appear at first glance. It is
easily satisfied for many regression problems, such as those using squared loss or
the -insensitive loss. Yet binary valued loss functions, as are often used in classifi-
cation (such as c(x y f (x)) 1

2 (1 sgn y f (x))), do not meet the requirements. Since
both the exact minimization of Remp[ f ] for classification problems [367], even with
very restricted classes of functions, and also the approximate solution to this prob-
lem [20] have been proven to be NP-hard, we will not bother with this case any
further, but rather attempt to minimize a continuous approximation of the 0 1
loss, such as the one using a soft margin loss function (3.3).

We may now apply the operator inversion lemma to show that for compact ,
the inverse map from the minimum of the empirical risk functional Remp[ f ] :

to its minimizer f̂ is continuous and the optimization problem well-posed.

Theorem 4.1 (Operator Inversion Lemma (e.g., [431])) Let X be a compact set and
let the map f : X Y be continuous. Then there exists an inverse map f 1 : f (X) X
that is also continuous.

We do not directly specify a compact set , since this leads to a constrained
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optimization problem, which can be cumbersome in practice. Instead, we add
a stabilization (regularization) term Ω[ f ] to the original objective function; theRegularization

Term latter could be Remp[ f ], for instance. This, too, leads to better conditioning of the
problem. We consider the following class of regularized risk functionals (see also
Problem 4.1)

Rreg[ f ] : Remp[ f ] Ω[ f ] (4.1)

Here 0 is the so-called regularization parameter which specifies the trade-
off between minimization of Remp[ f ] and the smoothness or simplicity which is
enforced by small Ω[ f ]. Usually one chooses Ω[ f ] to be convex, since this ensures
that there exists only one global minimum, provided Remp[ f ] is also convex (see
Lemma 6.3 and Theorem 6.5).

Maximization of the margin of classification in feature space by using the regu-
larizing term 1

2 w 2, and thus minimizing

Ω[ f ] :
1
2

w 2 and therefore Rreg[ f ] Remp[ f ]
2

w 2 (4.2)

is the common choice in SV classification [573, 62]. In regression, the geometrical
interpretation of minimizing 1

2 w 2 is to find the flattest function with sufficient
approximation qualities. Unless stated otherwise, we will limit ourselves to thisQuadratic

Regularizer type of regularizer in the present chapter. Other methods, e.g., minimizing the p

norm (where x p
p ∑i xp

i ) of the expansion coefficients for w, will be discussed in
Section 4.9.

As described in Section 2.2.3, we can equivalently think of the feature space as
a reproducing kernel Hilbert space. It is often useful, and indeed it will be one of
the central themes of this chapter, to rewrite the risk functional (4.2) in terms of the
RKHS representation of the feature space. In this case, we equivalently minimizeRegularized Risk

in RKHS
Rreg[ f ] : Remp[ f ]

2
f 2 (4.3)

over the whole space . The next section will study the properties of minimizers
of (4.3), and similar regularizers that depend on f .

4.2 The Representer Theorem

The explicit form of a minimizer of Rreg[ f ] is given by the celebrated representer
theorem of Kimeldorf and Wahba [296] which plays a central role in solving prac-
tical problems of statistical estimation. It was first proven in the context of squaredHistory of the

Representer
Theorem

loss functions, and later extended to general pointwise loss functions [115]. For a
machine learning point of view of the representer theorem, and variational proofs,
see [205, 512]. The linear case has also been dealt with in [300]. We present a new
and slightly more general version of the theorem with a simple proof [473]. As
above, is the RKHS associated to the kernel k.
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Theorem 4.2 (Representer Theorem) Denote by Ω : [0 ) a strictly monotonic
increasing function, by a set, and by c : ( 2 )m an arbitrary loss
function. Then each minimizer f of the regularized risk

c x1 y1 f (x1) xm ym f (xm) Ω f (4.4)

admits a representation of the form

f (x)
m

∑
i 1

ik(xi x) (4.5)

Note that this setting is slightly more general than Definition 3.1 since it allows
coupling between the samples (xi yi).

Before we proceed with the actual proof, let us make a few remarks. The original
form, with pointwise mean squared loss

c((x1 y1 f (x1)) (xm ym f (xm)))
1
m

m

∑
i 1

(yi f (xi))2 (4.6)

or hard constraints (i.e., hard limits on the maximally allowed error, incorporated
formally by using a cost function that takes the value ), and Ω( f ) 2 f 2

( 0), is due to Kimeldorf and Wahba [296].
Monotonicity of Ω is necessary to ensure that the theorem holds. It does notRequirements on

Ω[ f ] prevent the regularized risk functional (4.4) from having multiple local minima.
To ensure a single minimum, we would need to require convexity. If we discard
the strictness of the monotonicity, then it no longer follows that each minimizer of
the regularized risk admits an expansion (4.5); it still follows, however, that there
is always another solution that is as good, and that does admit the expansion.

Note that the freedom to use regularizers other than Ω( f ) 2 f 2 allow us
in principle to design algorithms that are more closely aligned with recommenda-
tions given by bounds derived from statistical learning theory, as described below
(cf. Problem 5.7).

The significance of the Representer Theorem is that although we might be tryingSignificance
to solve an optimization problem in an infinite-dimensional space , containing
linear combinations of kernels centered on arbitrary points of , it states that
the solution lies in the span of m particular kernels — those centered on the
training points. In the Support Vector community, (4.5) is called the Support Vector
expansion. For suitable choices of loss functions, it has empirically been found that
many of the i often equal 0 (see Problem 4.6 for more detail on the connectionSparsity and Loss

Function between sparsity and loss functions).

Proof For convenience we will assume that we are dealing with Ω̄( f 2) :
Ω( f ) rather than Ω( f ). This is no restriction at all, since the quadratic function
is strictly monotonic on [0 ), and therefore Ω̄ is strictly monotonic on [0 ) if
and only if Ω also satisfies this requirement.

We may decompose any f into a part contained in the span of the kernel
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functions k(x1 ) k(xm ), and one in the orthogonal complement;

f (x) f (x) f (x)
m

∑
i 1

ik(xi x) f (x) (4.7)

Here i and f with f k(xi ) 0 for all i [m] : 1 m . By
(2.34) we may write f (x j) (for all j [m]) as

f (x j) f ( ) k(x j )
m

∑
i 1

ik(xi x j) f ( ) k(x j )
m

∑
i 1

ik(xi x j) (4.8)

Second, for all f ,

Ω( f ) Ω̄
m

∑
i

ik(xi )
2

f 2 Ω̄
m

∑
i

ik(xi )
2

(4.9)

Thus for any fixed i the risk functional (4.4) is minimized for f 0. Since
this also has to hold for the solution, the theorem holds.

Let us state two immediate extensions of Theorem 4.2. The proof of the following
theorem is left as an exercise (see Problem 4.3).

Theorem 4.3 (Semiparametric Representer Theorem) Suppose that in addition to
the assumptions of the previous theorem we are given a set of M real-valued functions

p
M
p 1 : , with the property that the m M matrix ( p(xi))ip has rank M. ThenPrior Knowledge

by Parametric
Expansions

any f̃ : f h, with f and h span p , minimizing the regularized risk

c (x1 y1 f̃ (x1)) (xm ym f̃ (xm)) Ω f (4.10)

admits a representation of the form

f̃ (x)
m

∑
i 1

ik(xi x)
M

∑
p 1

p p(x) (4.11)

with p for all p [M].

We will discuss applications of the semiparametric extension in Section 4.8.

Remark 4.4 (Biased Regularization) Another extension of the representer theorems
can be obtained by including a term f0 f in (4.4) or (4.10), where f0 . In this
case, if a solution to the minimization problem exists, it admits an expansion which differsBias
from those described above in that it additionally contains a multiple of f0. To see this,
decompose f ( ) used in the proof of Theorem 4.2 into a part orthogonal to f 0 and the
remainder.

Biased regularization means that we do not assume that the function f 0 is
the most simple of all estimates. This is a convenient way of incorporating prior
knowledge about the type of solution we expect from our estimation procedure.

After this rather abstract and formal treatment of regularization, let us consider
some practical cases where the representer theorem can be applied. First consider
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the problem of regression, where the solution is chosen to be an element of a
Reproducing Kernel Hilbert Space.

Example 4.5 (Support Vector Regression) For Support Vector regression with the -
insensitive loss (Section 1.6) we haveApplication of

Semiparametric
Expansion c xi yi f (xi) i [m]

1
m

m

∑
i 1

yi f (xi) (4.12)

and Ω f 2 f 2, where 0 and 0 are fixed parameters which determine the
trade-off between regularization and fit to the training set. In addition, a single (M 1)
constant function 1(x) 1 is used as an offset, and is not regularized by the algorithm.

Section 4.8 and [507] contain details how the case of M 1, for which more than one
parametric function is used, can be dealt with algorithmically. Theorem 4.3 also applies in
this case.

Example 4.6 (Support Vector Classification) Here, the targets consist of y i 1 ,
and we use the soft margin loss function (3.3) to obtain

c xi yi f (xi) i

1
m

m

∑
i

max 0 1 yi f (xi) (4.13)

The regularizer is Ω f 2 f 2, and 1(x) 1. For 0, we recover the hard
margin SVM, for which the minimizer must correctly classify each training point xi yi .
Note that after training, the actual classifier will be sgn f ( ) .

Example 4.7 (Kernel PCA) Principal Component Analysis (see Chapter 14 for details)
in a kernel feature space can be shown to correspond to the case ofKernel Principal

Component
Analysis c((xi yi f (xi))i)

0 if 1
m ∑i f (xi) 1

m ∑ j f (x j)
2 1

otherwise
(4.14)

with Ω( ) an arbitrary function that is strictly monotonically increasing [480]. The con-
straint ensures that we only consider linear feature extraction functionals that produce
outputs of unit empirical variance. In other words, the task is to find the simplest function
with unit variance. Note that in this case of unsupervised learning, there are no labels yi

to consider.

4.3 Regularization Operators

The RKHS framework proved useful in obtaining the explicit functional form of
minimizers of the regularized risk functional. It still does not explain the good per-
formance of kernel algorithms, however. In particular, it seems counter-intuitive
that estimators using very high dimensional feature spaces (easily with some 1010

features as in optical character recognition with polynomial kernels, or even infi-Curse of
Dimensionality nite dimensional spaces in the case of Gaussian RBF-kernels) should exhibit good
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performance. It seems as if kernel methods are defying the curse of dimensionality
[29], which requires the number of samples to increase with the dimensionality of
the space in which estimation is performed. However, the distribution of capacity
in these spaces is not isotropic (cf. Section 2.2.5).

The basic idea of the viewpoint described in the present section is simple: ratherRegularization
Operator
Viewpoint

than dealing with an abstract quantity such as an RKHS, which is defined by
means of its corresponding kernel k, we take the converse approach of obtaining
a kernel via the corresponding Hilbert space. Unless stated otherwise, we will use
L2( ) as the Hilbert space (cf. Section B.3) on which the regularization operators
will be defined. Note that L2( ) is not the feature space .

Recall that in Section 2.2.2, we showed that one way to think of the kernel
mapping is as a map that takes a point x to a function k(x ) living in an
RKHS. To do this, we constructed a dot product satisfying

k(x x ) k(x ) k(x ) (4.15)

Physically, however, it is still unclear what the dot product f g actually does.
Does it compute some kind of “overlap” of the functions, similar to the usual
dot product between functions in L2( )? Recall that, assuming we can define an
integral on , the latter is (cf. (B.60))

f g L2( ) f g (4.16)

In the present section, we will show that whilst our dot product in the RKHS isMain Idea
not quite a simple as (4.16), we can at least write it as

f g ϒ f ϒg L2
ϒ f (x)ϒg(x)dx (4.17)

in a suitable L2 space of functions. This space contains transformed versions or the
original functions, where the transformation ϒ “extracts” those parts that should
be affected by the regularization. This gives a much clearer physical understand-
ing of the dot product in the RKHS (and thus of the similarity measure used by
SVMs). It becomes particularly illuminating once one sees that for common ker-
nels, the associated transformation ϒ extracts properties like derivatives of func-
tions. In other words, these kernels induce a form of regularization that penalizes
non-smooth functions.

Definition 4.8 (Regularization Operator) A regularization operator ϒ is defined as a
linear map from the space of functions : f f : into a space equipped with a
dot product. The regularization term Ω[ f ] takes the form

Ω[ f ] :
1
2

ϒ f ϒ f (4.18)

Without loss of generality, we may assume that ϒ is positive definite. This can bePositive Definite
Operator seen as follows: all that matters for the definition of Ω[ f ] is the positive definite

operator ϒ ϒ (since ϒ f ϒ f f ϒ ϒ f ). Hence we may always define a positive
definite operator ϒh : (ϒ ϒ)

1
2 (cf. Section B.2.2) which has the same regulariza-
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tion properties as ϒ. Next, we formally state the equivalence between RKHS and
regularization operator view.

Theorem 4.9 (RKHS and Regularization Operators) For every RKHS with repro-
ducing kernel k there exists a corresponding regularization operator ϒ : such that
for all f

ϒk(x ) ϒ f ( ) f (x) (4.19)

and in particular,

ϒk(x ) ϒk(x ) k(x x ) (4.20)
Matching RKHS

Likewise, for every regularization operator ϒ : , where is some function space
equipped with a dot product, there exists a corresponding RKHS with reproducing
kernel k such that (4.19) and (4.20) are satisfied.

Equation (4.20) will become the central tool to analyze smoothness properties of
kernels, in particular if we pick to be L2( ). In this case we will obtain an explicit
form of the dot product induced by the RKHS which will thereby clarify why
kernel methods work.

From Section 2.2.4 we can see that minimization of w 2 is equivalent to mini-
mization of Ω[ f ] (4.18), due to the feature map Φ(x) : k(x ).

Proof We prove the first part by explicitly constructing an operator that takes
care of the mapping. One can see immediately that ϒ 1 and will satisfy
all requirements.1

For the converse statement, we have to obtain k from ϒ ϒ and show that this is,
in fact, the kernel of an RKHS (note that this does not imply that since it
may be equipped with a different dot product than ).

A function Gx( ) satisfying the first equality in

f (x) ϒ ϒGx( ) f ϒGx ϒ f (4.21)

for all f ϒ ϒ is called Green’s function of the operator ϒ ϒ on . It is known
that such functions exist [448]. Note that this amounts to our desired reproducing
property (4.19), on the set ϒ ϒ . The second equality in (4.21) follows from the
definition of the adjoint operator ϒ .

By applying (4.21) to Gx it follows immediately that G is symmetric,

Gx(x ) ϒ ϒGx Gx ϒGx ϒGx ϒGx ϒGx Gx (x) (4.22)

We will write it as G(x x ). Observe that (4.22) actually tells us that x ϒGx is
actually a valid feature map for G. Therefore, we may identify G(x x ) with k(x x ).

1. ϒ 1 is not the most useful operator. Typically we will seek an operator ϒ corresponding
to a specific dot product space . Note that this need not always be possible if is not
suitably chosen, e.g., for .
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The corresponding RKHS is the closure of the set f ϒ ϒ ϒ f 2 .

This means that is an RKHS with inner product ϒ ϒ . Furthermore, Theo-
rem 4.9 means that fixing the regularization operator ϒ determines the possible
set of functions that we might obtain, independently2 of the class of functionsKernel Function

ˆ Regularization
Operator

in which we expand the estimate f . Thus Support Vector Machines are simply a
very convenient way of specifying the regularization and a matching class of basis
functions via one kernel function. This is done mainly for algorithmic advantages
when formulating the corresponding optimization problem (cf. Chapter 7). The
case where the two do not match is discussed in detail in [512].

Given the eigenvector decomposition of a regularization operator we can define
a class of kernels that satisfy the self consistency condition (4.20).

Proposition 4.10 (A Discrete Counterpart) Given a regularization operator ϒ with an
expansion of ϒ ϒ into a discrete eigenvector decomposition ( n n), and a kernel k with

k(x x ) : ∑
n n 0

dn

n
n(x) n(x ) (4.23)

where dn 0 1 for all m, and ∑n
dn

n
convergent, then k satisfies (4.20). Moreover, the

corresponding RKHS is given by span i di 1 and i .

Proof We evaluate (4.21) and use the orthonormality of the system ( dn

n
n).

k(xi ) (ϒ ϒk)(x j ) (4.24)

∑
n

dn

n
n(xi) n( ) ϒ ϒ ∑

n

dn

n
n (x j) n ( )

∑
n n

dn

n

dn

n
n(xi) n (x j) n( ) ϒ ϒ n ( )

∑
n

dn

n
n(xi) n(x j) k(xi x j)

The statement about the span follows immediately from the construction of k.

The summation coefficients are permitted to be rearranged, since the eigenfunc-
tions are orthonormal and the series ∑n

dn

n
converges absolutely. Consequently a

large class of kernels can be associated with a given regularization operator (and
vice versa), thereby restricting us to a subspace of the eigenvector decomposition
of ϒ ϒ.

In other words, there exists a one to one correspondence between kernels andNull Space of ϒ ϒ
regularization operators only on the image of under the integral operator

2. Provided that no f contains directions of the null space of the regularization op-
erator ϒ ϒ, and that the kernel functions k span the whole space . If this is not the case,
simply define the space to be the span of k(x ).
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(Tk f )(x) : k(x x ) f (x )dx, namely that Tk and ϒ ϒ are inverse to another. On the
null space of Tk, however, the regularization operator ϒ ϒ may take on an arbitrary
form. In this case k still will fulfill the self consistency condition.

Excluding eigenfunctions of ϒ ϒ from the kernel expansion effectively decreases
the expressive power of the set of approximating functions, and limits the capacity
of the system of functions. Removing low capacity (i.e. very flat) eigenfunctions
from the expansion will have an adverse effect, though, as the data will then be
approximated by the higher capacity functions.

We have now covered the main insights of the present chapter. The following
sections are more technical and can be skipped if desired. Recall that at the be-
ginning of the present section, we explained that regularization operators can be
thought of as extracting those parts of the functions that should be affected by the
regularization. In the next section, we show that for a specific class of kernels, this
extraction coincides with the Fourier transform.

4.4 Translation Invariant Kernels

An important class of kernels k(x x ), such as Gaussian RBF kernels or Laplacian
kernels only depends on the difference between x and x . For the sake of simplicity
and with slight abuse of notation we will use the shorthand

k(x x ) k(x x ) (4.25)

or simply k(x). Since such k are independent of the absolute position of x but
depend only on x x instead, we will refer to them as translation invariant kernels.

What we will show in the following is that for kernels defined via (4.25) there
exists a simple recipe how to find a regularization operator ϒ ϒ corresponding to
k and vice versa. In particular, we will show that the Fourier transform of k(x) will
provide us with the representation of the regularization operator in the frequency
domain.

Fourier Transformation For this purpose we need a few definitions. For the sake
of simplicity we assume N . In this case the Fourier transformation of f is
given by

F[ f ]( ) : (2 )
N
2 f (x) exp( i x )dx (4.26)

Note that here i is the imaginary unit and that, in general, F[ f ]( ) is a complex
number. The inverse Fourier transformation is then given by

f (x) F 1[ f ]( ) (2 )
N
2 F[ f ]( ) exp(i x )d (4.27)

Regularization Operator in Fourier Domain We now specifically consider regu-
larization operators ϒ that may be written as multiplications in Fourier space (i.e.
ϒ ϒ is diagonalized in the Fourier basis).
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Denote by ( ) a nonnegative, symmetric function defined on , i.e. ( )
( ) 0 which converges to 0 for . Moreover denote by Ω the support

of ( ) and by x̄ the complex conjugate of x. Now we introduce a regularization
operator by

ϒ f ϒg (2 )
N
2

Ω

F[ f ]( )F[g]( )
( )

d (4.28)

The goal of regularized risk minimization in RKHS is to find a function which
minimizes Rreg[ f ] while keeping ϒ f ϒ f reasonably small. In the context of
(4.28) this means the following:
Small nonzero values of ( ) correspond to a strong attenuation of the correspond-
ing frequencies. Hence small values of ( ) for large are desirable, since high
frequency components of F[ f ] correspond to rapid changes in f . It follows that

( ) describes the filter properties of ϒ ϒ — note that no attenuation takes place
for ( ) 0, since these frequencies have been excluded from the integration do-
main Ω.
Our next step is to construct kernels k corresponding to ϒ as defined in (4.28).

Green’s Functions and Fourier Transformations We show that

G(x x ) (2 )
N
2

Ω
ei (x x ) ( )d (4.29)

is a Green’s function for ϒ and that it can be used as a kernel. For a function f ,
whose support of its Fourier transform is contained in Ω, we have

G(x ) f (2 )
N
2

Ω

F[G(x )]( )F[ f ]( )
( )

d (4.30)

(2 )
N
2

Ω

( ) exp(i x )F[ f ]( )
( )

d (4.31)

(2 )
N
2

Ω
exp(i x )F[ f ]( )d f (x) (4.32)

From Theorem 4.9 it now follows that G is a Green’s function and that it can be
used as an RKHS kernel.
Eq. (4.29) provides us with an efficient tool for analyzing SV kernels and the types
of capacity control they exhibit: we may also read (4.29) backwards and, in doing
so, find the regularization operator for a given kernel, simply by applying the
Fourier transform to k(x). As expected, kernels with high frequency components
will lead to less smooth estimates.
Note that (4.29) is a special case of Bochner’s theorem [60], which states that the
Fourier transform of a positive measure constitutes a positive definite kernel.

In the remainder of this section we will now apply our new insight to a wide
range of popular kernels such as Bn-splines, Gaussian kernels, Laplacian kernels,
and periodic kernels. A discussion of the multidimensional case which requires
additional mathematical techniques is left to Section 4.5.
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4.4.1 Bn-Splines

As was briefly mentioned in Section 2.3, splines are an important tool in inter-
polation and function estimation. They excel at problems of low dimensional in-
terpolation. Computational problems become increasingly acute, however, as the
dimensionality of the patterns (i.e. of x) increases; yet there exists a way to circum-
vent these difficulties. In [501, 572], a method is proposed for using Bn-splines (see
Figure 4.1) as building blocks for kernels, i.e.,

k(x) Bn(x) (4.33)
Splines in

We start with (higher dimensional cases can also be obtained, for instance by
taking products over the individual dimensions). Recall that Bn splines are defined
as n 1 convolutions3 of the centered unit interval (cf. (2.71) and [552]);

Bn

n 1

i 1

I[ 0 5 0 5] (4.34)

Given this kernel, we now use (4.29) in order to obtain the corresponding Fourier
representation. In particular, we must compute the Fourier transform of Bn(x). The
following theorem allows us to do this conveniently for functions represented by
convolutions.

Theorem 4.11 (Fourier-Plancherel, e.g. [306, 112]) Denote by f g two functions in
L2( ), by F[ f ] F[g] their corresponding Fourier transforms, and by the convolution
operation. Then the following identities hold.Convolutions

and Products
F[ f g] F[ f ] F[g] and F[ f ] F[g] F[ f g] (4.35)

In other words, convolutions in the original space become products in the Fourier
domain and vice versa. Hence we may jump from one representation to the other
depending on which space is most convenient for our calculations.

Repeated application of Theorem 4.11 shows that in the case of Bn splines, the
Fourier representation is conveniently given by the n 1st power of the Fourier
transform of B0. Since the Fourier transform of Bn equals ( ), we obtain (up to a
multiplicative constant)

( ) F[k]( )
N

∏
i 1

sinc (n 1) i

2
where sinc x :

sin x
x

(4.36)

3. A convolution f g of two functions f g : is defined as

f g (2 )
N
2 f (x )g(x x )dx

The normalization factor of (2 )
N
2 serves to make the convolution compatible with the

Fourier transform. We will need this property in Theorem 4.11. Note that f g g f , as
can be seen by exchange of variables.
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Figure 4.1 From left to right: Bn splines of order 0 to 3 (top row) and their Fourier
transforms (bottom row). The length of the support of Bn is n 1, and the degree of
continuous differentiability increases with n 1. Note that the higher the degree of Bn, the
more peaked the Fourier transform (4.36) becomes. This is due to the increasing support of
Bn. The frequency axis labels of the Fourier transform are multiples of 2 .

This illustrates why only Bn splines of odd order are positive definite kernels (cf.
(2.71)):4 The even ones have negative components in the Fourier spectrum (whichOnly B2n 1

Splines
Admissible

would result in an amplification of the corresponding frequencies). The zeros in
F[k] stem from the fact that Bn has compact support; n 1

2
n 1

2 . See Figure 4.2
for details.

By using this kernel, we trade reduced computational complexity in calculat-
ing f (we need only take points into account whose distance xi x j is smaller
than the support of Bn), for a potentially decreased performance of the regular-
ization operator, since it completely removes (i.e., disregards) frequencies p with
F[k]( p) 0. Moreover, as we shall see below, in comparison to other kernels, such
as the Gaussian kernel, F[k]( ) decays rather slowly.

4.4.2 Gaussian Kernels

Another class of kernels are Gaussian radial basis function kernels (Figure 4.3).
These are widely popular in Neural Networks and approximation theory [80, 203,
201, 420]. We have already encountered k(x x ) exp x x 2

2 2 in (2.68); we now
investigate the regularization and smoothness properties of these kernels.

For a Fourier representation we need only compute the Fourier transform of

4. Although both even and odd order Bn splines converge to a Gaussian as n due to
the law of large numbers.
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Figure 4.2 Left: B3-spline kernel. Right: Fourier transform of k (in log-scale). Note the zeros
and the rapid decay in the spectrum of B3.

(2.68), which is given by

F[k]( ) ( ) exp
2 2

2
(4.37)

Uncertainty
Relation In other words, the smoother k is in pattern space, the more peaked its Fourier

transform becomes. In particular, the product between the width of k and its
Fourier transform is constant.5 This phenomenon is also known as the uncertainty
relation in physics and engineering.

Equation (4.37) also means that the contribution of high frequency components
in estimates is relatively small, since ( ) decays extremely rapidly. It also helps
explain why Gaussian kernels produce full rank kernel matrices (Theorem 2.18).

We next determine an explicit representation of ϒ f 2 in terms of differential
operators, rather than a pure Fourier space formalism. While this is not possible
by using only “conventional” differential operators, we may achieve our goal by
using pseudo-differential operators.Pseudo-

Differential
Operators

Roughly speaking, a pseudo-differential operator differs from a differential op-
erator in that it may contain an infinite sum of differential operators. The latter
correspond to a Taylor expansion of the operator in the Fourier domain. There is
an additional requirement that the arguments lie inside the radius of convergence,
however.

Following the exposition of Yuille and Grzywacz [612] one can see that

ϒ f 2 ∑
n

2n

n! 2n (On f (x))2dx (4.38)

with O2n Δn and O2n 1 Δn, Δ being the Laplacian and the Gradient oper-
ator, is equivalent to a regularization with ( ) as in (4.37). The key observation
in this context is that derivatives in translate to multiplications in the frequency

5. The multidimensional case is completely analogous, since it can be decomposed into a
product of one-dimensional Gaussians. See also Section 4.5 for more details.
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Figure 4.3 Left: Gaussian kernel with standard deviation 0 5. Right: Fourier transform of
the kernel.

domain and vice versa.6 Therefore a Taylor expansion of ( ) in , can be rewrit-Taylor Expansion
in Differential
Operators

ten as a Taylor expansion in in terms of differential operators. See [612] and the
references therein for more detail.

On the practical side, training an SVM with Gaussian RBF kernels [482] corre-
sponds to minimizing the specific loss function with a regularization operator of
type (4.38). Recall that (4.38) causes all derivatives of f to be penalized, to obtain
a very smooth estimate. This also explains the good performance of SVMs in this
case, since it is by no means obvious that choosing a flat function in some high di-
mensional space will correspond to a simple function in a low dimensional space
(see Section 4.4.3 for a counterexample).

4.4.3 Dirichlet Kernels

Proposition 4.10 can also be used to generate practical kernels. In particular, [572]
introduced a class of kernel based on Fourier expansions by

k(x) : 2
n

∑
j 0

cos jx
sin(2n 1) x

2

sin x
2

(4.39)

As in Section 4.4.1, we consider x to avoid tedious notation. By construction,

this kernel corresponds to ( ) 1
2

n
∑

i n
i( ), with i being Dirac’s delta function.

A regularization operator with these properties may not be desirable, however,
as it only damps a finite number of frequencies (see Figure 4.4), and leaves all other
frequencies unchanged, which can lead to overfitting (Figure 4.5).

6. Integrability considerations aside, one can see this by

d
dx

f
d

dx Ω
F[ f ]( ) exp(i x)d

Ω
i F[ f ]( ) exp(i x)d
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Figure 4.4 Left: Dirichlet kernel of order 10. Note that this kernel is periodic. Right: Fourier
transform of the kernel.
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Figure 4.5 Left: Regression with a Dirichlet Kernel of order N 10. One can clearly
observe the overfitting (solid line: interpolation, ’+’: original data). Right: Regression based
on the same data with a Gaussian Kernel of width 2 1 (dash dotted line: interpolation,
’+’: original data).

In other words, this kernel only describes band-limited periodic functions where
no distinction is made between the different components of the frequency spec-
trum. Section 4.4.4 will present an example of a periodic kernel with a more suit-
able distribution of capacity over the frequency spectrum.

In some cases, it might be useful to approximate periodic functions, for instance
functions defined on a circle. This leads to the second possible type of translation
invariant kernel function, namely functions defined on factor spaces7. It is notTypes of

Invariances reasonable to define translation invariant kernels on a bounded interval, since the
data will lie beyond the boundaries of the specified interval when translated by
a large amount. Therefore unbounded intervals and factor spaces are the only
possible domains.

7. Factor spaces are vector spaces , with the additional property that for at least one
nonzero element x̂ , we have x x̂ x for all x . For instance, the modulo operation
on forms such a space. We denote this space by x̂.
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We assume a period of 2 without loss of generality, and thus consider trans-
lation invariance on 2 . The next section shows how this setting affects the
operator defined in section 4.4.2.

4.4.4 Periodic Kernels

One way of dealing with periodic invariances is to begin with a translation invari-
ant regularization operator, defined similarly to (4.38), albeit on L2([0 2 ]) (where
the points 0 and are identified) rather than on L2( ), and to find a matchingRegularization

Operator on
[0 2 ]

kernel function. We start with the regularization operator;

ϒ f 2 : N

[0 2 ]N
∑
n

2n

n!2n (On f (x))2dx (4.40)

with O defined as in Section 4.4.2. For the sake of simplicity, assume dim 1. A
generalization to multidimensional kernels is straightforward.

To obtain the eigensystem of ϒ we start with the Fourier basis, which is dense
on L2([0 2 ]) [69], the space of functions we are interested in. One can check that
the Fourier basis 1

2 sin(nx) cos(nx) n is an eigenvector decomposition of
the operator defined in (4.40), with eigenvalues exp( n2 2

2 ), by substitution into
(4.40). Due to the Fourier basis being dense in L2([0 2 ]), we have thus identified
all eigenfunctions of ϒ. Next we apply Proposition 4.10, taking into account all
eigenfunctions except the constant function with n 0. This yields the following
kernel,Periodic Kernels

via Fourier
Coefficients k(x x ) ∑

n 1
e

n2 2
2 (sin(nx) sin(nx ) cos(nx) cos(nx ))

∑
n 1

e
n2 2

2 cos(n(x x )) (4.41)

For practical purposes, one may truncate the expansion after a finite number of
terms. Since the expansion coefficients decay rapidly, this approximation is very
good. If necessary, k can be rescaled to have a range of exactly [0 1].

While this is a convenient way of building kernels if the Fourier expansion is
known, we would also like to be able to render arbitrary translation invariant
kernels on periodic. The method is rather straightforward, and works as follows.
Given any translation invariant kernel k we obtain kp byPeriodic Kernels

via Translation
kp(x x ) : ∑

n
k(x x 2 n) (4.42)

Again, we can approximate (4.42) by truncating the sum after a finite number
of terms. The question is whether the definition of kp leads to a positive definite
kernel at all, and if so, which regularization properties it exhibits.

Proposition 4.12 (Spectrum of Periodized Kernels) Denote by k a translation in-
variant kernel in L2( ), and by kp its periodization according to (4.42). Moreover denote
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Figure 4.6 Left: Periodic Gaussian kernel for several values of (normalized to 1 as its
maximum and 0 as its minimum value). Peaked functions correspond to small . Right:
Fourier coefficients of the kernel for 2 0 1.

by F[ f ] the Fourier transform of f . Then kp can be expanded into the series

kp(x x ) (2 )
1
2 F[ f ](0) 2 ∑

j 1
F[ f ]( j) cos( j(x x )) (4.43)

Proof The proof makes use of the fact that for Lebesgue integrable functions k the
integral over can be split up into a sum over segments of size 2 . Specifically,
we obtain

(2 )
1
2 k(x)e i xdx (2 )

1
2 ∑

j [0 2 ]
k(x 2 j)e i (x 2 j)dx (4.44)

(2 )
1
2

[0 2 ]
e i x ∑

j
k(x 2 j)dx (4.45)

(2 )
1
2

[0 2 ]
e i xkp(x)dx (4.46)

The latter, however, is the Fourier transform of kp over the interval [0 2 ]. Hence
we have F[k]( j) F[kp]( j) for j , where F[kp]( j) denotes the Fourier transform
over the compact set [0 2 ].

Now we may use the inverse Fourier transformation on [0 2 ], to obtain a
decomposition of kp into a trigonometric series. Due to the symmetry of k, the
imaginary part of F[ f ] vanishes, and thus all contributions of sin jx cancel out.
Moreover, we obtain (4.43) since cos x is a symmetric function.

In some cases, the full summation of kp can be computed in closed form. See
Problem 4.10 for an application of this reasoning to Laplacian kernels.

In the context of periodic functions, the difference between this kernel and the
Dirichlet kernel of Section 4.4.3 is that the latter does not distinguish between the
different frequency components in n n .



4.5 Translation Invariant Kernels in Higher Dimensions 105

4.4.5 Practical Implications

We are now able to draw some useful conclusions regarding the practical applica-
tion of translation invariant kernels. Let us begin with two extreme situations.

Suppose that the shape of the power spectrum Pow[ f ]( ) of the function we
would like to estimate is known beforehand. In this case, we should choose k such
that F[k] matches the expected value of the power spectrum of f . The latter is given
by the squared absolute value of the Fourier transformation of f , i.e.,

Pow[ f ]( ) : F[ f ]( ) 2 (4.47)

One may check, using the Fourier-Plancherel equality (Theorem 4.11) that Pow[ f ]
equals the Fourier transformation of the autocorrelation function of f , given by
f (x) f ( x). In signal processing this is commonly known as the problem of
“matched filters” [581]. It has been shown that the optimal filter for the reconstruc-
tion of signals corrupted with white noise, has to match the frequency distributionMatched Filters
of the signal which is to be reconstructed. (White noise has a uniform distribution
over the frequency band occupied by the useful signal.)

If we know very little about the given data, however, it is reasonable to make
a general smoothness assumption. Thus a Gaussian kernel as in Section 4.4.2 or
4.4.4 is recommended. If computing time is important, we might instead consider
kernels with compact support, such as the Bn-spline kernels of Section 4.4.1. This
choice will cause many matrix elements ki j k(xi x j) to vanish.

The usual scenario will be in between these two extremes, and we will have some
limited prior knowledge available, which should be used in the choice of kernel.
The goal of the present reasoning is to give a guide to selection of kernels through
a deeper understanding of the regularization properties. For more information on
using prior knowledge for choosing kernels, e.g. by explicit construction of kernelsPrior Knowledge
exhibiting only a limited amount of interaction, see Chapter 13.

Finally, note that the choice of the kernel width may be more important than
the actual functional form of the kernel. For instance, there may be little difference
in the relevant filter properties close to 0 between a B-spline and a Gaussian
kernel (cf. Figure 4.7). This heuristic holds if we are interested only in uniform
convergence results of a certain degree of precision, in which case only a small
part of the power spectrum of k is relevant (see [604, 606] and also Section 12.4.1).

4.5 Translation Invariant Kernels in Higher Dimensions

Things get more complicated in higher dimensions. There are basically two ways
to construct kernels in N N with N 1, if no particular assumptions on
the data are made. First, we could construct kernels k : N N , byProduct Kernels

k(x x ) k(x1 x 1) k(xN x N) (4.48)
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Note that we have deviated from our usual notation in that in the present section,
we use bold face letters to denote elements of the input space. This will help to
simplify the notation, using x (x1 xN) and w (w1 wd) below.

The choice (4.48) usually leads to preferred directions in input space (see Fig-
ure 4.8), since the kernels are not generally rotation invariant, the exception be-
ing Gaussian kernels. This can also be seen from the corresponding regularization
operator. Since k factorizes, we can apply the Fourier transform to k on a per-
dimension basis, to obtain

F[k]( ) F[k]( 1) F[k]( N) (4.49)

The second approach is to assume k(x x ) k( x x 2 ). This leads to kernelsKernels on
Distance
Matrices

which are both translation invariant and rotation invariant. It is quite straightfor-
ward to generalize the exposition to the rotation asymmetric case, and norms other
than the 2 norm. We now recall some basic results which will be useful later.
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4.5.1 Basic Tools

The N-dimensional Fourier transform is defined asFourier
Transform

F : L2( N ) L2( N ) with F[ f ]( ) :
1

(2 )N 2 N
e i x f (x)dx (4.50)

Its inverse transform is given by

F 1 : L2( N ) L2( N ) with F 1[ f ](x)
1

(2 )N 2 N
ei x f ( )d (4.51)

For radially symmetric functions, i.e. f (x) f ( x ), we can explicitly carry out
the integration on the sphere to obtain a Fourier transform which is also radially
symmetric (cf. [520, 373]):

F[ f ]( ) H [r f (r)]( ) (4.52)

where : 1
2 d 1, and H is the Hankel transform over the positive real line (we

use the shorthand ). The latter is defined asHankel
Transform

H [ f ]( ) :
0

r f (r)J ( r)dr (4.53)

Here J is the Bessel function of the first kind, which is given byBessel Function

J (r) : r 2 ∑
j 0

( 1) jr2 j

22 j j!Γ( j 1)
(4.54)

and Γ(x) is the Gamma function, satisfying Γ(n 1) n! for n .
Note that H H 1, i.e. f H [H [ f ]] (in L2) due to the Hankel inversion

theorem [520] (see also Problem 4.11), which is just another way of writing the
inverse Fourier transform in the rotation symmetric case. Based on the results
above, we can now use (4.29) to compute the Green’s functions in N directly
from the regularization operators given in Fourier space.

4.5.2 Regularization Properties of Kernels in N

We now give some examples of kernels typically used in SVMs, this time in N .
We must first compute the Fourier/Hankel transform of the kernels.

Example 4.13 (Gaussian RBFs) For Gaussian RBFs in N dimensions, k(r) Ne
r2

2 2 ,
and correspondingly (as before we use the shorthand : ),Gaussian

Gaussian
F[k]( ) N H r e

r2

2 2 ( ) 2( 1) N e
2 2
2 e

2 2
2

In other words, the Fourier transform of a Gaussian is also a Gaussian, in higher dimen-
sions.
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Example 4.14 (Exponential RBFs) In the case of k(r) e ar,

F[k]( ) H r e ar ( ) (4.55)

2 1 a
1
2 Γ 3

2 a2 2
3
2

2
N
2 a

1
2 Γ N

2 1 a2 2
N 1

2

For N 1 we recover the damped harmonic oscillator in the frequency domain. In general,Exponential
Inverse
Polynomial

a decay in the Fourier spectrum approximately proportional to (N 1) can be observed.
Moreover the Fourier transform of k, viewed itself as a kernel, k(r) 1 r2

N 1
2 , yields

the initial kernel as its corresponding Fourier transform.

Example 4.15 (Damped Harmonic Oscillator) Another way to generalize the har-
monic oscillator, this time so that k does not depend on the dimensionality N, is to set
k(r) 1

a2 r2 . Following [586, Section 13.6],Inverse
Polynomial
Exponential F[k]( ) H

r
a2 r2 ( ) a K ( a) (4.56)

where K is the Bessel function of the second kind, defined by (see [520])

K (x)
0

e x cosh t cosh( t) dt (4.57)

It is possible to upper bound F[k] using

K (x)
2x

e x
p 1

∑
j 0

(2x) j Γ j 1
2

j!Γ j 1
2

(2x) p Γ p 1
2

j!Γ p 1
2

(4.58)

with p 1
2 and [0 1] [209, eq. (8.451.6)]).The term in brackets [ ] converges to 1

as x , and thus results in an exponential decay of the Fourier spectrum.

Example 4.16 (Modified Bessel Kernels) In the previous example, we defined a kernel
via k(r) 1

a2 r2 . Since k(r) is a nonnegative function with acceptable decay properties.
Therefore we could also use this function to define a kernel in Fourier space via ( )

1
a2 2 . The consequence thereof is that (4.56) will now be a kernel, i.e.,

k(r) : r a K (ra) (4.59)

This is a popular kernel in Gaussian Process estimation [599] (see Section 16.3), since
for n the corresponding Gaussian process is a mean-square differentiable stochastic
processes. See [3] for more detail on this subject. For our purposes, it is sufficient to know
that for n, k( x x ) is differentiable in N .

Example 4.17 (Generalized Bn Splines) Finally, we generalize Bn-splines to N di-
mensions. One way is to define

BN
n :

n

j 0

IUN (4.60)
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Figure 4.9 Bn splines in 2 dimensions. From left to right and top to bottom: Splines of order
0 to 3. Again, note the increasing degree of smoothness and differentiability with increasing
order of the splines.

so that BN
n is the n 1-times convolution of the indicator function of the unit ball UN

in N dimensions. See Figure 4.9 for examples of such functions. Employing the Fourier-
Plancherel Theorem (Theorem 4.11), we find that its Fourier transform is the (n 1)st
power of the Fourier transform of the unit ball,Bn Splines

Bessel Functions
F[BN

0 ]( ) ( 1)J 1( ) (4.61)

and therefore,

F[BN
n ]( ) (n 1)( 1)Jn 1

1( ) (4.62)

Only odd n generate positive definite kernels, since it is only then that the kernel has a
nonnegative Fourier transform.

4.5.3 A Note on Other Invariances

So far we have only been exploiting invariances with respect to the translation
group in N . The methods could also be applied to other symmetry transforma-
tions with corresponding canonical coordinate systems, however. This means that
we use a coordinate system where invariance transformations can be represented
as additions.
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Not all symmetries have this property. Informally speaking, those that do
are called Lie groups (see also Section 11.3), and the parameter space where the
additions take place is referred to as a Lie algebra. For instance, the rotation andLie Groups and

Lie Algebras scaling group (i.e. the product between the special orthogonal group SO(N) and
radial scaling), as proposed in [487, 167], corresponds to a log-polar parametriza-
tion of N . The matching transform into frequency space is commonly referred to
as the Fourier-Mellin transform [520].

4.6 Dot Product Kernels

A second, important family of kernels can be efficiently described in term of dot
products, i.e.,

k(x x ) k x x (4.63)

Here, with slight abuse of notation we use k to define dot product kernels via
k( x x ). Such dot product kernels include homogeneous and inhomogeneous
polynomial kernel x x c p with c 0. Proposition 2.1 shows that they satisfy
Mercer’s condition.

What we will do in the following is state an easily verifiable criterion, under
which conditions a general kernel, as defined by (4.63), will satisfy Mercer’s con-
dition. A side-effect of this analysis will be a deeper insight into the regularization
properties of the operator ϒ ϒ, when considered on the space L2(SN 1), where
SN 1 is the unit sphere in N . The choice of the domain SN 1 is made in order to
exploit the symmetries inherent in k: k(x x ) is rotation invariant in its arguments
x x .

In a nutshell, we use Mercer’s Theorem (Theorem 2.10) explicitly to obtain anRegularization
Properties via
Mercer’s
Theorem

expansion of k in terms of the eigenfunctions of the integral operator Tk (2.38)
corresponding to k. For convenience, we briefly review the connection between
Tk, the eigenvalues i, and kernels k.

For a given kernel k, the integral operator (Tk f )(x) : k(x x ) f (x ) d (x ) can
be expanded into its eigenvector decomposition ( i i(x)), such that

k(x x ) ∑
j

j j(x) j(x ) (4.64)

holds. Furthermore, the eigensystem of the regularization operator ϒ ϒ is given
by ( 1

i i(x)). The latter tells us the preference of a kernel expansion for specific
types of functions (namely the eigenfunctions j), and the smoothness assump-
tions made via the size of the eigenvalues i: for instance, large values of i corre-
spond to functions that are weakly penalized.
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4.6.1 Conditions for Positivity and Eigenvector Decompositions

In the following we assume that is the unit sphere SN 1
N and that is the

uniform measure on SN 1. This takes advantage of the inherent invariances in dot
product kernels and it simplifies the notation. We begin with a few definitions.

Legendre Polynomials Denote by n( ) the Legendre Polynomials of degree n
and by N

n ( ) the associated Legendre Polynomials (see [373] for more details and
examples), where n

3
n. Without stating the explicit functional form we list

some properties we will need:

1. The (associated) Legendre Polynomials form an orthogonal basis with
1

1

N
n ( ) N

m( )(1 2)
N 3

2 d
SN 1

SN 2

1
M(N n) m n (4.65)

Orthonormal
Basis Here SN 1

2 N 2

Γ(N 2) denotes the surface of SN 1, and M(N n) denotes the
multiplicity of spherical harmonics of order n on SN 1, which is given by
M(N n) 2n N 2

n
n N 3

n 1 .

2. We can find an expansion for any analytic function k( ) on [ 1 1] into
orthogonal basis functions N

n , by8

k( ) ∑
n 0

M(N n)
SN 2

SN 1

1

1
k( )PN

n ( )(1 2)
N 3

2 d (4.66)
Series Expansion

3. The Legendre Polynomials may be expanded into an orthonormal basis of
spherical harmonics YN

n j by the Funk-Hecke equation (see [373]), to obtain

N
n ( x x )

SN 1

M(N n)

M(N n)

∑
j 1

YN
n j(x)YN

n j(x ) (4.67)

The explicit functional form of YN
n j is not important for the further analysis.

Necessary and Sufficient Conditions Below we list conditions, as proven by
Schoenberg [466], under which a function k( x x ), defined on SN 1, is positive
definite. In particular, he proved the following two theorems:

Theorem 4.18 (Dot Product Kernels in Finite Dimensions) A kernel
k( x x ) defined on SN 1 SN 1 is positive definite if and only if its expansion into
Legendre polynomials N

n has only nonnegative coefficients, i.e.Legendre
Expansion

k( ) ∑
n 0

bn
N
n ( ) with bn 0 (4.68)

Theorem 4.19 (Dot Product Kernels in Infinite Dimensions) A kernel k( x x )
defined on the unit sphere in a Hilbert space is positive definite if and only if its Tay-Taylor Series

Expansion

8. Typically, computer algebra programs can be used to find such expansions for given
kernels k. This greatly reduces the problems in the analysis of such kernels.
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lor series expansion has only nonnegative coefficients;

k( ) ∑
n 0

an
n with an 0 (4.69)

Therefore, all we have to do in order to check whether a particular kernel may
satisfy Mercer’s condition, is to look at its polynomial series expansion, and check
the coefficients.
We note that (4.69) is a more stringent condition than (4.68). In other words, in
order to prove positive definiteness for arbitrary dimensions it suffices to show
that the Taylor expansion contains only positive coefficients. On the other hand,
in order to prove that a candidate for a kernel function will never be positive
definite, it is sufficient to show this for (4.68) where N

n n, i.e. for the Legendre
Polynomials.

Eigenvector Decomposition We conclude this section with an explicit representa-
tion of the eigensystem of k( x x ). For a proof see [511].

Lemma 4.20 (Eigenvector Decomposition of Dot Product Kernels) Denote by
k( x x ) a kernel on SN 1 SN 1 satisfying condition (4.68) of Theorem 4.18. Then the
eigenvectors of k are given by

n j YN
n j with eigenvalues n j an

SN 1

M(N n)
of multiplicity M(N n) (4.70)

In other words, an
M(N n) determines the regularization properties of k( x x ).

4.6.2 Examples and Applications

In the following we will analyze a few kernels, and state under which conditions
they may be used as SV kernels.

Example 4.21 (Homogeneous Polynomial Kernels k(x x ) x x p) As we showed
Chapter 2, this kernel is positive definite for p . We will now show that for p this
is never the case.

We thus have to show that (4.68) cannot hold for an expansion in terms of Legendre
Polynomials (N 3). From [209, 7.126.1], we obtain for k( ) p (we need to make
k well-defined),

1

1
n( ) pd

Γ(p 1)
2pΓ 1 p

2
n
2 Γ 3

2
p
2

n
2

if n even. (4.71)

For odd n, the integral vanishes, since n( ) ( 1)n
n( ). In order to satisfy (4.68),

the integral has to be nonnegative for all n. One can see that Γ 1 p
2

n
2 is the only

term in (4.71) that may change its sign. Since the sign of the Γ function alternates with
period 1 for x 0 (and has poles for negative integer arguments), we cannot find any p
for which n 2 p

2 1 and n 2 p
2 1 correspond to positive values of the integral.
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Example 4.22 (Inhomogeneous Polynomial Kernels k(x x ) x x 1)p) Like-
wise, let us analyze k( ) (1 )p for p 0. Again, we expand k in a series of Legendre
Polynomials, to obtain [209, 7.127]

1

1
n( )( 1)pd

2p 1Γ2(p 1)
Γ(p 2 n)Γ(p 1 n)

(4.72)

For p , all terms with n p vanish, and the remainder is positive. For non-integer p,
however, (4.72) may change its sign. This is due to Γ(p 1 n). In particular, for any
p (with p 0), we have Γ(p 1 n) 0 for n p 1. This violates condition
(4.68), hence such kernels cannot be used in SV machines unless p .

Example 4.23 (Vovk’s Real Polynomial k(x y) 1 x y p

1 ( x y ) with p [459]) This

kernel can be written as k( ) ∑p 1
n 0

n, hence all the coefficients ai 1, which means that
the kernel can be used regardless of the dimensionality of the input space.

Likewise we can analyze an infinite power series.

Example 4.24 (Vovk’s Infinite Polynomial k(x x ) (1 ( x x )) 1 [459]) This
kernel can be written as k( ) ∑n 0

n, hence all the coefficients ai 1. The flat spectrum
of the kernel suggests poor generalization properties.

Example 4.25 (Neural Network Kernels k(x x ) tanh(a x x )) We next show
that k( ) tanh(a ) is never positive definite, no matter how we choose the parameters.

The technique is identical to that of Examples 4.21 and 4.22: we have to show that the
kernel does not satisfy the conditions of Theorem 4.18. Since this is very technical (and is
best done using computer algebra programs such as Maple), we refer the reader to [401] for
details, and explain how the method works in the simpler case of Theorem 4.19. Expanding
tanh(a ) into a Taylor series yields

tanh a 1
cosh2 a

2 tanh a
cosh2 a

3

3 (1 tanh2 a)(1 3 tanh2 a) O( 4) (4.73)

We now analyze (4.73) coefficient-wise. Since the coefficients have to be nonnegative,
we obtain a [0 ) from the first term, a ( 0] from the third term, and a
[arctanh 1

3 arctanh 1] from the fourth term . This leaves us with a , hence there are no
parameters for which this kernel is positive definite.

4.7 Multi-Output Regularization

So far in this chapter we only considered scalar functions f : . Below we
will show that under rather mild assumptions on the symmetry properties of ,
there exist no other vector valued extensions to ϒ ϒ than the trivial extension, i.e.,
the application of a scalar regularization operator to each of the dimensions of
separately. The reader not familiar with group theory may want to skip the more
detailed discussion given below.
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The type of regularization we study are quadratic functionals Ω[ f ]. Ridge re-
gression, RKHS regularizers and also Gaussian Processes are examples of such
regularization. Our proofs rely on a result from [509] which is stated without proof.

Proposition 4.26 (Homogeneous Invariant Regularization [509]) Any regulariza-
tion term Ω[ f ] that is both homogeneous quadratic, and invariant under an irreducible
orthogonal representation of the group9 on ; i.e., that satisfies

Ω[ f ] 0 for all f (4.74)

Ω[a f ] a 2Ω[ f ] for all scalars a (4.75)

Ω[ (g) f ] Ω[ f ] for all g (4.76)

is of the form

Ω[ f ] ϒ f ϒ f where ϒ is a scalar operator. (4.77)

The motivation for the requirements (4.74) to (4.76) can be seen as follows: thePositivity
necessity that a regularization term be positive (4.74) is self evident — it must
at least be bounded from below. Otherwise we could obtain arbitrarily “good”
estimates by exploiting the pathological behavior of the regularization operator.
Hence, via a positive offset, Ω[ f ] can be transformed such that it satisfies the
positivity condition (4.74).

Homogeneity (4.75) is a useful condition for efficient capacity control — itHomogeneity
allows easy capacity control by noting that the entropy numbers (a quantity to
be introduced in Chapter 12), which are a measure of the size of the set of possible
solutions, scale in a linear (hence, homogeneous) fashion when the hypothesis
class is rescaled by a constant. Practically speaking, this means that we do not
need new capacity bounds for every scale the function f might assume. The
requirement of being quadratic is merely algorithmic, as it allows to avoid taking
absolute values in the linear or cubic case to ensure positivity, or when dealing
with derivatives.

Finally, the invariance must be chosen beforehand. If it happens to be sufficientlyInvariance
strong, it can rule out all operators but scalars. Permutation symmetry is such a
case; in classification, for instance, this would mean that all class labels are treated
equally.

A consequence of the proposition is that there exists no vector valued regu-
larization operator satisfying the invariance conditions. We now look at practicalNo Vector Valued

Regularizer applications of Proposition 4.26, which will be stated in the form of corollaries.

Corollary 4.27 (Permutation and Rotation Symmetries) Under the assumptions of
Proposition 4.26, both the canonical representation of the permutation group (by per-
mutation matrices) in a finite dimensional vector space , and the group of orthogonal
transformations on , enforce scalar operators ϒ.

9. also may be directly defined on , i.e. it might be a matrix group like SU(N).
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This follows immediately from the fact that both rotations and permutations (or
more precisely their representations on ), are unitary and irreducible on by
construction. For instance if the permutation group was reducible on , then therePermutation and

Rotation
Symmetries are
Irreducible

would exist subspaces on which do not change under any permutation on .
This is impossible, however, since we are considering the group of all possible
permutations over . Finally, permutations are a subgroup of the group of all
possible orthogonal transformations.

Let us now address the more practical side of such operators, namely how they
translate into function expansions. We need only evaluate ϒ f f , where f f
are scalar function and . Since ϒ is also scalar, this yields ϒ f ϒ f .
It then remains to evaluate Ω[ f ] for a kernel expansion of f . We obtain:

Corollary 4.28 (Kernel Expansions) Under the assumptions of proposition 4.26, the
regularization functional Ω[ f ] for a kernel expansion

f (x) ∑
i

ik(xi x) with i (4.78)

where k(xi x) is a function mapping to the space of scalars , compatible with the
dot product space (we require that for and ) can be stated

Ω[ f ] ∑
i j

i j ϒk(xi ) ϒk(x j ) (4.79)

In particular, if k is the Green’s function of ϒ ϒ, we get

Ω[ f ] ∑
i j

i j k(xi x j) (4.80)

For possible applications such as regularized principal manifolds, see Chapter 17.

4.8 Semiparametric Regularization

In some cases, we may have additional knowledge about the solution we are going
to encounter. In particular, we may know that a specific parametric component
is very likely going to be part of the solution. It would be unwise not to takePreference for

Parametric Part advantage of this extra knowledge. For instance, it might be the case that the major
properties of the data are described by a combination of a small set of linearly
independent basis functions 1( ) n( ) . Or we might want to correct the
data for some (e.g. linear) trends. Second, it may also be the case that the user
wants to have an understandable model, without sacrificing accuracy. Many people
in life sciences tend to have a preference for linear models. These reasons motivateUnderstandable

Model the construction of semiparametric models, which are both easy to understand (due
to the parametric part) and perform well (often thanks to the nonparametric term).
For more advantages and advocacy on semiparametric models, see [47].

A common approach is to fit the data with the parametric model and train the
nonparametric add-on using the errors of the parametric part; that is, we fit the
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nonparametric part to the errors. We will show that this is useful only in a very
restricted situation. In general, this method does not permit us to find the best
model amongst a given class for different loss functions. It is better instead toBackfitting vs.

Global Solution solve a convex optimization problem, as in standard SVMs, but with a different
set of admissible functions;

f (x) g(x)
n

∑
i 1

i i(x) (4.81)

Here g , where is a Reproducing Kernel Hilbert Space as used in Theo-
rem 4.3. In particular, this theorem implies that there exists a mixed expansion in
terms of kernel functions k(xi x) and the parametric part i.

Keeping the standard regularizer Ω[ f ] 1
2 f 2 , we can see that there exist

functions 1( ) n( ) whose contribution is not regularized at all. This need not
be a major concern if n is sufficiently smaller than m, as the VC dimension (andCapacity Control
thus the capacity) of this additional class of linear models is n, hence the overall
capacity control will still work, provided the nonparametric part is sufficiently
restricted.The Algorithm

We will show, in the case of SV regression, how the semiparametric setting trans-
lates into optimization problems. The application to classification is straightfor-
ward, and is left as an exercise (see Problem 4.8).

Formulating the optimization equations for the expansion (4.81), using the -
insensitive loss function, and introducing kernels, we arrive at the following pri-
mal optimization problem:Primal Objective

Function
maximize 2 w 2

m
∑

i 1
i i

subject to

w (xi)
n
∑
j 1

j j(xi) yi i

yi w (xi)
n
∑
j 1

j j(xi) i

i i 0

(4.82)

Computing the Lagrangian (we introduce i i i i for the constraints) and
solving for the Wolfe dual, yields10Dual Objective

Function

maximize

1
2

m
∑

i j 1
( i i )( j j )k(xi x j)

m
∑

i 1
( i i )

m
∑

i 1
yi( i i )

subject to

m
∑

i 1
( i i ) j(xi) 0 for all 1 j n

i i [0 1 ]

(4.83)

10. See also (1.26) for details how to formulate the Lagrangian.
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Figure 4.10 Backfitting of a model with two parameters, f (x) wx . Data was gener-
ated by taking 10 samples from the uniform distribution on 1

2
3
2 . The target values were

obtained by the dependency yi xi. From left to right: (left) best fit with the paramet-
ric model of a constant function; (middle) after adaptation of the second parameter while
keeping the first parameter fixed; (right) optimal fit with both parameters.

Note the similarity to the standard SV regression model. The objective function,
and the box constraints on the Lagrange multipliers i i , remain unchanged.
The only modification comes from the additional un-regularized basis functions.
Instead of a single (constant) function 1(x) 1 as in the standard SV case, we
now have an expansion in the basis i i( ). This gives rise to n constraints instead
of one. Finally, f can be found asSemiparametric

Kernel
Expansion f (x)

m

∑
i 1

( i i )k(xi x)
n

∑
i 1

i i(x) since w
m

∑
i 1

( i i ) (xi) (4.84)

The only difficulty remaining is how to determine i. This can be done by ex-
ploiting the Karush-Kuhn-Tucker optimality conditions in an analogous manner
to (1.30), or more easily, by using an interior point algorithm (Section 6.4). In the
latter case, the variables i can be obtained as the dual variables of the dual (dual
dual = primal) optimization problem (4.83), as a by-product of the optimization
process.Why Backfitting

Is Not Sufficient It might seem that the approach presented above is quite unnecessary, and
overly complicated for semiparametric modelling. In fact, we could try to fit the
data to the parametric model first, and then fit the nonparametric part to the
residuals; this approach is called backfitting. In most cases, however, this does not
lead to the minimum of the regularized risk functional. We will show this using a
simple example.

Consider a SV regression machine as defined in Section 1.6, with linear kernelBackfitting for
SVMs (i.e. k(x x ) x x ) in one dimension, and a constant term as parametric part

(i.e. f (x) wx ). Now suppose the data was generated by yi xi, where xi

is uniformly drawn from 1
2

3
2 without noise. Clearly, yi

1
2 also holds for all i.

By construction, the best overall fit of the pair ( w) will be arbitrarily close to
(0 1) if the regularization parameter is chosen sufficiently small. For backfitting,Coordinate

Descent we first carry out the parametric fit, to find a constant minimizing the term
∑m

i 1 c(yi ). Depending on the chosen loss function c( ), will be the mean (L2-
error), the median (L1-error), a trimmed mean (related to the -insensitive loss), or
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some other function of the set y1 wx1 ym wxm (cf. Section 3.4). Since all
yi 1, we have 1; this is not the optimal solution of the overall problem, since
in the latter case would be close to 0, as seen above.

Hence backfitting does not minimize the regularized risk functional, even in the
simplest of settings; and we certainly cannot expect backfitting to work in more
complex cases. There exists only one case in which backfitting suffices, namelyOrthogonal

Decomposition if the function spaces spanned by the kernel expansion k(xi ) and i( ) are
orthogonal. Consequently we must in general jointly solve for both the parametric
and the nonparametric part, as done in (4.82) and (4.83).

Above, we effectively excluded a set of basis functions 1 n from beingΩ[ f ] for
Subspaces regularized at all. This means that we could use regularization functionals Ω[ f ]

that need not be positive definite on the whole Reproducing Kernel Hilbert Space
but only on the orthogonal complement to span 1 n .
This brings us back to the notion of conditional positive definite kernels, as

explained in Section 2.2. These exclude the space of linear functions from the space
of admissible functions f , in order to achieve a positive definite regularization
term Ω[ f ] on the orthogonal complement.Connecting CPD

Kernels and
Semiparametric
Models

In (4.83), this is precisely what happens with the functions i, which are not
supposed to be regularized. Consequently, if we choose i to be the family of all
linear functions, the semiparametric approach will allow us to use conditionally
positive definite (cpd) kernels (see Definition 2.21 and below) without any further
problems.

4.9 Coefficient Based Regularization

Most of the discussion in the current chapter was based on regularization in Re-
producing Kernel Hilbert Spaces, and explicitly avoided any specific restrictions
on the type of coefficient expansions used. This is useful insofar as it provides a
powerful mathematical framework to assess the quality of the estimates obtained
in this process.

In some cases, however, we would rather use a regularization operator that acts
directly on coefficient space, be it for theoretical reasons (see Section 16.5), or toFunction Space

vs. Coefficient
Space

satisfy the practical desire to obtain sparse expansions (Section 4.9.2); or simply by
the heuristic that small coefficients generally translate into simple functions.

We will now consider the situation where Ω[ f ] can be written as a function of the
coefficients i, where f will again be expanded as a linear combination of kernel
functions,General Kernel

Expansion
f (x)

n

∑
i 1

ik(xi x) and Ω[ f ] Ω[ ] (4.85)

but with the possibility that xi and the training patterns xi do not coincide, and
that possibly m n.
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4.9.1 Ridge Regression

A popular choice to regularize linear combinations of basis functions is by a
weight decay term (see [339, 49] and the references therein), which penalizes large
weights. Thus we choose

Ω[ f ] :
1
2

n

∑
i 1

2
i

1
2

2 (4.86)

Weight Decay
This is also called Ridge Regression [245, 377], and is a very common method in
the context of shrinkage estimators.

Similar to Section 4.3, we now investigate whether there exists a correspondence
between Ridge Regression and SVMs. Although no strict equivalence holds, we
will show that it is possible to obtain models generated by the same type of
regularization operator. The requirement on an operator ϒ for a strict equivalence
would be

Ω[ f ]
1
2

n

∑
i j 1

(ϒk)(xi ) (ϒk)(x j ) i j
1
2

n

∑
i 1

2
i (4.87)

and thus,Equivalence
Condition

(ϒk)(xi ) (ϒk)(x j ) i j (4.88)

Unfortunately this requirement is not suitable for the case of the Kronecker , as
(4.88) implies the functions (ϒk)(xi ) to be elements of a non-separable Hilbert
space. The solution is to change the finite Kronecker into the more appropriate

-distribution, i.e. (xi x j).
By reasoning similar to Theorem 4.9, we can see that (4.88) holds, with k(x x ) the

Green’s function of ϒ. Note that as a regularization operator, (ϒ ϒ)
1
2 is equivalent

to ϒ, as we can always replace the latter by the former without any difference in
the regularization properties. Therefore, we assume without loss of generality that
ϒ is a positive definite operator. Formally, we requireEquivalent

Operator
(ϒk)(xi ) (ϒk)(x j ) xi( ) xj( ) xi xj (4.89)

Again, this allows us to connect regularization operators and kernels: the Green’s
function of ϒ must be found in order to satisfy (4.89). For the special case of
translation invariant operators represented in Fourier space, we can associate ϒ
with ϒridge( ) as with (4.28), leading to

ϒ f 2
2

F[ f ]( )
ϒridge( )

2

d (4.90)

This expansion is possible since the Fourier transform diagonalizes the corre-
sponding regularization operator: repeated applications of ϒ become multipli-
cations in the Fourier domain. Comparing (4.90) with (4.28) leads to the conclu-
sion that the following relation between kernels for Support Vector Machines and
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Ridge Regression holds,

ϒSV( ) ϒridge( ) 2 (4.91)

In other words, in Ridge Regression it is the squared Fourier transform of the
kernels that determines the regularization properties. Later on in Chapter 16,
Theorem 16.9 will give a similar result, derived under the assumption that the
penalties on i are given by a prior probability over the distribution of expansion
coefficients.

This connection also explains the performance of Ridge Regression Models
in a smoothing regularizer context (the squared norm of the Fourier transform
of the kernel function describes its regularization properties), and allows us to
“transform” Support Vector Machines to Ridge Regression models and vice versa.
Note, however, that the sparsity properties of Support Vectors are lost.

4.9.2 Linear Programming Regularization ( m
1 )

A squared penalty on the coefficients i has the disadvantage that even though
some kernel functions k(xi x) may not contribute much to the overall solution,
they still appear in the function expansion. This is due to the fact that the gradient
of 2

i tends to 0 for i 0 (this can easily be checked by looking at the partial1 for Sparsity
derivative of Ω[ f ] wrt. i). On the other hand, a regularizer whose derivative does
not vanish in the neighborhood of 0 will not exhibit such problems. This is why
we choose

Ω[ f ] ∑
i

i (4.92)

The regularized risk minimization problem can then be rewritten as

minimize Rreg[ f ]
m
∑

i 1
i

m
∑

i 1
( i i )

subject to

yi
m
∑
j 1

jk(x j xi)
n
∑
j 1

j(xi) b i

m
∑
j 1

ik(x j xi)
n
∑
j 1

j(xi) b yi i

i i 0

(4.93)

Besides replacing i with i i , i with i i , and requiring i i 0, there
is hardly anything that can be done to render the problem more computationallySoft Margin

Linear Program feasible — the constraints are already linear. Moreover most optimization software
can deal efficiently with problems of this kind.

4.9.3 Mixed Semiparametric Regularizers

We now investigate the use of mixed regularization functionals, with different
penalties for distinct parts of the function expansion, as suggested by equations
(4.92) and (4.81). Indeed, we can construct the following variant, which is a mix-
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ture of linear and quadratic regularizers,

Ω[ f ]
1
2

w 2
n

∑
i 1

i (4.94)

The equation above is essentially the SV estimation model, with an additional lin-
ear regularization term added for the parametric part. In this case, the constraints
on the optimization problem (4.83) becomeMixed Dual

Problem
1

m
∑

i 1
( i i ) j(xi) 1 for all 1 j n

i i [0 1 ]
(4.95)

and the variables i are obtained as the dual variables of the constraints, as dis-
cussed previously in similar cases. Finally, we could reverse the setting to obtain a
regularizer,Semiparametric

and Sparse
Ω[ f ]

m

∑
i 1

i i
1
2

n

∑
i j 1

i j Mi j (4.96)

for some positive definite matrix M. Note that (4.96) can be reduced to the case of
(4.94) by renaming variables accordingly, given a suitable choice of M.

The proposed regularizers are a simple extension of existing methods such as
Basis Pursuit [104], or Linear Programming for classification (e.g. [184]). The com-
mon idea is to have two different sets of basis functions which are regularized
differently, or a subset that is not regularized at all. This is an efficient way of en-
coding prior knowledge or user preference, since the emphasis is on the functions
with little or no regularization.

Finally, one could also use a regularization functional Ω[ f ] 0 which simply
counts the number of nonzero terms in the vector m , or alternatively, combine
this regularizer with the 1 norm to obtain Ω[ f ] 0 1. This is a concave
function in , which, in combination with the soft-margin loss function, leads to
an optimization problem which is, as a whole, concave. Therefore one may apply
Rockafellar’s theorem (Theorem 6.12) to obtain an optimal solution. See [189] for
further details and an explicit algorithm.

4.10 Summary

A connection between Support Vector kernels and regularization operators has
been established, which can provide one key to understanding why Support Vec-
tor Machines have been found to exhibit high generalization ability. In particular,
for common choices of kernels, the mapping into feature space is not arbitrary, but
corresponds to useful regularization operators (see Sections 4.4.1, 4.4.2 and 4.4.4).
For kernels where this is not the case, Support Vector Machines may show poor
performance (Section 4.4.3). This will become more obvious in Section 12, where,
building on the results of the current chapter, the eigenspectrum of integral opera-
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tors is connected with generalization bounds of the corresponding Support Vector
Machines.

The link to regularization theory can be seen as a tool for determining the struc-
ture, consisting of sets of functions, in which Support Vector Machines and other
kernel algorithms (approximately) perform structural risk minimization [561],
possibly in a data dependent manner. In other words, it allows us to choose an
appropriate kernel given the data and the problem specific knowledge.

A simple consequence of this link is a Bayesian interpretation of Support Vector
Machines. In this case, the choice of a special kernel can be regarded as a prior onBayesian

Methods the hypothesis space, with P[ f ] exp( ϒ f 2). See Chapter 16 for more detail
on this matter.

It should be clear by now that the setting of Tikhonov and Arsenin [538], whilst
very powerful, is certainly not the only conceivable one. A theorem on vector val-
ued regularization operators showed, however, that under quite generic condi-
tions on the isotropy of the space of target values, only scalar operators are possi-Vector Valued

Functions ble; an extended version of their approach is thus the only possible option.
Finally a closer consideration of the null space of regularization functionals

Ω[ f ] led us to formulate semiparametric models. The roots of such models lie in
the representer theorem (Theorem 4.2), proposed and explored in the context of
smoothing splines in [296]. In fact, the SV expansion is a direct consequence of the
representer theorem.

Moreover the semiparametric setting solves a problem created by the use of con-
ditionally positive definite kernels of order q (see Section 2.4.3). Here, polynomials
of order lower than q are excluded. Hence, to cope with this effect, we must add
polynomials back in “manually.” The semiparametric approach presents a way ofSemiparametric

Models doing that. Another application of semiparametric models, besides the conven-
tional approach of treating the nonparametric part as nuisance parameters [47], is in
the domain of hypothesis testing, for instance to test whether a parametric model
fits the data sufficiently well. This can be achieved in the framework of structural
risk minimization [561] — given the different models (nonparametric vs. semi-
parametric vs. parametric), we can evaluate the bounds on the expected risk, and
then choose the model with the best bound.

4.11 Problems

4.1 (Equivalent Optimization Strategies ) Denote by S a metric space and by
R Ω : S two strictly convex continuous maps. Let 0.

Show that the map f R[ f ] Ω[ f ] has only one minimum and a unique minimizer.
Hint: assume the contrary and consider a straight line between two minima.

Show that for every 0, there exists an Ω such that minimization of R[ f ] Ω[ f ],
is equivalent to minimizing R[ f ] subject to Ω[ f ] Ω . Show that an analogous statement
holds with R and Ω exchanged. Hint: consider the minimizer of R[ f ] Ω[ f ], and keep
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the second term fixed while minimizing over the first term.

Consider the parametrized curve (Ω( ) R( )). What is the shape of this curve? Show
that (barring discontinuities) is the tangent on the curve.

Consider the parametrized curve (ln Ω( ) ln R( )) as proposed by Hansen [225]. Show
that a tangent criterion similar to that imposed above is scale insensitive wrt. Ω and R.
Why is this useful? What are the numerical problems with such an ansatz?

4.2 (Orthogonality and Span ) Show that the second condition of Definition 2.9 is
equivalent to requiring

f k(x ) 0 for all x f 0 (4.97)

4.3 (Semiparametric Representer Theorem ) Prove Theorem 4.3. Hint: start with
a decomposition of f̃ into a parametric part, a kernel part, and an orthogonal contribution
and evaluate the loss and regularization terms independently.

4.4 (Kernel Boosting ) Show that for f and c(x y f (x)) exp( y f (x)), you
can develop a boosting algorithm by performing a coefficient-wise gradient descent on
the coefficients i of the expansion f (x) ∑m

i 1 ik(xi x). In particular, show that the
expansion above is optimal.

What changes if we drop the regularization term Ω[ f ] f 2? See [498, 577, 221] for
examples.

4.5 (Monotonicity of the Regularizer ) Give an example where, due to the fact that
Ω[ f ] is not strictly monotonic the kernel expansion (4.5) is not the only minimizer of the
regularized risk functional (4.4).

4.6 (Sparse Expansions ) Show that it is a sufficient requirement for the coefficients
i of the kernel expansion of the minimizer of (4.4) to vanish, if for the corresponding loss

functions c(xi yi f (xi)) both the lhs and the rhs derivative with respect to f (xi) vanish.
Hint: use the proof strategy of Theorem 4.2.

Furthermore show that for loss functions c(x y f (x)) this implies that we can obtain
vanishing coefficients only if c(xi yi f (xi)) 0.

4.7 (Biased Regularization ) Show that for biased regularization (Remark 4.4) with
g( f ) 1

2 f 2 , the effective overall regularizer is given by 1
2 f f0

2.

4.8 (Semiparametric Classification ) Show that given a set of parametric basis func-
tions i, the optimization problem for SV classification has the same objective function as
(1.31), however with the constraints [506]

0 i C for all i [m] and
m

∑
i 1

i yi j(xi) 0 for all j (4.98)

What happens if you combine semiparametric classification with adaptive margins (the
-trick)?
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4.9 (Regularization Properties of Kernels ) Analyze the regularization properties of
the Laplacian kernel k(x x ) e x x . What is the rate of decay in its power spectrum?
What is the kernel corresponding to the operator

ϒ f 2 : f 2
x f 2 2

x f 2? (4.99)

Hint: rewrite ϒ in the Fourier domain.

4.10 (Periodizing the Laplacian Kernel ) Show that for the Laplacian kernel k(x x )
e x x , the periodization with period a results in a kernel proportional to

kp(x x ) e x x mod a e x x mod a a (4.100)

4.11 (Hankel Transform and Inversion ) Show that for radially symmetric func-
tions, the Fourier transform is given by (4.52). Moreover use (4.51) to prove the Hankel
inversion theorem, stating that H is its own inverse.

4.12 (Eigenvector Decompositions of Polynomial Kernels ) Compute the eigen-
values of polynomial kernels on UN. Hint: use [511] and separate the radial from the
angular part in the eigenvector decomposition of k, and solve the radial part empirically
via numerical analysis. Possible kernels to consider are Vovk’s kernel, (in)homogeneous
polynomials and the hyperbolic tangent kernel.

4.13 (Necessary Conditions for Kernels ) Burges [86] shows, by using differential
geometric methods, that a necessary condition for a differentiable translation invariant
kernel k(x x ) k( x x 2) to be positive definite is

k(0) 0 and k (0) 0 (4.101)

Prove this using functional analytic methods.

4.14 (Mixed Semiparametric Regularizers ) Derive (4.96). Hint: set up the primal
optimization problem as described in Section 1.4, compute the Lagrangian, and eliminate
the primal variables.

Can you find an interpretation of (4.95)? What is the effect of ∑m
i 1( i i ) j(xi)?



 

5 Elements of Statistical Learning Theory

We now give a more complete exposition of the ideas of statistical learning theory,
which we briefly touched on in Chapter 1. We mentioned previously that in order
to learn from a small training set, we should try to explain the data with a model of
small capacity; we have not yet justified why this is the case, however. This is the
main goal of the present chapter.

We start by revisiting the difference between risk minimization and empiricalOverview
risk minimization, and illustrating some common pitfalls in machine learning,
such as overfitting and training on the test set (Section 5.1). We explain that the
motivation for empirical risk minimization is the law of large numbers, but that
the classical version of this law is not sufficient for our purposes (Section 5.2).
Thus, we need to introduce the statistical notion of consistency (Section 5.3). It turns
out that consistency of learning algorithms amounts to a law of large numbers,
which holds uniformly over all functions that the learning machine can implement
(Section 5.4). This crucial insight, due to Vapnik and Chervonenkis, focuses our
attention on the set of attainable functions; this set must be restricted in order to
have any hope of succeeding. Section 5.5 states probabilistic bounds on the risk
of learning machines, and summarizes different ways of characterizing precisely
how the set of functions can be restricted. This leads to the notion of capacity
concepts, which gives us the main ingredients of the typical generalization error
bound of statistical learning theory. We do not indulge in a complete treatment;
rather, we try to give the main insights to provide the reader with some intuition
as to how the different pieces of the puzzle fit together. We end with a section
showing an example application of risk bounds for model selection (Section 5.6).

The chapter attempts to present the material in a fairly non-technical manner,Prerequisites
providing intuition wherever possible. Given the nature of the subject matter,
however, a limited amount of mathematical background is required. The reader
who is not familiar with basic probability theory should first read Section B.1.

5.1 Introduction

Let us start with an example. We consider a regression estimation problem. Sup-
pose we are given empirical observations,

(x1 y1) (xm ym) (5.1)
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5.5 Model Selection
(an Example)

5.4 Statistical Analysis
of Uniform Convergence

5.4.1 Union Bound

5.4.2 Symmetrization

5.4.3, 5.4.4 VC Bounds

5.4.5 Capacity Concepts

5.3 Consistency and
Uniform Convergence

5.2 Law of
Large Numbers

where for simplicity we take . Figure 5.1 shows a plot of such a dataset,Regression
Example along with two possible functional dependencies that could underlie the data. The

dashed line represents a fairly complex model, and fits the training data perfectly.
The straight line, on the other hand, does not completely “explain” the data, in
the sense that there are some residual errors; it is much “simpler,” however. A
physicist measuring these data points would argue that it cannot be by chance
that the measurements almost lie on a straight line, and would much prefer to
attribute the residuals to measurement error than to an erroneous model. But is it
possible to characterize the way in which the straight line is simpler, and why this
should imply that it is, in some sense, closer to an underlying true dependency?

In one form or another, this issue has long occupied the minds of researchers
studying the problem of learning. In classical statistics, it has been studied as the
bias-variance dilemma. If we computed a linear fit for every data set that we everBias-Variance

Dilemma encountered, then every functional dependency we would ever “discover” would
be linear. But this would not come from the data; it would be a bias imposed by
us. If, on the other hand, we fitted a polynomial of sufficiently high degree to any
given data set, we would always be able to fit the data perfectly, but the exact
model we came up with would be subject to large fluctuations, depending on

y

x

Figure 5.1 Suppose we want to estimate a
functional dependence from a set of examples
(black dots). Which model is preferable? The
complex model perfectly fits all data points,
whereas the straight line exhibits residual er-
rors. Statistical learning theory formalizes the
role of the complexity of the model class, and
gives probabilistic guarantees for the validity
of the inferred model.
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how accurate our measurements were in the first place — the model would suffer
from a large variance. A related dichotomy is the one between estimation error and
approximation error. If we use a small class of functions, then even the best possible
solution will poorly approximate the “true” dependency, while a large class of
functions will lead to a large statistical estimation error.

In the terminology of applied machine learning and the design of neural net-
works, the complex explanation shows overfitting, while an overly simple expla-Overfitting
nation imposed by the learning machine design would lead to underfitting. A great
deal of research has gone into clever engineering tricks and heuristics; these are
used, for instance, to aid in the design of neural networks which will not overfit
on a given data set [397]. In neural networks, overfitting can be avoided in a num-
ber of ways, such as by choosing a number of hidden units that is not too large, by
stopping the training procedure early in order not to enforce a perfect explanation
of the training set, or by using weight decay to limit the size of the weights, and
thus of the function class implemented by the network.

Statistical learning theory provides a solid mathematical framework for study-
ing these questions in depth. As mentioned in Chapters 1 and 3, it makes the as-
sumption that the data are generated by sampling from an unknown underlying
distribution P(x y). The learning problem then consists in minimizing the risk (orRisk
expected loss on the test data, see Definition 3.3),

R[ f ] c(x y f (x)) dP(x y) (5.2)

Here, c is a loss function. In the case of pattern recognition, where 1 , a
common choice is the misclassification error, c(x y f (x)) 1

2 f (x) y .
The difficulty of the task stems from the fact that we are trying to minimize a

quantity that we cannot actually evaluate: since we do not know P, we cannot
compute the integral (5.2). What we do know, however, are the training data (5.1),
which are sampled from P. We can thus try to infer a function f from the training
sample that is, in some sense, close to the one minimizing (5.2). To this end, we
need what is called an induction principle.

One way to proceed is to use the training sample to approximate the integral in
(5.2) by a finite sum (see (B.18)). This leads to the empirical risk (Definition 3.4),Empirical Risk

Remp[ f ]
1
m

m

∑
i 1

c(xi yi f (xi)) (5.3)

and the empirical risk minimization (ERM) induction principle, which recommends
that we choose an f that minimizes (5.3).

Cast in these terms, the fundamental trade-off in learning can be stated as
follows: if we allow f to be taken from a very large class of functions , we can
always find an f that leads to a rather small value of (5.3). For instance, if we allow
the use of all functions f mapping (in compact notation, ), then we
can minimize (5.3) yet still be distant from the minimizer of (5.2). Considering a
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pattern recognition problem, we could set

f (x)
yi if x xi for some i 1 m

1 otherwise.
(5.4)

This does not amount to any form of learning, however: suppose we are now given
a test point drawn from the same distribution, (x y) P(x y). If is a continuous
domain, and we are not in a degenerate situation, the new pattern x will almost
never be exactly equal to any of the training inputs xi. Therefore, the learning
machine will almost always predict that y 1. If we allow all functions from to ,
then the values of the function at points x1 xm carry no information about the values
at other points. In this situation, a learning machine cannot do better than chance.
This insight lies at the core of the so-called No-Free-Lunch Theorem popularized in
[608]; see also [254, 48].

The message is clear: if we make no restrictions on the class of functions from
which we choose our estimate f , we cannot hope to learn anything. Consequently,
machine learning research has studied various ways to implement such restric-
tions. In statistical learning theory, these restrictions are enforced by taking into
account the complexity or capacity (measured by VC dimension, covering numbers,
entropy numbers, or other concepts) of the class of functions that the learning ma-
chine can implement.1

In the Bayesian approach, a similar effect is achieved by placing prior distribu-
tions P( f ) over the class of functions (Chapter 16). This may sound fundamentally
different, but it leads to algorithms which are closely related; and on the theoretical
side, recent progress has highlighted intriguing connections [92, 91, 353, 238].

5.2 The Law of Large Numbers

Let us step back and try to look at the problem from a slightly different angle.
Consider the case of pattern recognition using the misclassification loss function.
Given a fixed function f , then for each example, the loss i : 1

2 f (xi) yi is either

1. As an aside, note that the same problem applies to training on the test set (sometimes
called data snooping): sometimes, people optimize tuning parameters of a learning machine
by looking at how they change the results on an independent test set. Unfortunately, once
one has adjusted the parameter in this way, the test set is not independent anymore. This
is identical to the corresponding problem in training on the training set: once we have
chosen the function to minimize the training error, the latter no longer provides an unbiased
estimate of the test error. Overfitting occurs much faster on the training set, however, than
it does on the test set. This is usually due to the fact that the number of tuning parameters
of a learning machine is much smaller than the total number of parameters, and thus the
capacity tends to be smaller. For instance, an SVM for pattern recognition typically has two
tuning parameters, and optimizes m weight parameters (for a training set size of m). See
also Problem 5.3 and [461].
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0 or 1 (provided we have a 1-valued function f ), and all examples are drawn
independently. In the language of probability theory, we are faced with Bernoulli
trials. The 1 m are independently sampled from a random variable

:
1
2

f (x) y (5.5)

A famous inequality due to Chernoff [107] characterizes how the empirical mean
1
m ∑m

i 1 i converges to the expected value (or expectation) of , denoted by E( ):Chernoff Bound

P
1
m

m

∑
i 1

i E( ) 2 exp( 2m 2) (5.6)

Note that the P refers to the probability of getting a sample 1 m with the
property 1

m ∑m
i 1 i E( ) . Mathematically speaking, P strictly refers to a so-

called product measure (cf. (B.11)). We will presently avoid further mathematical
detail; more information can be found in Appendix B.

In some instances, we will use a more general bound, due to Hoeffding (Theo-
rem 5.1). Presently, we formulate and prove a special case of the Hoeffding bound,
which implies (5.6). Note that in the following statement, the i are no longer re-
stricted to take values in 0 1 .

Theorem 5.1 (Hoeffding [244]) Let i, i [m] be m independent instances of a bounded
random variable , with values in [a b]. Denote their average by Qm

1
m ∑i i Then for

any 0,Hoeffding Bound

P Qm E( )

P E( ) Qm

exp
2m 2

(b a)2 (5.7)

The proof is carried out by using a technique commonly known as Chernoff’s
bounding method [107]. The proof technique is widely applicable, and generates
bounds such as Bernstein’s inequality [44] (exponential bounds based on the
variance of random variables), as well as concentration-of-measure inequalities
(see, e.g., [356, 66]). Readers not interested in the technical details underlying laws
of large numbers may want to skip the following discussion.

We start with an auxiliary inequality.

Lemma 5.2 (Markov’s Inequality (e.g., [136])) Denote by a nonnegative random
variable with distribution P. Then for all 0, the following inequality holds:

P E( )
1

(5.8)

Proof Using the definition of E( ), we have

E( )
0

dP( )
E( )

dP( ) E( )
E( )

dP( ) E( )P E( )
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Proof of Theorem 5.1. Without loss of generality, we assume that E( ) 0 (other-
wise simply define a random variable ¯ : E( ) and use the latter in the proof).
Chernoff’s bounding method consists in transforming a random variable into
exp(s ) (s 0), and applying Markov’s inequality to it. Depending on , we can
obtain different bounds. In our case, we use

P P exp(s ) exp(s ) e s E exp(s ) (5.9)

e s E exp
s
m

m

∑
i 1

i e s
m

∏
i 1

E exp
s
m i (5.10)

In (5.10), we exploited the fact that for positive random variables E [∏i i]
∏i E [ i]. Since the inequality holds independent of the choice of s, we may mini-
mize over s to obtain a bound that is as tight as possible. To this end, we transform
the expectation over exp s

m i into something more amenable. The derivation is
rather technical; thus we state without proof [244]: E exp( s

m i) exp s2(b a)2

8m2 .

From this, we conclude that the optimal value of s is given by s 4m
(b a)2 . Substitut-

ing this value into the right hand side of (5.10) proves the bound.

Let us now return to (5.6). Substituting (5.5) into (5.6), we have a bound which
states how likely it is that for a given function f , the empirical risk is close to the
actual risk,

P Remp[ f ] R[ f ] 2 exp( 2m 2) (5.11)

Using Hoeffding’s inequality, a similar bound can be given for the case of regres-
sion estimation, provided the loss c(x y f (x)) is bounded.

For any fixed function, the training error thus provides an unbiased estimate
of the test error. Moreover, the convergence (in probability) Remp[ f ] R[ f ] as
m is exponentially fast in the number of training examples.2 Although this
sounds just about as good as we could possibly have hoped, there is one caveat:
a crucial property of both the Chernoff and the Hoeffding bound is that they are
probabilistic in nature. They state that the probability of a large deviation between
test error and training error of f is small; the larger the sample size m, the smaller
the probability. Granted, they do not rule out the presence of cases where the
deviation is large, and our learning machine will have many functions that it can
implement. Could there be a function for which things go wrong? It appears that

2. Convergence in probability, denoted as

Remp[ f ] R[ f ] P 0 as m

means that for all 0, we have

lim
m

P Remp[ f ] R[ f ] 0
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we would be very unlucky for this to occur precisely for the function f chosen by
empirical risk minimization.

At first sight, it seems that empirical risk minimization should work — in
contradiction to our lengthy explanation in the last section, arguing that we have
to do more than that. What is the catch?

5.3 When Does Learning Work: the Question of Consistency

It turns out that in the last section, we were too sloppy. When we find a function
f by choosing it to minimize the training error, we are no longer looking at
independent Bernoulli trials. We are actually choosing f such that the mean of
the i is as small as possible. In this sense, we are actively looking for the worst
case, for a function which is very atypical, with respect to the average loss (i.e., the
empirical risk) that it will produce.

We should thus state more clearly what it is that we actually need for empirical
risk minimization to work. This is best expressed in terms of a notion that statisti-
cians call consistency. It amounts to saying that as the number of examples m tendsConsistency
to infinity, we want the function f m that minimizes Remp[ f ] (note that f m need not
be unique), to lead to a test error which converges to the lowest achievable value.
In other words, f m is asymptotically as good as whatever we could have done if
we were able to directly minimize R[ f ] (which we cannot, as we do not even know
it). In addition, consistency requires that asymptotically, the training and the test
error of f m be identical.3

It turns out that without restricting the set of admissible functions, empirical risk
minimization is not consistent. The main insight of VC (Vapnik-Chervonenkis)
theory is that actually, the worst case over all functions that the learning machine
can implement determines the consistency of empirical risk minimization. In other
words, we need a version of the law of large numbers which is uniform over all
functions that the learning machine can implement.

5.4 Uniform Convergence and Consistency

The present section will explain how consistency can be characterized by a uni-
form convergence condition on the set of functions that the learning machine
can implement. Figure 5.2 gives a simplified depiction of the question of consis-
tency. Both the empirical risk and the actual risk are drawn as functions of f . For

3. We refrain from giving a more formal definition of consistency, the reason being that
there are some caveats to this classical definition of consistency; these would necessitate a
discussion leading us away from the main thread of the argument. For the precise definition
of the required notion of “nontrivial consistency,” see [561].
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Risk

Function class

R

Remp

f f fopt m

R[f]

R     [f]emp

Figure 5.2 Simplified depiction of the convergence of empirical risk to actual risk. The x-
axis gives a one-dimensional representation of the function class; the y axis denotes the risk
(error). For each fixed function f , the law of large numbers tells us that as the sample size
goes to infinity, the empirical risk Remp[ f ] converges towards the true risk R[ f ] (indicated
by the downward arrow). This does not imply, however, that in the limit of infinite sample
sizes, the minimizer of the empirical risk, f m, will lead to a value of the risk that is as good as
the best attainable risk, R[ f opt] (consistency). For the latter to be true, we require convergence
of Remp[ f ] towards R[ f ] to be uniform over all functions that the learning machines can
implement (see text).

simplicity, we have summarized all possible functions f by a single axis of the
plot. Empirical risk minimization consists in picking the f that yields the minimal
value of Remp. If it is consistent, then the minimum of Remp converges to that of R
in probability. Let us denote the minimizer of R by f opt, satisfying

R[ f ] R[ f opt] 0 (5.12)

for all f . This is the optimal choice that we could make, given complete
knowledge of the distribution P.4 Similarly, since f m minimizes the empirical risk,
we have

Remp[ f ] Remp[ f m] 0 (5.13)

for all f . Being true for all f , (5.12) and (5.13) hold in particular for f m and
f opt. If we substitute the former into (5.12) and the latter into (5.13), we obtain

R[ f m] R[ f opt] 0 (5.14)

and

Remp[ f opt] Remp[ f m] 0 (5.15)

4. As with f m, f opt need not be unique.
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The sum of these two inequalities satisfies

0 R[ f m] R[ f opt] Remp[ f opt] Remp[ f m]

R[ f m] Remp[ f m] Remp[ f opt] R[ f opt]

sup
f

R[ f ] Remp[ f ] Remp[ f opt] R[ f opt] (5.16)

Let us first consider the second half of the right hand side. Due to the law of large
numbers, we have convergence in probability, i.e., for all 0,

Remp[ f opt] R[ f opt] P 0 as m (5.17)

This holds true since f opt is a fixed function, which is independent of the training
sample (see (5.11)).

The important conclusion is that if the empirical risk converges to the actual risk
one-sided uniformly, over all functions that the learning machine can implement,Uniform

Convergence of
Risk sup

f
(R[ f ] Remp[ f ]) P 0 as m (5.18)

then the left hand sides of (5.14) and (5.15) will likewise converge to 0;

R[ f m] R[ f opt] P 0 (5.19)

Remp[ f opt] Remp[ f m] P 0 (5.20)

As argued above, (5.17) is not always true for f m, since f m is chosen to minimize
Remp, and thus depends on the sample. Assuming that (5.18) holds true, however,
then (5.19) and (5.20) imply that in the limit, R[ f m] cannot be larger than Remp[ f m].
One-sided uniform convergence on is thus a sufficient condition for consistency
of the empirical risk minimization over .5

What about the other way round? Is one-sided uniform convergence also a
necessary condition? Part of the mathematical beauty of VC theory lies in the
fact that this is the case. We cannot go into the necessary details to prove this
[571, 561, 562], and only state the main result. Note that this theorem uses the
notion of nontrivial consistency that we already mentioned briefly in footnote 3.
In a nutshell, this concept requires that the induction principle be consistent even
after the “best” functions have been removed. Nontrivial consistency thus rules
out, for instance, the case in which the problem is trivial, due to the existence of a
function which uniformly does better than all other functions. To understand this,
assume that there exists such a function. Since this function is uniformly better
than all others, we can already select this function (using ERM) from one (arbitrary)
data point. Hence the method would be trivially consistent, no matter what the

5. Note that the onesidedness of the convergence comes from the fact that we only require
consistency of empirical risk minimization. If we required the same for empirical risk maxi-
mization, then we would end up with standard uniform convergence, and the parentheses
in (5.18) would be replaced with modulus signs.
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rest of the function class looks like. Having one function which gets picked as soon
as we have seen one data point would essentially void the inherently asymptotic
notion of consistency.

Theorem 5.3 (Vapnik & Chervonenkis (e.g., [562])) One-sided uniform convergence
in probability,

lim
m

P sup
f

(R[ f ] Remp[ f ]) 0 (5.21)

for all 0, is a necessary and sufficient condition for nontrivial consistency of
empirical risk minimization.

As explained above, consistency, and thus learning, crucially depends on the set
of functions. In Section 5.1, we gave an example where we considered the set of all
possible functions, and showed that learning was impossible. The dependence of
learning on the set of functions has now returned in a different guise: the condition
of uniform convergence will crucially depend on the set of functions for which it
must hold.

The abstract characterization in Theorem 5.3 of consistency as a uniform con-
vergence property, whilst theoretically intriguing, is not all that useful in practice.
We do not want to check some fairly abstract convergence property every time
we want to use a learning machine. Therefore, we next address whether there are
properties of learning machines, i.e., of sets of functions, which ensure uniform
convergence of risks.

5.5 How to Derive a VC Bound

We now take a closer look at the subject of Theorem 5.3; the probability

P sup
f

(R[ f ] Remp[ f ]) (5.22)

We give a simplified account, drawing from the expositions of [561, 562, 415, 238].
We do not aim to describe or even develop the theory to the extent that would
be necessary to give precise bounds for SVMs, say. Instead, our goal will be to
convey central insights rather than technical details. For more complete treatments
geared specifically towards SVMs, cf. [562, 491, 24]. We focus on the case of pattern
recognition; that is, on functions taking values in 1 .

Two tricks are needed along the way: the union bound and the method of sym-
metrization by a ghost sample.

5.5.1 The Union Bound

Suppose the set consists of two functions, f1 and f2. In this case, uniform
convergence of risk trivially follows from the law of large numbers, which holds
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for each of the two. To see this, let

Ci : (x1 y1) (xm ym) (R[ fi] Remp[ fi]) (5.23)

denote the set of samples for which the risks of fi differ by more than . Then, by
definition, we have

P sup
f

(R[ f ] Remp[ f ]) P(C1 C2) (5.24)

The latter, however, can be rewritten as

P(C1 C2) P(C1) P(C2) P(C1 C2) P(C1) P(C2) (5.25)

where the last inequality follows from the fact that P is nonnegative. Similarly, if
f1 fn , we have

P sup
f

(R[ f ] Remp[ f ]) P(C1 Cn)
n

∑
i 1

P(Ci ) (5.26)

This inequality is called the union bound. As it is a crucial step in the derivationUnion Bound
of risk bounds, it is worthwhile to emphasize that it becomes an equality if and
only if all the events involved are disjoint. In practice, this is rarely the case, and
we therefore lose a lot when applying (5.26). It is a step with a large “slack.”

Nevertheless, when is finite, we may simply apply the law of large numbers
(5.11) for each individual P(Ci ), and the sum in (5.26) then leads to a constant factor
n on the right hand side of the bound — it does not change the exponentially
fast convergence of the empirical risk towards the actual risk. In the next section,
we describe an ingenious trick used by Vapnik and Chervonenkis, to reduce the
infinite case to the finite one. It consists of introducing what is sometimes called a
ghost sample.

5.5.2 Symmetrization

The central observation in this section is that we can bound (5.22) in terms of
a probability of an event referring to a finite function class. Note first that the
empirical risk term in (5.22) effectively refers only to a finite function class: for
any given training sample of m points x1 xm, the functions of can take at
most 2m different values y1 ym (recall that the yi take values only in 1 ).
In addition, the probability that the empirical risk differs from the actual risk by
more than , can be bounded by the twice the probability that it differs from the
empirical risk on a second sample of size m by more than 2.

Lemma 5.4 (Symmetrization (Vapnik & Chervonenkis) (e.g. [559])) For m 2 2,
we haveSymmetrization

P sup
f

(R[ f ] Remp[ f ]) 2P sup
f

(Remp[ f ] Remp[ f ]) 2 (5.27)

Here, the first P refers to the distribution of iid samples of size m, while the second one
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refers to iid samples of size 2m. In the latter case, Remp measures the loss on the first half
of the sample, and Remp on the second half.

Although we do not prove this result, it should be fairly plausible: if the empirical
error rates on two independent m-samples are close to each other, then they should
also be close to the true error rate.

5.5.3 The Shattering Coefficient

The main result of Lemma 5.4 is that it implies, for the purpose of bounding (5.22),
that the function class is effectively finite: restricted to the 2m points appearing
on the right hand side of (5.27), it has at most 22m elements. This is because only
the outputs of the functions on the patterns of the sample count, and there are
2m patterns with two possible outputs, 1. The number of effectively different
functions can be smaller than 22m, however; and for our purposes, this is the case
that will turn out to be interesting.

Let Z2m : (x1 y1) (x2m y2m) be the given 2m-sample. Denote by ( Z2m)
the cardinality of when restricted to x1 x2m , that is, the number of func-
tions from that can be distinguished from their values on x1 x2m . Let us,
moreover, denote the maximum (over all possible choices of a 2m-sample) number
of functions that can be distinguished in this way as ( 2m).

The function ( m) is referred to as the shattering coefficient, or in the more gen-Shattering
Coefficient eral case of regression estimation, the covering number of .6 In the case of pattern

recognition, which is what we are currently looking at, ( m) has a particularly
simple interpretation: it is the number of different outputs (y1 ym) that the
functions in can achieve on samples of a given size.7 In other words, it simply
measures the number of ways that the function class can separate the patterns into two
classes. Whenever ( m) 2m, all possible separations can be implemented by
functions of the class. In this case, the function class is said to shatter m points.Shattering
Note that this means that there exists a set of m patterns which can be separated in
all possible ways — it does not mean that this applies to all sets of m patterns.

5.5.4 Uniform Convergence Bounds

Let us now take a closer look at the probability that for a 2m-sample Z2m drawn
iid from P, we get a one-sided uniform deviation larger than 2 (cf. (5.27)),

P sup
f

(Remp[ f ] Remp[ f ]) 2 (5.28)

6. In regression estimation, the covering number also depends on the accuracy within
which we are approximating the function class, and on the loss function used; see Sec-
tion 12.4 for more details.
7. Using the zero-one loss c(x y f (x)) 1 2 f (x) y 0 1 , it also equals the number of
different loss vectors (c(x1 y1 f (x1)) c(xm ym f (xm))).
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The basic idea now is to pick a maximal set of functions f1 f ( Z2m) that
can be distinguished based on their values on Z2m, then use the union bound, and
finally bound each term using the Chernoff inequality. However, the fact that the
fi depend on the sample Z2m will make things somewhat more complicated. To
deal with this, we have to introduce an auxiliary step of randomization, using a
uniform distibution over permutations of the 2m-sample Z2m.

Let us denote the empirical risks on the two halves of the sample after the
permutation by Remp[ f ] and Remp[ f ], respectively. Since the 2m-sample is iid,
the permutation does not affect (5.28). We may thus instead consider

PZ2m sup
f

(Remp[ f ] Remp[ f ]) 2 (5.29)

where the subscripts of P were added to clarify what the distribution refers to. We
next rewrite this as

( 1 )2m
P Z2m

sup
f Z2m

(Remp[ f ] Remp[ f ]) 2 Z2m dP(Z2m) (5.30)

We can now express the event C : sup f Z2m
(Remp[ f ] Remp[ f ]) 2 as

C
( Z2m)

n 1

C ( fn) (5.31)

where the events C ( fn) : (Remp[ fn] Remp[ fn]) 2 refer to individual
functions fn chosen such that n fn Z2m Z2m. Note that the functions fn

may be considered as fixed, since we have conditioned on Z2m.
We are now in a position to appeal to the classical law of large numbers. Our

random experiment consists of drawing from the uniform distribution over all
permutations of 2m-samples. This turns our sequence of losses i

1
2 f (xi ) yi

(i 1 2m) into an iid sequence of independent Bernoulli trials. We then apply
a modified Chernoff inequality to bound the probability of each event C ( fn). It
states that given a 2m-sample of Bernoulli trials, we have (see Problem 5.4)

P
1
m

m

∑
i 1

i
1
m

2m

∑
i m 1

i 2 exp
m 2

2
(5.32)

For our present problem, we thus obtain

P Z2m
(C ( fn)) 2 exp

m 2

8
(5.33)

independent of fn. We next use the union bound to get a bound on the probability
of the event C defined in (5.31). We obtain a sum over ( Z2m) identical terms
of the form (5.33). Hence (5.30) (and (5.29)) can be bounded from above by

( 1 )2m
( Z2m) 2 exp

m 2

8
dP(Z2m)

2 E [ ( Z2m)] exp
m 2

8
(5.34)
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where the expectation is taken over the random drawing of Z2m. The last step is to
combine this with Lemma 5.4, to obtain

P sup
f

(R[ f ] Remp[ f ]) 4 E [ ( Z2m)] exp
m 2

8

4 exp ln E [ ( Z2m)]
m 2

8
(5.35)

We conclude that provided E [ ( Z2m)] does not grow exponentially in m (i.e.,Inequality of
Vapnik-
Chervonenkis
Type

ln E [ ( Z2m)] grows sublinearly), it is actually possible to make nontrivial state-
ments about the test error of learning machines.

The above reasoning is essentially the VC style analysis. Similar bounds can
be obtained using a strategy which is more common in the field of empirical
processes, first proving that sup f (R[ f ] Remp[ f ]) is concentrated around its mean
[554, 14].

5.5.5 Confidence Intervals

It is sometimes useful to rewrite (5.35) such that we specify the probability with
which we want the bound to hold, and then get the confidence interval, which
tells us how close the risk should be to the empirical risk. This can be achieved by
setting the right hand side of (5.35) equal to some 0, and then solving for . As
a result, we get the statement that with a probability at least 1 ,Risk Bound

R[ f ] Remp[ f ]
8
m

ln E [ ( Z2m)] ln
4

(5.36)

Note that this bound holds independent of f ; in particular, it holds for the function
f m minimizing the empirical risk. This is not only a strength, but also a weakness
in the bound. It is a strength since many learning machines do not truly minimize
the empirical risk, and the bound thus holds for them, too. It is a weakness since by
taking into account more information on which function we are interested in, one
could hope to get more accurate bounds. We will return to this issue in Section 12.1.

Bounds like (5.36) can be used to justify induction principles different from the
empirical risk minimization principle. Vapnik and Chervonenkis [569, 559] pro-
posed minimizing the right hand side of these bounds, rather than just the em-

pirical risk. The confidence term, in the present case, 8
m ln E [ ( Z2m)] ln 4 ,

then ensures that the chosen function, denoted f , not only leads to a small risk,
but also comes from a function class with small capacity.

The capacity term is a property of the function class , and not of any individ-
ual function f . Thus, the bound cannot simply be minimized over choices of f .
Instead, we introduce a so-called structure on , and minimize over the choice of
the structure. This leads to an induction principle called structural risk minimiza-
tion. We leave out the technicalities involved [559, 136, 562]. The main idea isStructural Risk

Minimization depicted in Figure 5.3.
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R(f* )

h

training error

capacity term

error

Sn−1 Sn Sn+1

structure

bound on test error

Figure 5.3 Graphical depiction of the structural risk minimization (SRM) induction prin-
ciple. The function class is decomposed into a nested sequence of subsets of increasing size
(and thus, of increasing capacity). The SRM principle picks a function f which has small
training error, and comes from an element of the structure that has low capacity h, thus
minimizing a risk bound of type (5.36).

For practical purposes, we usually employ bounds of the type (5.36) as a guide-
line for coming up with risk functionals (see Section 4.1). Often, the risk functionals
form a compromise between quantities that should be minimized from a statistical
point of view, and quantities that can be minimized efficiently (cf. Problem 5.7).

There exists a large number of bounds similar to (5.35) and its alternative form
(5.36). Differences occur in the constants, both in front of the exponential and in
its exponent. The bounds also differ in the exponent of — in some cases, by a
factor greater than 2. For instance, if a training error of zero is achievable, we can
use Bernstein’s inequality instead of Chernoff’s result, which leads to rather than

2. For further details, cf. [136, 562, 492, 238]. Finally, the bounds differ in the way
they measure capacity. So far, we have used covering numbers, but this is not the
only method.

5.5.6 The VC Dimension and Other Capacity Concepts

So far, we have formulated the bounds in terms of the so-called annealed entropy
ln E [ ( Z2m)]. This led to statements that depend on the distribution and thus
can take into account characteristics of the problem at hand. The downside is
that they are usually difficult to evaluate; moreover, in most problems, we do
not have knowledge of the underlying distribution. However, a number of dif-
ferent capacity concepts, with different properties, can take the role of the term
ln(E [ ( Z2m)]) in (5.36).

Given an example (x y), f causes a loss that we denote by c(x y f (x)) :
1
2 f (x) y 0 1 . For a larger sample (x1 y1) (xm ym), the different functions
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f lead to a set of loss vectors f (c(x1 y1 f (x1)) c(xm ym f (xm))), whose
cardinality we denote by (x1 y1) (xm ym) . The VC entropy is defined asVC Entropy

H (m) E ln (x1 y1) (xm ym) (5.37)

where the expectation is taken over the random generation of the m-sample
(x1 y1) (xm ym) from P.
One can show [562] that the convergence

lim
m

H (m) m 0 (5.38)

is equivalent to uniform (two-sided) convergence of risk,

lim
m

P sup
f

R[ f ] Remp[ f ] 0 (5.39)

for all 0. By Theorem 5.3, (5.39) thus implies consistency of empirical risk
minimization.

If we exchange the expectation E and the logarithm in (5.37), we obtain the
annealed entropy used above,Annealed

Entropy
Hann(m) ln E (x1 y1) (xm ym) (5.40)

Since the logarithm is a concave function, the annealed entropy is an upper bound
on the VC entropy. Therefore, whenever the annealed entropy satisfies a condition
of the form (5.38), the same automatically holds for the VC entropy.
One can show that the convergence

lim
m

Hann(m) m 0 (5.41)

implies exponentially fast convergence [561],

P sup
f

R[ f ] Remp[ f ] 4 exp(((Hann(2m) m) 2) m) (5.42)

It has recently been proven that in fact (5.41) is not only sufficient, but also neces-
sary for this [66].

We can obtain an upper bound on both entropies introduced so far, by taking a
supremum over all possible samples, instead of the expectation. This leads to the
growth function,Growth Function

G (m) max
(x1 y1) (xm ym) 1

ln (x1 y1) (xm ym) (5.43)

Note that by definition, the growth function is the logarithm of the shattering
coefficient, G (m) ln ( m).
The convergence

lim
m

G (m) m 0 (5.44)

is necessary and sufficient for exponentially fast convergence of risk for all under-
lying distributions P.
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The next step will be to summarize the main behavior of the growth function
with a single number. If is as rich as possible, so that for any sample of size m,
the points can be chosen such that by using functions of the learning machine, they
can be separated in all 2m possible ways (i.e., they can be shattered), then

G (m) m ln(2) (5.45)

In this case, the convergence (5.44) does not take place, and learning will not
generally be successful. What about the other case? Vapnik and Chervonenkis
[567, 568] showed that either (5.45) holds true for all m, or there exists some
maximal m for which (5.45) is satisfied. This number is called the VC dimensionVC Dimension
and is denoted by h. If the maximum does not exist, the VC dimension is said to
be infinite.
By construction, the VC dimension is thus the maximal number of points which
can be shattered by functions in . It is possible to prove that for m h [568],

G (m) h ln
m
h

1 (5.46)

This means that up to m h, the growth function increases linearly with the
sample size. Thereafter, it only increases logarithmically, i.e., much more slowly.
This is the regime where learning can succeed.

Although we do not make use of it in the present chapter, it is worthwhile to
also introduce the VC dimension of a class of real-valued functions fw w Λ at this
stage. It is defined to equal the VC dimension of the class of indicator functions

sgn ( fw ) w Λ inf
x

fw(x) sup
x

fw(x) (5.47)

VC Dimension
for Real-Valued
Functions

In summary, we get a succession of capacity concepts,

H (m) Hann(m) G (m) h ln
m
h

1 (5.48)

From left to right, these become less precise. The entropies on the left are
distribution-dependent, but rather difficult to evaluate (see, e.g., [430, 391]). The
growth function and VC dimension are distribution-independent. This is less ac-
curate, and does not always capture the essence of a given problem, which might
have a much more benign distribution than the worst case; on the other hand, we
want the learning machine to work for all distributions. If we knew the distribu-
tion beforehand, then we would not need a learning machine anymore.

Let us look at a simple example of the VC dimension. As a function class, weVC Dimension
Example consider hyperplanes in 2 , i.e.,

f (x) sgn (a b[x]1 c[x]2) with parameters a b c (5.49)

Suppose we are given three points x1 x2 x3 which are not collinear. No matter
how they are labelled (that is, independent of our choice of y1 y2 y3 1 ), we
can always find parameters a b c such that f (xi) yi for all i (see Figure 1.4 in
the introduction). In other words, there exist three points that we can shatter. This
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shows that the VC dimension of the set of hyperplanes in 2 satisfies h 3. On the
other hand, we can never shatter four points. It follows from simple geometry that
given any four points, there is always a set of labels such that we cannot realize the
corresponding classification. Therefore, the VC dimension is h 3. More generally,
for hyperplanes in N , the VC dimension can be shown to be h N 1. For aVC Dimension of

Hyperplanes formal derivation of this result, as well as of other examples, see [523].
How does this fit together with the fact that SVMs can be shown to correspond

to hyperplanes in feature spaces of possibly infinite dimension? The crucial point
is that SVMs correspond to large margin hyperplanes. Once the margin enters, the
capacity can be much smaller than the above general VC dimension of hyper-
planes. For simplicity, we consider the case of hyperplanes containing the origin.VC Dimension of

Margin
Hyperplanes Theorem 5.5 (Vapnik [559]) Consider hyperplanes w x 0, where w is normalized

such that they are in canonical form w.r.t. a set of points X x1 xr ; i.e.,

min
i 1 r

w xi 1 (5.50)

The set of decision functions fw(x) sgn x w defined on X , and satisfying the con-
straint w Λ, has a VC dimension satisfying

h R2Λ2 (5.51)

Here, R is the radius of the smallest sphere centered at the origin and containing X .

Before we give a proof, several remarks are in order.

The theorem states that we can control the VC dimension irrespective of the
dimension of the space by controlling the length of the weight vector w . Note,
however, that this needs to be done a priori, by choosing a value for Λ. It therefore
does not strictly motivate what we will later see in SVMs, where w is minimized
in order to control the capacity. Detailed treatments can be found in the work of
Shawe-Taylor et al. [491, 24, 125].

There exists a similar result for the case where R is the radius of the smallest
sphere (not necessarily centered at the origin) enclosing the data, and where we
allow for the possibility that the hyperplanes have a nonzero offset b [562]. In this
case, we give a simple visualization in figure Figure 5.4, which shows it is plausible
that enforcing a large margin amounts to reducing the VC dimension.

Note that the theorem talks about functions defined on X . To extend it to the
case where the functions are defined on all of the input domain , it is best to state
it for the fat shattering dimension. For details, see [24].

The proof [24, 222, 559] is somewhat technical, and can be skipped if desired.

Proof Let us assume that x1 xr are shattered by canonical hyperplanes with
w Λ. Consequently, for all y1 yr 1 , there exists a w with w Λ,

such that

yi w xi 1 for all i 1 r (5.52)
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Figure 5.4 Simple visualization of the fact that enforcing a large margin of separation
amounts to limiting the VC dimension. Assume that the data points are contained in a ball
of radius R (cf. Theorem 5.5). Using hyperplanes with margin 1, it is possible to separate
three points in all possible ways. Using hyperplanes with the larger margin 2, this is only
possible for two points, hence the VC dimension in that case is two rather than three.

The proof proceeds in two steps. In the first part, we prove that the more points we
want to shatter (5.52), the larger ∑r

i 1 yixi must be. In the second part, we prove
that we can upper bound the size of ∑r

i 1 yixi in terms of R. Combining the two
gives the desired condition, which tells us the maximum number of points we can
shatter.

Summing (5.52) over i 1 r yields

w
r

∑
i 1

yixi r (5.53)

By the Cauchy-Schwarz inequality, on the other hand, we have

w
r

∑
i 1

yixi w
r

∑
i 1

yixi Λ
r

∑
i 1

yixi (5.54)

Here, the second inequality follows from w Λ.
Combining (5.53) and (5.54), we get the desired lower bound,

r
Λ

r

∑
i 1

yixi (5.55)

We now move on to the second part. Let us consider independent random labels
yi 1 which are uniformly distributed, sometimes called Rademacher variables.
Let E denote the expectation over the choice of the labels. Exploiting the linearity
of E, we have

E
r

∑
i 1

yixi

2 r

∑
i 1

E yixi

r

∑
j 1

yjx j

r

∑
i 1

E yixi ∑
j i

y jx j yixi
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r

∑
i 1

∑
j i

E yixi y jx j E yixi yixi

r

∑
i 1

E yixi
2 (5.56)

where the last equality follows from the fact that the Rademacher variables have
zero mean and are independent. Exploiting the fact that yixi xi R, we get

E
r

∑
i 1

yixi

2

rR2 (5.57)

Since this is true for the expectation over the random choice of the labels, there
must be at least one set of labels for which it also holds true. We have so far made
no restrictions on the labels, hence we may now use this specific set of labels. This
leads to the desired upper bound,

r

∑
i 1

yixi

2

rR2 (5.58)

Combining the upper bound with the lower bound (5.55), we get

r2

Λ2 rR2; (5.59)

hence,

r R2Λ2 (5.60)

In other words, if the r points are shattered by a canonical hyperplane satisfying
the assumptions we have made, then r is constrained by (5.60). The VC dimension
h also satisfies (5.60), since it corresponds to the maximum number of points that
can be shattered.

In the next section, we give an application of this theorem. Readers only interested
in the theoretical background of learning theory may want to skip this section.

5.6 A Model Selection Example

In the following example, taken from [470], we use a bound of the form (5.36)
to predict which kernel would perform best on a character recognition problem
(USPS set, see Section A.1). Since the problem is essentially separable, we disre-
gard the empirical risk term in the bound, and choose the parameters of a polyno-
mial kernel by minimizing the second term. Note that the second term is a mono-
tonic function of the capacity. As a capacity measure, we use the upper bound on
the VC dimension described in Theorem 5.5, which in turn is an upper bound on
the logarithm of the covering number that appears in (5.36) (by the arguments put
forward in Section 5.5.6).
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Figure 5.5 Average VC dimension (solid), and total number of test errors, of ten two-
class-classifiers (dotted) with polynomial degrees 2 through 7, trained on the USPS set of
handwritten digits. The baseline 174 on the error scale, corresponds to the total number
of test errors of the ten best binary classifiers, chosen from degrees 2 through 7. The graph
shows that for this problem, which can essentially be solved with zero training error for all
degrees greater than 1, the VC dimension allows us to predict that degree 4 yields the best
overall performance of the two-class-classifier on the test set (from [470, 467]).

We employ a version of Theorem 5.5, which uses the radius of the smallest
sphere containing the data in a feature space associated with the kernel k [561].
The radius was computed by solving a quadratic program [470, 85] (cf. Section 8.3).Computing the

Enclosing Sphere
in

We formulate the problem as follows:

minimize
R 0 x

R2

subject to xi x 2 R2
(5.61)

where x is the center of the sphere, and is found in the course of the optimization.
Employing the tools of constrained optimization, as briefly described in Chapter 1
(for details, see Chapter 6), we construct a Lagrangian,

R2
m

∑
i 1

i(R2 (xi x )2) (5.62)

and compute the derivatives with respect to x and R, to get

x
m

∑
i 1

ixi (5.63)

and the Wolfe dual problem:

maximize
m

m

∑
i 1

i xi xi

m

∑
i j 1

i j xi x j (5.64)

subject to
m

∑
i 1

i 1 i 0 (5.65)

where is the vector of all Lagrange multipliers i i 1 m.
As in the Support Vector algorithm, this problem has the property that the xi
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appear only in dot products, so we can again compute the dot products in feature
space, replacing xi x j by k(xi x j) (where the xi belong to the input domain ,
and the xi in the feature space ).

As Figure 5.5 shows, the VC dimension bound, using the radius R computed in
this way, gives a rather good prediction of the error on an independent test set.

5.7 Summary

In this chapter, we introduced the main ideas of statistical learning theory. For
learning processes utilizing empirical risk minimization to be successful, we need
a version of the law of large numbers that holds uniformly over all functions the
learning machine can implement. For this uniform law to hold true, the capacity
of the set of functions that the learning machine can implement has to be “well-
behaved.” We gave several capacity measures, such as the VC dimension, and
illustrated how to derive bounds on the test error of a learning machine, in terms
of the training error and the capacity. We have, moreover, shown how to bound
the capacity of margin classifiers, a result which will later be used to motivate the
Support Vector algorithm. Finally, we described an application in which a uniform
convergence bound was used for model selection.

Whilst this discussion of learning theory should be sufficient to understand
most of the present book, we will revisit learning theory at a later stage. In Chap-
ter 12, we will present some more advanced material, which applies to kernel
learning machines. Specifically, we will introduce another class of generalization
error bound, building on a concept of stability of algorithms minimizing regular-
ized risk functionals. These bounds are proven using concentration-of-measure in-
equalities, which are themselves generalizations of Chernoff and Hoeffding type
bounds. In addition, we will discuss leave-one-out and PAC-Bayesian bounds.

5.8 Problems

5.1 (No Free Lunch in Kernel Choice ) Discuss the relationship between the “no-
free-lunch Theorem” and the statement that there is no free lunch in kernel choice.

5.2 (Error Counting Estimate [136] ) Suppose you are given a test set with n elements
to assess the accuracy of a trained classifier. Use the Chernoff bound to quantify the
probability that the mean error on the test set differs from the true risk by more than 0.
Argue that the test set should be as large as possible, in order to get a reliable estimate of
the performance of a classifier.

5.3 (The Tainted Die ) A con-artist wants to taint a die such that it does not generate
any ’6’ when cast. Yet he does not know exactly how. So he devises the following scheme:
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he makes some changes and subsequently rolls the die 20 times to check that no ’6’ occurs.
Unless pleased with the outcome, he changes more things and repeats the experiment.

How long will it take on average, until, even with a perfect die, he will be convinced that
he has a die that never generates a ’6’? What is the probability that this already happens
at the first trial? Can you improve the strategy such that he can be sure the die is ’well’
tainted (hint: longer trials provide increased confidence)?

5.4 (Chernoff Bound for the Deviation of Empirical Means ) Use (5.6) and the
triangle inequality to prove that
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Next, note that the bound (5.66) is symmetric in how it deals with the two halves of the
sample. Therefore, since the two events
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are disjoint, argue that (5.32) holds true. See also Corollary 6.34 below.

5.5 (Consistency and Uniform Convergence ) Why can we not get a bound on the
generalization error of a learning algorithm by applying (5.11) to the outcome of the
algorithm? Argue that since we do not know in advance which function the learning
algorithm returns, we need to consider the worst possible case, which leads to uniform
convergence considerations.

Speculate whether there could be restrictions on learning algorithms which imply that
effectively, empirical risk minimization only leads to a subset of the set of all possible
functions. Argue that this amounts to restricting the capacity. Consider as an example
neural networks with back-propagation: if the training algorithm always returns a local
minimum close to the starting point in weight space, then the network effectively does not
explore the whole weight (i.e., function) space.

5.6 (Confidence Interval and Uniform Convergence ) Derive (5.36) from (5.35).

5.7 (Representer Algorithms for Minimizing VC Bounds ) Construct kernel al-
gorithms that are more closely aligned with VC bounds of the form (5.36). Hint: in the
risk functional, replace the standard SV regularizer w 2 with the second term of (5.36),
bounding the shattering coefficient with the VC dimension bound (Theorem 5.5). Use the
representer theorem (Section 4.2) to argue that the minimizer takes the form of a kernel
expansion in terms of the training examples. Find the optimal expansion coefficients by
minimizing the modified risk functional over the choice of expansion coefficients.
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5.8 (Bounds in Terms of the VC Dimension ) From (5.35) and (5.36), derive bounds
in terms of the growth function and the VC dimension, using the results of Section 5.5.6.
Discuss the conditions under which they hold.

5.9 (VC Theory and Decision Theory ) (i) Discuss the relationship between mini-
max estimation (cf. footnote 7 in Chapter 1) and VC theory. Argue that the VC bounds can
be made “worst case” over distributions by picking suitable capacity measures. However,
they only bound the difference between empirical risk and true risk, thus they are only
“worst case” for the variance term, not for the bias (or empirical risk). The minimization
of an upper bound on the risk of the form (5.36) as performed in SRM is done in order to
construct an induction principle rather than to make a minimax statement. Finally, note
that the minimization is done with respect to a structure on the set of functions, while in
the minimax paradigm one takes the minimum directly over (all) functions.

(ii) Discuss the following folklore statement: “VC statisticians do not care about doing
the optimal thing, as long as they can guarantee how well they are doing. Bayesians do not
care how well they are doing, as long as they are doing the optimal thing.”

5.10 (Overfitting on the Test Set ) Consider a learning algorithm which has a free
parameter C. Suppose you randomly pick n values C1 Cn, and for each n, you train
your algorithm. At the end, you pick the value for C which did best on the test set. How
would you expect your misjudgment of the true test error to scale with n?

How does the situation change if the Ci are not picked randomly, but by some adaptive
scheme which proposes new values of C by looking at how the previous ones did, and
guessing which change of C would likely improve the performance on the test set?

5.11 (Overfitting the Leave-One-Out Error ) Explain how it is possible to overfit
the leave-one-out error. I.e., consider a learning algorithm that minimizes the leave-one-out
error, and argue that it is possible that this algorithm will overfit.

5.12 (Learning Theory for Differential Equations ) Can you develop a statistical
theory of estimating differential equations from data? How can one suitably restrict the
“capacity” of differential equations?

Note that without restrictions, already ordinary differential equations may exhibit be-
havior where the capacity is infinite, as exemplified by Rubel’s universal differential equa-
tion [447]

3y 4y y 2 4y 4y 2y 6y 3y 2y y 24y 2y 4y

12y 3y y 3 29y 2y 3y 2 12y 7 0
(5.69)

Rubel proved that given any continuous function f : and any positive continuous
function : , there exists a C solution y of (5.69) such that y(t) f (t) (t)
for all t . Therefore, all continuous functions are uniform limits of sequences of
solutions of (5.69). Moreover, y can be made to agree with f at a countable number of
distinct points (ti). Further references of interest to this problem include [61, 78, 63].



 

6 Optimization

This chapter provides a self-contained overview of some of the basic tools needed
to solve the optimization problems used in kernel methods. In particular, we will
cover topics such as minimization of functions in one variable, convex minimiza-
tion and maximization problems, duality theory, and statistical methods to solve
optimization problems approximately.

The focus is noticeably different from the topics covered in works on optimiza-
tion for Neural Networks, such as Backpropagation [588, 452, 317, 7] and its vari-
ants. In these cases, it is necessary to deal with non-convex problems exhibiting a
large number of local minima, whereas much of the research on Kernel Methods
and Mathematical Programming is focused on problems with global exact solu-
tions. These boundaries may become less clear-cut in the future, but at the present
time, methods for the solution of problems with unique optima appear to be suffi-
cient for our purposes.

In Section 6.1, we explain general properties of convex sets and functions, andOverview
how the extreme values of such functions can be found. Next, we discuss practical
algorithms to best minimize convex functions on unconstrained domains (Section
6.2). In this context, we will present techniques like interval cutting methods,
Newton’s method, gradient descent and conjugate gradient descent. Section 6.3
then deals with constrained optimization problems, and gives characterization
results for solutions. In this context, Lagrangians, primal and dual optimization
problems, and the Karush-Kuhn-Tucker (KKT) conditions are introduced. These
concepts set the stage for Section 6.4, which presents an interior point algorithm
for the solution of constrained convex optimization problems. In a sense, the final
section (Section 6.5) is a departure from the previous topics, since it introduces
the notion of randomization into the optimization procedures. The basic idea is
that unless the exact solution is required, statistical tools can speed up search
maximization by orders of magnitude.

For a general overview, we recommend Section 6.1, and the first parts of Sec-
tion 6.3, which explain the basic ideas underlying constrained optimization. The
latter section is needed to understand the calculations which lead to the dual opti-
mization problems in Support Vector Machines (Chapters 7–9). Section 6.4 is only
intended for readers interested in practical implementations of optimization al-
gorithms. In particular, Chapter 10 will require some knowledge of this section.
Finally, Section 6.5 describes novel randomization techniques, which are needed
in the sparse greedy methods of Section 10.2, 15.3, 16.4, and 18.4.3. Unconstrained
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6.3.3 Linear and
Quadratic Programs

6.3.1, 6.3.2 Optimality
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6.1 Convex Optimization
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6.2.4 Conjugate
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6.2.2, 6.2.3 Gradient
Descent

6.4 Interior Point
Methods

optimization problems (Section 6.2) are less common in this book and will only
be required in the gradient descent methods of Section 10.6.1, and the Gaussian
Process implementation methods of Section 16.4.

The present chapter is intended as an introduction to the basic concepts of
optimization. It is relatively self-contained, and requires only basic skills in linearPrerequisites
algebra and multivariate calculus. Section 6.3 is somewhat more technical, Section
6.4 requires some additional knowledge of numerical analysis, and Section 6.5
assumes some knowledge of probability and statistics.

6.1 Convex Optimization

In the situations considered in this book, learning (or equivalently statistical es-
timation) implies the minimization of some risk functional such as Remp[ f ] or
Rreg[ f ] (cf. Chapter 4). While minimizing an arbitrary function on a (possibly not
even compact) set of arguments can be a difficult task, and will most likely exhibit
many local minima, minimization of a convex objective function on a convex set
exhibits exactly one global minimum. We now prove this property.

Definition 6.1 (Convex Set) A set X in a vector space is called convex if for any x x
X and any [0 1], we have

x (1 )x X (6.1)
Definition and
Construction of
Convex Sets and
Functions

Definition 6.2 (Convex Function) A function f defined on a set X (note that X need
not be convex itself) is called convex if, for any x x X and any [0 1] such that

x (1 )x X, we have

f ( x (1 )x ) f (x) (1 ) f (x ) (6.2)

A function f is called strictly convex if for x x and (0 1) (6.2) is a strict inequality.
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Figure 6.1 Left: Convex Function in two variables. Right: the corresponding convex level
sets x f (x) c , for different values of c.

There exist several ways to define convex sets. A convenient method is to define
them via below sets of convex functions, such as the sets for which f (x) c, for
instance.

Lemma 6.3 (Convex Sets as Below-Sets) Denote by f : a convex function on
a convex set . Then the set

X : x x and f (x) c for all c (6.3)

is convex.

Proof We must show condition (6.1). For any x x , we have f (x) f (x ) c.
Moreover, since f is convex, we also have

f ( x (1 )x ) f (x) (1 ) f (x ) c for all [0 1] (6.4)

Hence, for all [0 1], we have ( x (1 )x ) X, which proves the claim.
Figure 6.1 depicts this situation graphically.

Lemma 6.4 (Intersection of Convex Sets) Denote by X X two convex sets. Then
X X is also a convex set.

Intersections

Proof Given any x x X X , then for any [0 1], the point x : x (1
)x satisfies x X and x X , hence also x X X .

See also Figure 6.2. Now we have the tools to prove the central theorem of this
section.

Theorem 6.5 (Minima on Convex Sets) If the convex function f : has a min-
imum on a convex set X , then its arguments x , for which the minimum value
is attained, form a convex set. Moreover, if f is strictly convex, then this set will contain
only one element.
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Figure 6.2 Left: a convex set; observe that lines with points in the set are fully contained
inside the set. Right: the intersection of two convex sets is also a convex set.

f(x)

a b x

Figure 6.3 Note that the maximum
of a convex function is obtained at
the ends of the interval [a b].

Proof Denote by c the minimum of f on X. Then the set Xm : x x and f (x)
c is clearly convex. In addition, Xm X is also convex, and f (x) c for all
x Xm X (otherwise c would not be the minimum).

If f is strictly convex, then for any x x X, and in particular for any x x
X Xm, we have (for x x and all (0 1)),

f ( x (1 )x ) f (x) (1 ) f (x ) c (1 )c c (6.5)

This contradicts the assumption that Xm X contains more then one element.

A simple application of this theorem is in constrained convex minimization. Recall
that the notation [n], used below, is a shorthand for 1 n .Global Minima

Corollary 6.6 (Constrained Convex Minimization) Given the set of convex func-
tions f c1 cn on the convex set , the problem

minimize
x

f (x)

subject to ci(x) 0 for all i [n]
(6.6)

has as its solution a convex set, if a solution exists. This solution is unique if f is strictly
convex.

Many problems in Mathematical Programming or Support Vector Machines can
be cast into this formulation. This means either that they all have unique solutions
(if f is strictly convex), or that all solutions are equally good and form a convex set
(if f is merely convex).

We might ask what can be said about convex maximization. Let us analyze a
simple case first: convex maximization on an interval.
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Lemma 6.7 (Convex Maximization on an Interval) Denote by f a convex function
on [a b] . Then the problem of maximizing f on [a b] has f (a) and f (b) as solutions.

Maxima on
Extreme Points Proof Any x [a b] can be written as b x

b a a 1 b x
b a b, and hence

f (x)
b x
b a

f (a) 1
b x
b a

f (b) max( f (a) f (b)) (6.7)

Therefore the maximum of f on [a b] is obtained on one of the points a b.

We will next show that the problem of convex maximization on a convex set is
typically a hard problem, in the sense that the maximum can only be found at one
of the extreme points of the constraining set. We must first introduce the notion of
vertices of a set.

Definition 6.8 (Vertex of a Set) A point x X is a vertex of X if, for all x X with
x x, and for all 1, the point x (1 )x X.

This definition implies, for instance, that in the case of X being an 2 ball, the
vertices of X make up its surface. In the case of an ball, we have 2n vertices in
n dimensions, and for an 1 ball, we have only 2n of them. These differences will
guide us in the choice of admissible sets of parameters for optimization problems
(see, e.g., Section 14.4). In particular, there exists a connection between suprema
on sets and their convex hulls. To state this link, however, we need to define the
latter.

Definition 6.9 (Convex Hull) Denote by X a set in a vector space. Then the convex hull
co X is defined as

co X : x̄ x̄
n

∑
i 1

ixi where n i 0 and
n

∑
i 1

i 1 (6.8)

Theorem 6.10 (Suprema on Sets and their Convex Hulls) Denote by X a set and by
co X its convex hull. Then for a convex function f

sup f (x) x X sup f (x) x co X (6.9)
Evaluating
Convex Sets on
Extreme Points

Proof Recall that the below set of convex functions is convex (Lemma 6.3), and
that the below set of f with respect to c sup f (x) x X is by definition a
superset of X. Moreover, due to its convexity, it is also a superset of co X.

This theorem can be used to replace search operations over sets X by subsets
X X, which are considerably smaller, if the convex hull of the latter generates
X. In particular, the vertices of convex sets are sufficient to reconstruct the whole
set.

Theorem 6.11 (Vertices) A compact convex set is the convex hull of its vertices.
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Figure 6.4 A convex function on a convex
polyhedral set. Note that the minimum of this
function is unique, and that the maximum
can be found at one of the vertices of the con-
straining domain.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [435, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets) Denote
by X a compact convex set in , by X the vertices of X, and by f a convex function
on X. Then

sup f (x) x X sup f (x) x X (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X co ( X). Figure 6.4 depicts the
situation graphically.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice
of algorithms is motivated by applicability to kernel methods, the presentation
here is not problem specific. For details on implementation, and descriptions of
applications to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

Assume we want to minimize f : on the interval [a b] . If we cannot
make any further assumptions regarding f , then this problem, as simple as it may
seem, cannot be solved numerically.

If f is differentiable, the problem can be reduced to finding f (x) 0 (see Prob-Continuous
Differentiable
Functions

lem 6.4 for the general case). If in addition to the previous assumptions, f is con-
vex, then f is nondecreasing, and we can find a fast, simple algorithm (Algorithm
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731 2456

Figure 6.5 Interval Cutting Algorithm. The selection of points is ordered according to the
numbers beneath (points 1 and 2 are the initial endpoints of the interval).

Algorithm 6.1 Interval Cutting

Require: a b Precision
Set A a B b
repeat

if f A B
2 0 then

B A B
2

else
A A B

2
end if

until (B A) min( f (A) f (B) )
Output: x A B

2

6.1) to solve our problem (see Figure 6.5).Interval Cutting
This technique works by halving the size of the interval that contains the min-

imum x of f , since it is always guaranteed by the selection criteria for B and A
that x [A B]. We use the following Taylor series expansion to determine the
stopping criterion.

Theorem 6.13 (Taylor Series) Denote by f : a function that is d times differen-
tiable. Then for any x x , there exists a with x x , such that

f (x )
d 1

∑
i 0

1
i!

f (i)(x)(x x)i
d

d!
f (d)(x ) (6.11)

Now we may apply (6.11) to the stopping criterion of Algorithm 6.1. We denote
by x the minimum of f (x). Expanding f around f (x ), we obtain for some A

[A x 0] that f (A) f (x ) A f (x A), and therefore,

f (A) f (x ) A f (x A) (B A) f (A)

Taking the minimum over A B shows that Algorithm 6.1 stops once f is -closeProof of Linear
Convergence to its minimal value. The convergence of the algorithm is linear with constant 0 5,

since the intervals [A B] for possible x are halved at each iteration.
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Algorithm 6.2 Newton’s Method

Require: x0, Precision
Set x x0

repeat
x x f (x)

f (x)
until f (x)

Output: x

In constructing the interval cutting algorithm, we in fact wasted most of the
information obtained in evaluating f at each point, by only making use of the
sign of f . In particular, we could fit a parabola to f and thereby obtain a method
that converges more rapidly. If we are only allowed to use f and f , this leads to
the Method of False Position (see [334] or Problem 6.3).

Moreover, if we may compute the second derivative as well, we can use (6.11) to
obtain a quadratic approximation of f and use the latter to find the minimum of f .
This is commonly referred to as Newton’s method (see Section 16.4.1 for a practicalNewton’s

Method application of the latter to classification problems). We expand f (x) around x0;

f (x) f (x0) (x x0) f (x0)
(x x0)2

2
f (x0) (6.12)

Minimization of the expansion (6.12) yields

x x0
f (x0)
f (x0)

(6.13)

Hence, we hope that if the approximation (6.12) is good, we will obtain an algo-
rithm with fast convergence (Algorithm 6.2). Let us analyze the situation in more
detail. For convenience, we state the result in terms of g : f , since finding a zero
of g is equivalent to finding a minimum of f .

Theorem 6.14 (Convergence of Newton Method) Let g : be a twice continu-
ously differentiable function, and denote by x a point with g (x ) 0 and g(x ) 0.
Then, provided x0 is sufficiently close to x , the sequence generated by (6.13) will converge
to x at least quadratically.Quadratic

Convergence
Proof For convenience, denote by xn the value of x at the nth iteration. As before,
we apply Theorem 6.13. We now expand g(x ) around xn. For some [0 x xn],
we have

g(xn) g(xn) g(x ) g(xn) g(xn) g (xn)(x xn)
2

2
g (xn) (6.14)

and therefore by substituting (6.14) into (6.13),

xn 1 x xn x
g(xn)
g (xn)

2 g (xn)
2g (xn)

(6.15)

Since by construction xn x , we obtain a quadratically convergent algo-
rithm in xn x , provided that (xn x ) g (xn)

2g (xn) 1.
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Region of
Convergence

In other words, if the Newton method converges, it converges more rapidly than
interval cutting or similar methods. We cannot guarantee beforehand that we are
really in the region of convergence of the algorithm. In practice, if we apply
the Newton method and find that it converges, we know that the solution has
converged to the minimizer of f . For more information on optimization algorithms
for unconstrained problems see [173, 530, 334, 15, 159, 45].

In some cases we will not know an upper bound on the size of the interval to be
analyzed for the presence of minima. In this situation we may, for instance, startLine Search
with an initial guess of an interval, and if no minimum can be found strictly inside
the interval, enlarge it, say by doubling its size. See [334] for more information on
this matter. Let us now proceed to a technique which is quite popular (albeit not
always preferable) in machine learning.

6.2.2 Functions of Several Variables: Gradient Descent

Gradient descent is one of the simplest optimization techniques to implement for
minimizing functions of the form f : , where may be N , or indeed any
set on which a gradient may be defined and evaluated. In order to avoid further
complications we assume that the gradient f (x) exists and that we are able to
compute it.

The basic idea is as follows: given a location xn at iteration n, compute the
gradient gn : f (xn), and updateDirection of

Steepest Descent
xn 1 xn gn (6.16)

such that the decrease in f is maximal over all 0. For the final step, one of the
algorithms from Section 6.2.1 can be used. It is straightforward to show that f (xn)
is a monotonically decreasing series, since at each step the line search updates xn 1

in such a way that f (xn 1) f (xn). Such a value of must exist, since (again by
Theorem 6.13) we may expand f (xn gn) in terms of around xn, to obtain1

f (xn gn) f (xn) gn
2 O( 2) (6.17)

As usual is the Euclidean norm. For small the linear contribution in the
Taylor expansion will be dominant, hence for some 0 we have f (xn gn)
f (xn). It can be shown [334] that after a (possibly infinite) number of steps, gradient
descent (see Algorithm 6.3) will converge.Problems of

Convergence In spite of this, the performance of gradient descent is far from optimal. De-
pending on the shape of the landscape of values of f , gradient descent may take
a long time to converge. Figure 6.6 shows two examples of possible convergence
behavior of the gradient descent algorithm.

1. To see that Theorem 6.13 applies in (6.17), note that f (xn gn) is a mapping
when viewed as a function of .
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Algorithm 6.3 Gradient Descent

Require: x0, Precision
n 0
repeat

Compute g f (xn)
Perform line search on f (xn g) for optimal .
xn 1 xn g
n n 1

until f (xn)
Output: xn

Figure 6.6 Left: Gradient descent takes a long time to converge, since the landscape of
values of f forms a long and narrow valley, causing the algorithm to zig-zag along the
walls of the valley. Right: due to the homogeneous structure of the minimum, the algorithm
converges after very few iterations. Note that in both cases, the next direction of descent is
orthogonal to the previous one, since line search provides the optimal step length.

6.2.3 Convergence Properties of Gradient Descent

Let us analyze the convergence properties of Algorithm 6.3 in more detail. To keep
matters simple, we assume that f is a quadratic function, i.e.

f (x)
1
2

(x x ) K(x x ) c0 (6.18)

where K is a positive definite symmetric matrix (cf. Definition 2.4) and c0 is
constant.2 This is clearly a convex function with minimum at x , and f (x ) c0.
The gradient of f is given by

g : f (x) K(x x ) (6.19)

To find the update of the steepest descent we have to minimize

f (x g)
1
2

(x g x )K(x g x )
1
2

2g Kg g g (6.20)

2. Note that we may rewrite (up to a constant) any convex quadratic function f (x)
x Kx c x d in the form (6.18), simply by expanding f around its minimum value x .
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By minimizing (6.20) for , the update of steepest descent is given explicitly by

xn 1 xn
g g

g Kg
g (6.21)

Improvement per
Step Substituting (6.21) into (6.18) and subtracting the terms f (xn) and f (xn 1) yields

the following improvement after an update step

f (xn) f (xn 1) (xn x ) K
g g

g Kg
g

1
2

g g
g Kg

2

g Kg

1
2

(g g)2

g Kg
f (xn)

(g g)2

(g Kg)(g K 1g)
(6.22)

Thus the relative improvement per iteration depends on the value of t(g) :
(g g)2

(g Kg)(g K 1 g) . In order to give performance guarantees we have to find a lower
bound for t(g). To this end we introduce the condition of a matrix.

Definition 6.15 (Condition of a Matrix) Denote by K a matrix and by max and min

its largest and smallest singular values (or eigenvalues if they exist) respectively. The
condition of a matrix is defined as

cond K : max

min
(6.23)

Clearly, as cond K decreases, different directions are treated in a more homoge-
neous manner by x Kx. In particular, note that smaller cond K correspond to less
elliptic contours in Figure 6.6. Kantorovich proved the following inequality which
allows us to connect the condition number with the convergence behavior of gra-
dient descent algorithms.

Theorem 6.16 (Kantorovich Inequality [278]) Denote by K m m (typically the
kernel matrix) a strictly positive definite symmetric matrix with largest and smallest

Lower Bound for
Improvement

eigenvalues max and min. Then the following inequality holds for any g m :

(g g)2

(g Kg)(g K 1g)
4 min max

( min max)2

1
cond K

(6.24)

We typically denote by g the gradient of f . The second inequality follows immedi-
ately from Definition 6.15; the proof of the first inequality is more technical, and is
not essential to the understanding of the situation. See Problem 6.7 and [278, 334]
for more detail.

A brief calculation gives us the correct order of magnitude. Note that for any
x, the quadratic term x Kx is bounded from above by max x 2, and likewise
x K 1x 1

min x 2. Hence we bound the relative improvement t(g) (as defined
below (6.22)) by 1 (cond K) which is almost as good as the second term in (6.24)
(the latter can be up to a factor of 4 better for min max).

This means that gradient descent methods perform poorly if some of the eigen-
values of K are very small in comparison with the largest eigenvalue, as is usually
the case with matrices generated by positive definite kernels (and as sometimes
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desired for learning theoretical reasons); see Chapter 4 for details. This is one of
the reasons why many gradient descent algorithms for training Support Vector
Machines, such as the Kernel AdaTron [183, 12] or AdaLine [185], exhibit poor
convergence. Section 10.6.1 deals with these issues, and sets up the gradient de-
scent directions both in the Reproducing Kernel Hilbert Space and in coefficient
space m .

6.2.4 Functions of Several Variables: Conjugate Gradient Descent

Let us now look at methods that are better suited to minimizing convex functions.
Again, we start with quadratic forms. The key problem with gradient descent is
that the quotient between the smallest and the largest eigenvalue can be very large,
which leads to slow convergence. Hence, one possible technique is to rescale by
some matrix M such that the condition of K m m in this rescaled space, which
is to say the condition of M KM, is much closer to 1 (in numerical analysis this is
often referred to as preconditioning [247, 423, 530]). In addition, we would like to
focus first on the largest eigenvectors of K.

A key tool is the concept of conjugate directions. The basic idea is that rather than
using the metric of the normal dot product x x x 1x (1 is the unit matrix) we
use the metric imposed by K, i.e. x Kx , to guide our algorithm, and we introduce
an equivalent notion of orthogonality with respect to the new metric.

Definition 6.17 (Conjugate Directions) Given a symmetric matrix K m m , any
two vectors v v m are called K-orthogonal if v Kv 0.

Likewise, we can introduce notions of a basis and of linear independence with
respect to K. The following theorem establishes the necessary identities.

Theorem 6.18 (Orthogonal Decompositions in K) Denote by K m m a strictly
positive definite symmetric matrix and by v1 vm a set of mutually K-orthogonal and
nonzero vectors. Then the following properties hold:

(i) The vectors v1 vm form a basis.

(ii) Any x m can be expanded in terms of vi by

x
m

∑
i 1

vi
vi Kx
vi Kvi

(6.25)

In particular, for any y Kx, we can find x by

x
m

∑
i 1

vi
vi y

vi Kvi
(6.26)

Proof (i) Since we have m vectors in m , all we have to show is that the vectors viLinear
Independence are linearly independent. Assume that there exist some i such that ∑m

i 1 ivi
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0. Then due to K-orthogonality, we have

0 v j K
m

∑
i 1

ivi

m

∑
i 1

iv j Kvi jv j Kvj for all j (6.27)

Hence j 0 for all j. This means that all v j are linearly independent.

(ii) The vectors v1 vm form a basis. Therefore we may expand any x m

as a linear combination of vj, i.e. x ∑m
i 1 ivi. Consequently we can expand vj Kx

in terms of vj Kvi, and we obtain

vj Kx vj K
m

∑
i 1

ivi jv j Kvj (6.28)

Basis Expansion
Solving for j proves the claim.

(iii) Let y Kx. Since the vectors vi form a basis, we can expand x in terms of i.
Substituting this definition into (6.28) proves (6.26).

The practical consequence of this theorem is that, provided we know a set of K-
orthogonal vectors vi, we can solve the linear equation y Kx via (6.26). Fur-
thermore, we can also use it to minimize quadratic functions of the form f (x)
1
2 x Kx c x. The following theorem tells us how.

Theorem 6.19 (Deflation Method) Denote by v1 vm a set of mutually K-orthogonal
vectors for a strictly positive definite symmetric matrix K m m . Then for any x0

m

the following method finds xi that minimize f (x) 1
2 x Kx c x in the linear manifold

i : x0 span v1 vi .Optimality in
Linear Space

xi : xi 1 vi
gi 1vi

vi Kvi
where gi 1 f (xi 1) for all i 0 (6.29)

Proof We use induction. For i 0 the statement is trivial, since the linear mani-
fold consists of only one point.

Assume that the statement holds for i. Since f is convex, we only need prove
that the gradient of f (xi) is orthogonal to span v1 vi . In that case no further
improvement can be gained on the linear manifold i. It suffices to show that for
all j i 1,

0 v j gi (6.30)

Additionally, we may expand xi 1 to obtainGradient Descent
in Rescaled Space

vj gi v j Kxi 1 c Kvi
gi 1vi

vi Kvi
v j gi 1 (gi 1vi)

vj Kvi

vi Kvi
(6.31)

For j i both terms cancel out. For j i both terms vanish due to the induction
assumption. Since the vectors vj form a basis m

m , xm is a minimizer of f .

In a nutshell, Theorem 6.19 already contains the Conjugate Gradient descent al-
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Algorithm 6.4 Conjugate Gradient Descent

Require: x0

Set i 0
g0 f (x0)
v0 g0

repeat
xi 1 xi ivi where i

gi vi

vi Kvi

gi 1 f (xi 1)

vi 1 gi 1 ivi where i
gi 1 Kvi

vi Kvi
.

i i 1
until gi 0

Output: xi

gorithm: in each step we perform gradient descent with respect to one of the K-
orthogonal vectors vi, which means that after n steps we will reach the minimum.
We still lack a method to obtain such a K-orthogonal basis of vectors vi. It turns out
that we can get the latter directly from the gradients gi. Algorithm 6.4 describes the
procedure.

All we have to do is prove that Algorithm 6.4 actually does what it is required
to do, namely generate a K-orthogonal set of vectors vi, and perform deflation in
the latter. To achieve this, the vi are obtained by an orthogonalization procedure
akin to Gram-Schmidt orthogonalization.

Theorem 6.20 (Conjugate Gradient) Assume we are given a quadratic convex func-
tion f (x) 1

2 x Kx c x, to which we apply conjugate gradient descent for minimization
purposes. Then algorithm 6.4 is a deflation method, and unless gi 0, we have for every
0 i m,

(i) span g0 gi span v0 vi span g0 Kg0 Kig0 .

(ii) The vectors vi are K-orthogonal.

(iii) The equations in Algorithm 6.4 for i and i can be replaced by i
gi gi

vi Kvi
and

i
gi 1 gi 1

gi gi
.

(iv) After i steps, xi is the solution in the manifold x0 span g0 Kg0 Ki 1g0 .

Proof (i) and (ii) We use induction. For i 0 the statements trivially hold since
v0 g0. For i note that by construction (see Algorithm 6.4) gi 1 Kxi 1 c gi

iKvi, hence span g0 gi 1 span g0 Kg0 Ki 1g0 . Since vi 1 gi 1

ivi the same statement holds for span v0 vi 1 . Moreover, the vectors gi are
linearly independent or 0 due to Theorem 6.19.
Finally vj Kvi 1 vj Kgi 1 iv j Kvi 0, since for j i both terms cancel out,
and for j i both terms individually vanish (due to Theorem 6.19 and (i)).

(iii) We have gi vi gi gi i 1gi vi 1 gi gi, since the second term vanishes
due to Theorem 6.19. This proves the result for i.
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Table 6.1 Non-quadratic modifications of conjugate gradient descent.

Generic Method Compute Hessian Ki : f (xi) and update i i with

i
gi vi

vi Kivi

i
gi 1 Kivi

vi Kivi

This requires calculation of the Hessian at each iteration.
Fletcher-Reeves [173] Find i via a line search and use Theorem 6.20 (iii) for i

i argmin f (xi vi)

i
gi 1 gi 1

gi gi

Polak-Ribiere [414] Find i via a line search

i argmin f (xi vi)

i
(gi 1 gi ) gi 1

gi gi

Experimentally, Polak-Ribiere tends to be better than
Fletcher-Reeves.

For i note that gi 1Kvi
1

i gi 1(gi 1 gi) 1
i gi 1gi 1. Substitution of the

value of i proves the claim.

(iv) Again, we use induction. At step i 1 we compute the solution within the
space spanned by g0.

We conclude this section with some remarks on the optimality of conjugate gradi-
ent descent algorithms, and how they can be extended to arbitrary convex func-
tions.

Due to Theorems 6.19 and 6.20, we can see that after i iterations, the con-Space of Largest
Eigenvalues jugate gradient descent algorithm finds a solution on the linear manifold x0

span g0 Kg0 Ki 1g0 . This means that the solutions will be mostly aligned
with the largest eigenvalues of K, since after multiple application of K to any arbi-
trary vector g0, the largest eigenvectors dominate. Nonetheless, the algorithm here
is significantly cheaper than computing the eigenvalues of K, and subsequently
minimizing f in the subspace corresponding to the largest eigenvalues. For more
detail see [334]

In the case of general convex functions, the assumptions of Theorem 6.20 are
no longer satisfied. In spite of this, conjugate gradient descent has proven to
be effective even in these situations. Additionally, we have to account for some
modifications. Basically, the update rules for gi and vi remain unchanged but the
parameters i and i are computed differently. Table 6.1 gives an overview of
different methods. See [173, 334, 530, 414] for details.Nonlinear

Extensions
6.2.5 Predictor Corrector Methods

As we go to higher order Taylor expansions of the function f to be minimized
(or set to zero), the corresponding numerical methods become increasingly com-
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plicated to implement, and require an ever increasing number of parameters to
be estimated or computed. For instance, a quadratic expansion of a multivariateIncreasing the

Order function f : m requires m m terms for the quadratic part (the Hessian),
whereas the linear part (the gradient) can be obtained by computing m terms.
Since the quadratic expansion is only an approximation for most non-quadratic
functions, this is wasteful (for interior point programs, see Section 6.4). We might
instead be able to achieve roughly the same goal without computing the quadratic
term explicitly, or more generally, obtain the performance of higher order methods
without actually implementing them.

This can in fact be achieved using predictor-corrector methods. These work
by computing a tentative update xi xpred

i 1 (predictor step), then using xpred
i 1 to

account for higher order changes in the objective function, and finally obtaining
a corrected value xcorr

i 1 based on these changes. A simple example illustrates the
method. Assume we want to find the solution to the equationPredictor

Corrector
Methods for
Quadratic
Equations

f (x) 0 where f (x) f0 ax
1
2

bx2 (6.32)

We assume a b f0 x . Exact solution of (6.32) requires taking a square root. Let
us see whether we can find an approximate method that avoids this (in general
b will be an m m matrix, so this is a worthwhile goal). The predictor corrector
approach works as follows: first solve

f0 ax 0 and hence xpred f0

a
(6.33)

Second, substitute xpred into the nonlinear parts of (6.32) to obtain

f0 axcorr 1
2

b
f0

a

2

0 and hence xcorr f0

a
1

1
2

b f0

a2 (6.34)

Comparing xpred and xcorr, we see that 1
2

b f0
a2 is the correction term that takes the

effect of the changes in x into account.No Quadratic
Residuals Since neither of the two values (xpred or xcorr) will give us the exact solution

to f (x) 0 in just one step, it is worthwhile having a look at the errors of both
approaches.

f (xpred)
1
2

b f 2
0

a2 and f (xcorr) 2
f 2(xpred)

f0

f 3(xpred)
f 2
0

(6.35)

We can check that if b f0
a2 2 2 2, the corrector estimate will be better than the

predictor one. As our initial estimate f0 decreases, this will be the case. Moreover,
we can see that f (xcorr) only contains terms in x that are of higher order than
quadratic. This means that even though we did not solve the quadratic form
explicitly, we eliminated all corresponding terms.

The general scheme is described in Algorithm 6.5. It is based on the assumption
that f (x ) can be split up into

f (x ) f (x) fsimple( x) T( x) (6.36)
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Algorithm 6.5 Predictor Corrector Method

Require: x0, Precision
Set i 0
repeat

Expand f into f (xi) fsimple( xi) T( xi).
Predictor Solve f (xi) fsimple( pred xi) 0 for pred.
Corrector Solve f (xi) fsimple( corr xi) T( pred xi) 0 for corr.

xi 1 xi
corr.

i i 1.
until f (xi)

Output: xi

where fsimple( x) contains the simple, possibly low order, part of f , and T( x)
the higher order terms, such that fsimple(0 x) T(0 x) 0. While in the previous
example we introduced higher order terms into f that were not present before ( f is
only quadratic), usually such terms will already exist anyway. Hence the corrector
step will just eliminate additional lower order terms without too much additional
error in the approximation.
We will encounter such methods for instance in the context of interior point
algorithms (Section 6.4), where we have to solve a set of quadratic equations.

6.3 Constrained Problems

After this digression on unconstrained optimization problems, let us return to
constrained optimization, which makes up the main body of the problems we
will have to deal with in learning (e.g., quadratic or general convex programs for
Support Vector Machines). Typically, we have to deal with problems of type (6.6).
For convenience we repeat the problem statement:

minimize
x

f (x)

subject to ci(x) 0 for all i [n]
(6.37)

Here f and ci are convex functions and n . In some cases3, we additionally have
equality constraints ej(x) 0 for some j [n ]. Then the optimization problem can
be written as

minimize
x

f (x)

subject to ci(x) 0 for all i [n]

e j(x) 0 for all j [n ]

(6.38)

3. Note that it is common practice in Support Vector Machines to write ci as positivity
constraints by using concave functions. This can be fixed by a sign change, however.
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Before we start minimizing f , we have to discuss what optimality means in this
case. Clearly f (x) 0 is too restrictive a condition. For instance, f could point
into a direction which is forbidden by the constraints ci and ei. Then we could
have optimality, even though f 0. Let us analyze the situation in more detail.

6.3.1 Optimality Conditions

We start with optimality conditions for optimization problems which are indepen-
dent of their differentiability. While it is fairly straightforward to state sufficient
optimality conditions for arbitrary functions f and ci, we will need convexity and
“reasonably nice” constraints (see Lemma 6.23) to state necessary conditions. This
is not a major concern, since for practical applications, the constraint qualification
criteria are almost always satisfied, and the functions themselves are usually con-
vex and differentiable. Much of the reasoning in this section follows [345], which
should also be consulted for further references and detail.

Some of the most important sufficient criteria are the Kuhn-Tucker4 saddle point
conditions [312]. As indicated previously, they are independent of assumptions on
convexity or differentiability of the constraints ci or objective function f .

Theorem 6.21 (Kuhn-Tucker Saddle Point Condition [312, 345]) Assume an opti-
mization problem of the form (6.37), where f : m and ci : m for i [n]
are arbitrary functions, and a LagrangianLagrangian

L(x ) : f (x)
n

∑
i 1

ici(x) where i 0 (6.39)

If a pair of variables (x̄ ¯ ) with x̄ n and ¯ i 0 for all i [n] exists, such that for all
x m and [0 )n,

L(x̄ ) L(x̄ ¯ ) L(x ¯ ) (Saddle Point) (6.40)

then x̄ is a solution to (6.37).

The parameters i are called Lagrange multipliers. As described in the later chap-
ters, they will become the coefficients in the kernel expansion in SVM.

Proof The proof follows [345]. Denote by (x̄ ¯ ) a pair of variables satisfying
(6.40). From the first inequality it follows that

n

∑
i 1

( i ¯ i)ci(x̄) 0 (6.41)

Since we are free to choose i 0, we can see (by setting all but one of the terms i

to ¯ i and the remaining one to i ¯ i 1) that ci(x) 0 for all i [n]. This shows
that x̄ satisfies the constraints, i.e. it is feasible.

4. An earlier version is due to Karush [283]. This is why often one uses the abbreviation
KKT (Karush-Kuhn-Tucker) rather than KT to denote the optimality conditions.
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Additionally, by setting one of the i to 0, we see that ¯ ici(x̄) 0. The only way
to satisfy this is by having

¯ ici(x̄) 0 for all i [n] (6.42)

Eq. (6.42) is often referred to as the KKT condition [283, 312]. Finally, combining
(6.42) and ci(x) 0 with the second inequality in (6.40) yields f (x̄) f (x) for all
feasible x. This proves that x̄ is optimal.

We can immediately extend Theorem 6.21 to accommodate equality constraints by
splitting them into the conditions ei(x) 0 and ei(x) 0. We obtain:

Theorem 6.22 (Equality Constraints) Assume an optimization problem of the form
(6.38), where f ci e j : m for i [n] and j [n ] are arbitrary functions, and a
Lagrangian

L(x ) : f (x)
n

∑
i 1

ici(x)
n

∑
j 1

je j(x) where i 0 and j (6.43)

If a set of variables (x̄ ¯ ¯ ) with x̄ m , ¯ [0 ), and ¯ n exists such that for all
x m , [0 )n, and n ,

L(x̄ ) L(x̄ ¯ ¯ ) L(x ¯ ¯ ) (6.44)

then x̄ is a solution to (6.38).

Now we determine when the conditions of Theorem 6.21 are necessary. We
will see that convexity and sufficiently “nice” constraints are needed for (6.40)
to become a necessary condition. The following lemma (see [345]) describes three
constraint qualifications, which will turn out to be exactly what we need.

Lemma 6.23 (Constraint Qualifications) Denote by m a convex set, and by
c1 cn : n convex functions defining a feasible region byFeasible Region

X : x x and ci(x) 0 for all i [n] (6.45)

Then the following additional conditions on ci are connected by (i) (ii) and (iii)
(i).Equivalence

Between
Constraint
Qualifications

(i) There exists an x such that for all i [n] ci(x) 0 (Slater’s condition [500]).

(ii) For all nonzero [0 )n there exists an x such that ∑n
i 1 ici(x) 0 (Karlin’s

condition [281]).

(iii) The feasible region X contains at least two distinct elements, and there exists an x X
such that all ci are strictly convex at x wrt. X (Strict constraint qualification).

The connection (i) (ii) is also known as the Generalized Gordan Theorem
[164]. The proof can be skipped if necessary. We need an auxiliary lemma which
we state without proof (see [345, 435] for details).
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Figure 6.7 Two hyperplanes (and their nor-
mal vectors) separating the convex hull of a
finite set of points from the origin.

Lemma 6.24 (Separating Hyperplane Theorem) Denote by X m a convex set not
containing the origin 0. Then there exists a hyperplane with normal vector m such
that x 0 for all x X.

See also Figure 6.7.

Proof of Lemma 6.23. We prove (i) (ii) by showing (i) (ii) and not
(i) not (ii) .

(i) (ii) For a point x X with ci(x) 0, for all i [n] we have that ici(x) 0
implies i 0.

(i) (ii) Assume that there is no x with ci(x) 0 for all i [n]. Hence the set

Γ : n and there exists some x X with i ci(x) for all i [n] (6.46)

is convex and does not contain the origin. The latter follows directly from the
assumption. For the former take Γ and (0 1) to obtain

i (1 ) i ci(x) (1 )ci(x ) ci( x (1 )x ) (6.47)

Now by Lemma 6.24, there exists some n such that 0 and 2 1 for
all Γ. Since each of the i for Γ can be arbitrarily large (with respect to the
other coordinates), we conclude i 0 for all i [n].
Denote by : infx X ∑n

i 1 ici(x) and by : inf Γ . One can see that by
construction . By Lemma 6.24 was chosen such that 0, and hence

0. This contradicts (ii), however, since it implies the existence of a suitable
with ici(x) 0 for all x.

(iii) (i) Since X is convex we get for all ci and for any (0 1):

x (1 )x X and 0 ci(x) (1 )ci(x ) ci( x (1 )x ) (6.48)

This shows that x (1 )x satisfies (i) and we are done.

We proved Lemma 6.23 as it provides us with a set of constraint qualifications
(conditions on the constraints) that allow us to determine cases where the KKT
saddle point conditions are both necessary and sufficient. This is important, since
we will use the KKT conditions to transform optimization problems into their
duals, and solve the latter numerically. For this approach to be valid, however, we
must ensure that we do not change the solvability of the optimization problem.
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Theorem 6.25 (Necessary KKT Conditions [312, 553, 281]) Under the assumptions
and definitions of Theorem 6.21 with the additional assumption that f and c i are convex
on the convex set X m (containing the set of feasible solutions as a subset) and that ci

satisfy one of the constraint qualifications of Lemma 6.23, the saddle point criterion (6.40)
is necessary for optimality.

Proof Denote by x̄ the solution to (6.37), and by X the set

X : X x x with f (x) f (x̄) 0 and ci(x) 0 for all i [n] (6.49)

By construction x̄ X . Furthermore, there exists no x X such that all inequality
constraints including f (x) f (x̄) are satisfied as strict inequalities (otherwise x̄
would not be optimal). In other words, X violates Slater’s conditions (i) of Lemma
6.23 (where both f (x) f (x̄) and c(x) together play the role of ci(x)), and thus also
Karlin’s conditions (ii). This means that there exists a nonzero vector ( ¯ 0 ¯ ) n 1

with nonnegative entries such that

¯ 0( f (x) f (x̄))
n

∑
i 1

¯ ici(x) 0 for all x (6.50)

In particular, for x x̄ we get ∑n
i 1 ¯ ici(x̄) 0. In addition, since x̄ is a solution to

(6.37), we have ci(x̄) 0. Hence ∑n
i 1 ¯ ici(x̄) 0. This allows us to rewrite (6.50) as

¯ 0 f (x)
n

∑
i 1

¯ ici(x) ¯ 0 f (x̄)
n

∑
i 1

¯ ici(x̄) (6.51)

This looks almost like the first inequality of (6.40), except for the ¯ 0 term (which
we will return to later). But let us consider the second inequality first.

Again, since ci(x̄) 0 we have ∑n
i 1 ici(x̄) 0 for all i 0. Adding ¯ 0 f (x̄) on

both sides of the inequality and ∑n
i 1 ¯ ici(x̄) on the rhs yields

¯ 0 f (x̄)
n

∑
i 1

¯ ici(x̄) ¯ 0 f (x̄)
n

∑
i 1

ici(x̄) (6.52)

This is almost all we need for the first inequality of (6.40) .5 If ¯ 0 0 we can divide
(6.51) and (6.52) by ¯ 0 and we are done.

When ¯ 0 0, then this implies the existence of ¯ n with nonnegative entries
satisfying ∑n

i 1 ¯ ici(x) 0 for all x X. This contradicts Karlin’s constraint quali-
fication condition (ii), which allows us to rule out this case.

6.3.2 Duality and KKT-Gap

Now that we have formulated necessary and sufficient optimality conditions (The-
orem 6.21 and 6.25) under quite general circumstances, let us put them to practical

5. The two inequalities (6.51) and (6.52) are also known as the Fritz-John saddle point nec-
essary optimality conditions [269], which play a similar role as the saddle point conditions
for the Lagrangian (6.39) of Theorem 6.21.
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use for convex differentiable optimization problems. We first derive a more prac-
tically useful form of Theorem 6.21. Our reasoning is as follows: eq. (6.40) implies
that L(x̄ ¯ ) is a saddle point in terms of (x̄ ¯ ). Hence, all we have to do is write the
saddle point conditions in the form of derivatives.

Theorem 6.26 (KKT for Differentiable Convex Problems [312]) A solution to the
optimization problem (6.37) with convex, differentiable f ci is given by x̄, if there exists
some ¯ n with i 0 for all i [n] such that the following conditions are satisfied:Primal and Dual

Feasibility
xL(x̄ ¯ ) x f (x̄)

n

∑
i 1

¯ i xci(x̄) 0 (Saddle Point in x̄), (6.53)

i L(x̄ ¯ ) ci(x̄) 0 (Saddle Point in ¯ ), (6.54)
n

∑
i 1

¯ ici(x̄) 0 (Vanishing KKT-Gap). (6.55)

Proof The easiest way to prove Theorem 6.26 is to show that for any x X, we
have f (x) f (x̄) 0. Due to convexity we may linearize and obtain

f (x) f (x̄) ( x f (x̄)) (x x̄) (6.56)
n

∑
i 1

¯ i ( xci(x̄)) (x x̄) (6.57)

n

∑
i 1

¯ i(ci(x) ci(x̄)) (6.58)

n

∑
i 1

¯ ici(x) 0 (6.59)

Here we used the convexity and differentiability of f to arrive at the rhs of (6.56)
and (6.58). To obtain (6.57) we exploited the fact that at the saddle point x f (x̄) can
be replaced by the corresponding expansion in xci(x̄); thus we used (6.53). Finally,
for (6.59) we used the fact that the KKT gap vanishes at the optimum (6.55) and
that the constraints are satisfied (6.54).

Optimization by
Constraint
Satisfaction

In other words, we may solve a convex optimization problem by finding (x̄ ¯ )
that satisfy the conditions of Theorem 6.26. Moreover, these conditions, together
with the constraint qualifications of Lemma 6.23, ensure necessity.

Note that we transformed the problem of minimizing functions into one of
solving a set of equations, for which several numerical tools are readily available.
This is exactly how interior point methods work (see Section 6.4 for details on
how to implement them). Necessary conditions on the constraints similar to those
discussed previously can also be formulated (see [345] for a detailed discussion).

The other consequence of Theorem 6.26, or rather of the definition of the La-
grangian L(x ), is that we may bound f (x̄) L(x̄ ¯ ) from above and below with-
out explicit knowledge of f (x̄).

Theorem 6.27 (KKT-Gap) Assume an optimization problem of type (6.37), where both f
and ci are convex and differentiable. Denote by x̄ its solution. Then for any set of variables
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(x ) with i 0, and for all i [n] satisfying

xL(x ) 0 (6.60)

i L(x ) 0 for all i [n] (6.61)

we haveBounding the
Error

f (x) f (x̄) f (x)
m

∑
i 1

ici(x) (6.62)

Strictly speaking, we only need differentiability of f and ci at x̄. However, since x̄
is only known after the optimization problem has been solved, this is not a very
useful condition.

Proof The first part of (6.62) follows from the fact that x X, so that x satisfies
the constraints. Next note that L(x̄ ¯ ) f (x̄) where (x̄ ¯ ) denotes the saddle point
of L. For the second part note that due to the saddle point condition (6.40), we
have for any with i 0,

f (x̄) L(x̄ ¯ ) L(x̄ ) inf
x X

L(x ) (6.63)

The function L(x ) is convex in x since both f and the constraints ci are convex
and all i 0. Therefore (6.60) implies that x minimizes L(x ). This proves the
second part of (6.63), which in turn proves the second inequality of (6.62).

Hence, no matter what algorithm we are using in order to solve (6.37), we may
always use (6.62) to assess the proximity of the current set of parameters to the so-
lution. Clearly, the relative size of ∑n

i 1 ici(x) provides a useful stopping criterion
for convex optimization algorithms.

Finally, another concept that is useful when dealing with optimization problems
is that of duality. This means that for the primal minimization problem considered
so far, which is expressed in terms of x, we can find a dual maximization problem
in terms of by computing the saddle point of the Lagrangian L(x ), and elim-
inating the primal variables x. We thus obtain the following dual maximization
problem from (6.37):

maximize L(x ) f (x)
n

∑
i 1

ici(x)

where (x ) Y : (x )
x X i 0 for all i [n]

and xL(x ) 0

(6.64)

We state without proof a theorem guaranteeing the existence of a solution to (6.64).

Theorem 6.28 (Wolfe [607]) Recall the definition of X (6.45) and of the optimization
problem (6.37). Under the assumptions that is an open set, X satisfies one of theExistence of Dual

Solution constraint qualifications of Lemma 6.23, and f ci are all convex and differentiable, there
exists an ¯ n such that (x̄ ¯ ) solves the dual optimization problem (6.64) and in
addition L(x̄ ¯ ) f (x̄).
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In order to prove Theorem 6.28 we first have to show that some (x̄ ¯ ) exists
satisfying the KKT conditions, and then use the fact that the KKT-Gap at the saddle
point vanishes.

6.3.3 Linear and Quadratic Programs

Let us analyze the notions of primal and dual objective functions in more detail by
looking at linear and quadratic programs. We begin with a simple linear setting.6Primal Linear

Program
minimize

x
c x

subject to Ax d 0
(6.65)

where c x m , d n and A Rn m, and where Ax d 0 is a shorthand for
∑m

j 1 Ai jx j di 0 for all i [n].
It is far from clear that (6.65) always has a solution, or indeed a minimum. For

instance, the set of x satisfying Ax d 0 might be empty, or it might contain rays
going to infinity in directions where c x keeps increasing. Before we deal with thisUnbounded and

Infeasible
Problems

issue in more detail, let us compute the sufficient KKT conditions for optimality,
and the dual of (6.65). We may use (6.26) since (6.65) is clearly differentiable and
convex. In particular we obtain:

Theorem 6.29 (KKT Conditions for Linear Programs) A sufficient condition for a
solution to the linear program (6.65) to exist is that the following four conditions are
satisfied for some (x ) m n where 0:

xL(x ) x c x (Ax d) A c 0 (6.66)

L(x ) Ax d 0 (6.67)

(Ax d) 0 (6.68)

0 (6.69)

Then the minimum is given by c x.

Note that, depending on the choice of A and d, there may not always exist an x
such that Ax d 0, in which case the constraint does not satisfy the conditions
of Lemma 6.23. In this situation, no solution exists for (6.65). If a feasible x exists,
however, then (projections onto lower dimensional subspaces aside) the constraint
qualifications are satisfied on the feasible set, and the conditions above are neces-
sary. See [334, 345, 555] for details.

6. Note that we encounter a small clash of notation in (6.65), since c is used as a symbol
for the loss function in the remainder of the book. This inconvenience is outweighed,
however, by the advantage of consistency with the standard literature (e.g., [345, 45, 555])
on optimization. The latter will allow the reader to read up on the subject without any need
for cumbersome notational changes.
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Next we may compute Wolfe’s dual optimization problem by substituting (6.66)
into L(x ). Consequently, the primal variables x vanish, and we obtain a maxi-
mization problem in terms of only:Dual Linear

Program
maximize d

subject to A c 0 and 0
(6.70)

Note that the number of variables and constraints has changed: we started with
m variables and n constraints. Now we have n variables together with m equality
constraints and n inequality constraints. While it is not yet completely obvious in
the linear case, dualization may render optimization problems more amenable to
numerical solution (the contrary may be true as well, though).

What happens if a solution x̄ to the primal problem (6.65) exists? In this case wePrimal Solution
Dual Solution know (since the KKT conditions of Theorem 6.29 are necessary and sufficient) that

there must be an ¯ solving the dual problem, since L(x ) has a saddle point at
(x̄ ¯ ).

If no feasible point of the primal problem exists, there must exist, by (a small
modification of) Lemma 6.23, some n with 0 and at least one i 0 such
that (Ax d) 0 for all x. This means that for all x, the Lagrangian L(x ) is
unbounded from above, since we can make (Ax d) arbitrarily large. Hence
the dual optimization problem is unbounded. Using analogous reasoning, if the
primal problem is unbounded, the dual problem is infeasible.

Let us see what happens if we dualize (6.70) one more time. First we need
more Lagrange multipliers, since we have two sets of constraints. The equality
constraints can be taken care of by an unbounded variable x (see Theorem 6.22
for how to deal with equalities). For the inequalities 0, we introduce a second
Lagrange multiplier y n . After some calculations and resubstitution into the
corresponding Lagrangian, we get

maximize c x

subject to Ax d y 0 and y 0
(6.71)

We can remove y 0 from the set of variables by transforming Ax d y into
Ax d 0; thus we recover the primal optimization problem (6.65).7Dual Dual Linear

Program
Primal

The following theorem gives an overview of the transformations and relations
between primal and dual problems (see also Table 6.2). Although we only derived
these relations for linear programs, they also hold for other convex differentiable
settings [45].

Theorem 6.30 (Trichotomy) For linear and convex quadratic programs exactly one of

7. This finding is useful if we have to dualize twice in some optimization settings (see
Chapter 10), since then we will be able to recover some of the primal variables without
further calculations if the optimization algorithm provides us with both primal and dual
variables.
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Table 6.2 Connections between primal and dual linear and convex quadratic programs.

Primal Optimization Problem (in x) Dual Optimization Problem (in )

solution exists solution exists and extrema are equal
no solution exists maximization problem has unbounded

objective from above or is infeasible
minimization problem has unbounded no solution exists
objective from below or is infeasible

inequality constraint inequality constraint
equality constraint free variable
free variable equality constraint

the following three alternatives must hold:

1. Both feasible regions are empty.

2. Exactly one feasible region is empty, in which case the objective function of the other
problem is unbounded in the direction of optimization.

3. Both feasible regions are nonempty, in which case both problems have solutions and
their extrema are equal.

We conclude this section by stating primal and dual optimization problems, and
the sufficient KKT conditions for convex quadratic optimization problems. To
keep matters simple we only consider the following type of optimization problem
(other problems can be rewritten in the same form; see Problem 6.11 for details):Primal Quadratic

Program
minimize

x
1
2 x Kx c x

subject to Ax d 0
(6.72)

Here K is a strictly positive definite matrix, x c m , A n m , and d n . Note
that this is clearly a differentiable convex optimization problem. To introduce a
Lagrangian we need corresponding multipliers n with 0. We obtain

L(x )
1
2

x Kx c x (Ax d) (6.73)

Next we may apply Theorem 6.26 to obtain the KKT conditions. They can be stated
in analogy to (6.66)–(6.68) as

xL(x ) x c x (Ax d)
1
2

x Kx Kx A c 0 (6.74)

L(x ) Ax d 0 (6.75)

(Ax d) 0 (6.76)

0 (6.77)
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In order to compute the dual of (6.72), we have to eliminate x from (6.73) and write
it as a function of . We obtain

L(x )
1
2

x Kx d (6.78)

1
2

A K 1 A d c K 1 A
1
2

c K 1c (6.79)

In (6.78) we used (6.74) and (6.76) directly, whereas in order to eliminate x com-
pletely in (6.79) we solved (6.74) for x K 1(c A ). Ignoring constant terms
this leads to the dual quadratic optimization problem,Dual Quadratic

Program
minimize

1
2

A K 1 A d c K 1 A

subject to 0
(6.80)

The surprising fact about the dual problem (6.80) is that the constraints become
significantly simpler than in the primal (6.72). Furthermore, if n m, we also
obtain a more compact representation of the quadratic term.

There is one aspect in which (6.80) differs from its linear counterpart (6.70): if
we dualize (6.80) again, we do not recover (6.72) but rather a problem very similar
in structure to (6.80). Dualizing (6.80) twice, however, we recover the dual itself
(Problem 6.13 deals with this matter in more detail).

6.4 Interior Point Methods

Let us now have a look at simple, yet efficient optimization algorithms for con-
strained problems: interior point methods.

An interior point is a pair of variables (x ) that satisfies both primal and dual
constraints. As already mentioned before, finding a set of vectors (x̄ ¯ ) that satisfy
the KKT conditions is sufficient to obtain a solution in x̄. Hence, all we have to do
is devise an algorithm which solves (6.74)–(6.77), for instance, if we want to solve
a quadratic program. We will focus on the quadratic case — the changes required
for linear programs merely involve the removal of some variables, simplifying the
equations. See Problem 6.14 and [555, 517] for details.

6.4.1 Sufficient Conditions for a Solution

We need a slight modification of (6.74)–(6.77) in order to achieve our goal: rather
than the inequality (6.75), we are better off with an equality and a positivity
constraint for an additional variable, i.e. we transform Ax d 0 into Ax d
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0, where 0. Hence we arrive at the following system of equations:

Kx A c 0 (Dual Feasibility)

Ax d 0 (Primal Feasibility)

0

0

(6.81)

Let us analyze the equations in more detail. We have three sets of variables: x .Optimality as
Constraint
Satisfaction

To determine the latter, we have an equal number of equations plus the positivity
constraints on . While the first two equations are linear and thus amenable to
solution, e.g., by matrix inversion, the third equality 0 has a small defect:
given one variable, say , we cannot solve it for or vice versa. Furthermore, the
last two constraints are not very informative either.

We use a primal-dual path-following algorithm, as proposed in [556], to solve
this problem. Rather than requiring 0 we modify it to become i i 0
for all i [n], solve (6.81) for a given , and decrease to 0 as we go. The
advantage of this strategy is that we may use a Newton-type predictor corrector
algorithm (see Section 6.2.5) to update the parameters x , which exhibits the
fast convergence of a second order method.

6.4.2 Solving the Equations

For the moment, assume that we have suitable initial values of x , and
with 0. Linearization of the first three equations of (6.81), together with
the modification i i , yields (we expand x into x Δx, etc.):Linearized

Constraints
KΔx A Δ Kx A c : p

AΔx Δ Ax d : d
1

i iΔ i Δ i
1

i i
1

i Δ iΔ i : KKTi for all i

(6.82)

Next we solve for Δ i to obtain what is commonly referred to as the reduced KKT
system. For convenience we use D : diag( 1

1 1
1

n n) as a shorthand;

K A

A D

Δx

Δ
p

d KKT
(6.83)

We apply a predictor-corrector method as in Section 6.2.5. The resulting matrix of
the linear system in (6.83) is indefinite but of full rank, and we can solve (6.83) for
(ΔxPred Δ Pred) by explicitly pivoting for individual entries (for instance, solve for
Δx first and then substitute the result in to the second equality to obtain Δ ).

This gives us the predictor part of the solution. Next we have to correct for the
linearization, which is conveniently achieved by updating KKT and solving (6.83)
again to obtain the corrector values (ΔxCorr Δ Corr). The value of Δ is then obtained
from (6.82).
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Next, we have to make sure that the updates in do not cause the estimates
to violate their positivity constraints. This is done by shrinking the length of
(Δx Δ Δ ) by some factor 0, such thatUpdate in x

min 1 Δ 1

1

n Δ n

n

1 Δ 1

1

n Δ n

n
(6.84)

Of course, only the negative Δ terms pose a problem, since they lead the param-
eter values closer to 0, which may lead them into conflict with the positivity con-
straints. Typically [556, 502], we choose 0 05. In other words, the solution will
not approach the boundaries in by more than 95%. See Problem 6.15 for a
formula to compute .

6.4.3 Updating

Next we have to update . Here we face the following dilemma: if we decrease
too quickly, we will get bad convergence of our second order method, since

the solution to the problem (which depends on the value of ) moves too quickly
away from our current set of parameters (x ). On the other hand, we do not
want to spend too much time solving an approximation of the unrelaxed ( 0)
KKT conditions exactly. A good indication is how much the positivity constraints
would be violated by the current update. Vanderbei [556] proposes the following
update of :Tightening the

KKT Conditions

n
1

10

2

(6.85)

The first term gives the average value of satisfaction of the condition i i

after an update step. The second term allows us to decrease rapidly if good
progress was made (small (1 )2). Experimental evidence shows that it pays to
be slightly more conservative, and to use the predictor estimates of for (6.85)
rather than the corresponding corrector terms.8 This imposes little overhead for
the implementation.

6.4.4 Initial Conditions and Stopping Criterion

To provide a complete algorithm, we have to consider two more things: a stopping
criterion and a suitable start value. For the latter, we simply solve a regularized
version of the initial reduced KKT system (6.83). This means that we replace K by
K 1, use (x ) in place of Δx Δ , and replace D by the identity matrix. Moreover,

p and d are set to the values they would have if all variables had been set to 0Regularized KKT
System before, and finally KKT is set to 0. In other words, we obtain an initial guess of

8. In practice it is often useful to replace (1 ) by (1 ) for some small 0, in order
to avoid 0.
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(x ) by solving

K 1 A

A 1

x c

d
(6.86)

and Ax d. Since we have to ensure positivity of , we simply replace

i max( i 1) and i max( i 1) (6.87)

This heuristic solves the problem of a suitable initial condition.
Regarding the stopping criterion, we recall Theorem 6.27, and in particular

(6.62). Rather than obtaining bounds on the precision of parameters, we want
to make sure that f (x) is close to its optimal value f (x̄). From (6.64) we know,
provided the feasibility constraints are all satisfied, that the value of the dual
objective function is given by f (x) ∑n

i 1 ici(x). We may use the latter to bound
the relative size of the gap between primal and dual objective function by

Gap(x )
2 f (x) f (x)

n
∑

i 1
ici(x)

f (x) f (x)
n
∑

i 1
ici(x)

n
∑

i 1
ici(x)

f (x) 1
2

n
∑

i 1
ici(x)

(6.88)

For the special case where f (x) 1
2 x Kx c x as in (6.72), we know by virtue of

(6.73) that the size of the feasibility gap is given by , and therefore

Gap(x ) 1
2 x Kx c x 1

2

(6.89)

In practice, a small number is usually added to the denominator of (6.89) in order
to avoid divisions by 0 in the first iteration. The quality of the solution is typically
measured on a logarithmic scale by log10 Gap(x ), the number of significantNumber of

Significant
Figures

figures.9 We will come back to specific versions of such interior point algorithms in
Chapter 10, and show how Support Vector Regression and Classification problems
can be solved with them.

Primal-Dual path following methods are certainly not the only algorithms that
can be employed for minimizing constrained quadratic problems. Other variants,
for instance, are Barrier Methods [282, 45, 557], which minimize the unconstrained
problem

f (x)
n

∑
i 1

f ln ( ci(x)) for 0 (6.90)

Active set methods have also been used with success in machine learning [369,
284]. These select subsets of variables x for which the constraints ci are not ac-

9. Interior point codes are very precise. They usually achieve up to 8 significant figures,
whereas iterative approximation methods do not normally exceed more than 3 significant
figures on large optimization problems.
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tive, i.e., where the we have a strict inequality, and solve the resulting restricted
quadratic program, for instance by conjugate gradient descent. We will encounter
subset selection methods in Chapter 10.

6.5 Maximum Search Problems

In several cases the task of finding an optimal function for estimation purposes
means finding the best element from a finite set, or sometimes finding an optimal
subset from a finite set of elements. These are discrete (sometimes combinatorial)Approximations
optimization problems which are not so easily amenable to the techniques pre-
sented in the previous two sections. Furthermore, many commonly encountered
problems are computationally expensive if solved exactly. Instead, by using prob-
abilistic methods, it is possible to find almost optimal approximate solutions. These
probabilistic methods are the topic of the present section.

6.5.1 Random Subset Selection

Consider the following problem: given a set of m functions, say M : f1 fm ,
and some criterion Q[ f ], find the function f̂ that maximizes Q[ f ]. More formally,

f̂ : argmax
f M

Q[ f ] (6.91)

Clearly, unless we have additional knowledge about the values Q[ fi], we have
to compute all terms Q[ fi] if we want to solve (6.91) exactly. This will cost O(m)
operations. If m is large, which is often the case in practical applications, this
operation is too expensive. In sparse greedy approximation problems (Section
10.2) or in Kernel Feature Analysis (Section 14.4), m can easily be of the order of
105 or larger (here, m is the number of training patterns). Hence we have to look
for cheaper approximate solutions.

The key idea is to pick a random subset M M that is sufficiently large,
and take the maximum over M as an approximation of the maximum over M.
Provided the distribution of the values of Q[ fi] is “well behaved”, i.e., there exists
not a small fraction of Q[ fi] whose values are significantly smaller or larger than
the average, we will obtain a solution that is close to the optimum with high
probability. To formalize these ideas, we need the following result.

Lemma 6.31 (Maximum of Random Variables) Denote by two independent
random variables on with corresponding distributions P P and distribution func-
tions F F . Then the random variable ¯ : max( ) has the distribution function
F¯ F F .

Proof Note that for a random variable, the distribution function F( 0) is given by
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the probability P 0 . Since and are independent, we may write

F¯ ( ¯) P max( ) ¯ P ¯ and ¯ P ¯ P ¯

F ( ¯)F ( ¯) (6.92)

which proves the claim.

Repeated application of Lemma 6.31 leads to the following corollary.Distribution
Over ¯ is More
Peaked Corollary 6.32 (Maximum Over Identical Random Variables) Let 1 m̃ be m̃

independent and identically distributed (iid) random variables, with corresponding distri-
bution function F . Then the random variable ¯ : max( 1 m̃) has the distribution
function F¯ ( ¯) F ( ¯) m̃.

In practice, the random variables i will be the values of Q[ fi], where the fi are
drawn from the set M. If we draw them without replacement (i.e. none of the func-
tions fi appears twice), however, the values after each draw are dependent and we
cannot apply Corollary 6.32 directly. Nonetheless, we can see that the maximum
over draws without replacement will be larger than the maximum with replace-
ment, since recurring observations can be understood as reducing the effective
size of the set to be considered. Thus Corollary 6.32 gives us a lower bound on the
value of the distribution function for draws without replacement. Moreover, for
large m the difference between draws with and without replacement is small.

If the distribution of Q[ fi] is known, we may use the distribution directly to
determine the size m̃ of a subset to be used to find some Q[ fi] that is almost as
good as the solution to (6.91). In all other cases, we have to resort to assessing the
relative quality of maxima over subsets. The following theorem tells us how.Best Element of a

Subset
Theorem 6.33 (Ranks on Random Subsets) Denote by M : x1 xm a set
of cardinality m, and by M̃ M a random subset of size m̃. Then the probability that
max M̃ is greater equal than n elements of M is at least 1 n

m
m̃.

Proof We prove this by assuming the converse, namely that max M̃ is smaller
than (m n) elements of M. For m̃ 1 we know that this probability is n

m , since
there are n elements to choose from. For m̃ 1, the probability is the one of
choosing m̃ elements out of a subset Mlow of n elements, rather than all m elements.
Therefore we have that

P(M̃ Mlow)
n
m̃
m
m̃

n
m

n 1
m 1

n m̃ 1
m m̃ 1

n
m

m̃

Consequently the probability that the maximum over M̃ will be larger than n
elements of M is given by 1 P(M̃ Mlow) 1 n

m
m̃.

The practical consequence is that we may use 1 n
m

m̃ to compute the required
size of a random subset to achieve the desired degree of approximation. If we
want to obtain results in the n

m percentile range with 1 confidence, we must
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solve for m̃ log(1 )
ln n m . To give a numerical example, if we desire values that

are better than 95% of all other estimates with 1 0 05 probability, then 59
samples are sufficient. This (95% 95% 59) rule is very useful in practice.10 A
similar method was used to speed up the process of boosting classifiers in the
MadaBoost algorithm [143]. Furthermore, one could think whether it might not
be useful to recycle old observations rather than computing all 59 values from
scratch. If this can be done cheaply, and under some additional independence
assumptions, subset selection methods can be improved further. For details see
[424] who use the method in the context of memory management for operating
systems.

6.5.2 Random Evaluation

Quite often, the evaluation of the term Q[ f ] itself is rather time consuming, es-
pecially if Q[ f ] is the sum of many (m, for instance) iid random variables. Again,
we can speed up matters considerably by using probabilistic methods. The key
idea is that averages over independent random variables are concentrated, which
is to say that averages over subsets do not differ too much from averages over the
whole set.Approximating

Sums by Partial
Sums

Hoeffding’s Theorem (Section 5.2) quantifies the size of the deviations between
the expectation of a sum of random variables and their values at individual trials.
We will use this to bound deviations between averages over sets and subsets. All
we have to do is translate Theorem 5.1 into a statement regarding sample averages
over different sample sizes. This can be readily constructed as follows:

Corollary 6.34 (Deviation Bounds for Empirical Means [508]) Suppose 1 m

are iid bounded random variables, falling into the interval [a a b] with probability one.
Denote their average by Qm

1
m ∑i i. Furthermore, denote by s(1) s(m̃) with m̃ m

a subset of the same random variables (with s : 1 m̃ 1 m being an injec-
tive map, i.e. s(i) s( j) only if i j), and Qm̃

1
m̃ ∑i s(i). Then for any 0,Deviation of

Subsets
P Qm Qm̃

P Qm̃ Qm

exp
2mm̃ 2

(m m̃)b2 exp 2m
2

b2

m̃
m

1 m̃
m

(6.93)

Proof By construction E [Qm Qm̃] 0, since Qm and Qm̃ are both averages over
sums of random variables drawn from the same distribution. Hence we only have
to rewrite Qm Qm̃ as an average over (different) random variables to apply
Hoeffding’s bound. Since all Qi are identically distributed, we may pick the first
m̃ random variables, without loss of generality. In other words, we assume that

10. During World War I tanks were often numbered in continuous increasing order. Unfor-
tunately this “feature” allowed the enemy to estimate the number of tanks. How?
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s(i) i for i 1 m̃. Then

Qm Qm̃
1
m

m

∑
i 1

i
1
m̃

m̃

∑
i 1

i
1
m

m̃

∑
i 1

1 m
m̃ i

1
m

m

∑
i m̃ 1

i (6.94)

Thus we may split up Qm Qm̃ into a sum of m̃ random variables with range
bi ( m

m̃ 1)b, and m m̃ random variables with range bi b. We obtain
m

∑
i 1

b2
i b2m̃

m
m̃

1
2

(m m̃)b2 b2(m m̃)
m
m̃

(6.95)

Substituting this into (5.7) and noting that Qm Qm̃ E [Qm Qm̃] Qm Qm̃

completes the proof.

For small m̃
m the rhs in (6.93) reduces to exp 2m̃ 2

b2 . In other words, deviations on
the subsample m̃ dominate the overall deviation of Qm Qm̃ from 0. This allows
us to compute a cutoff criterion for evaluating Qm by computing only a subset of
its terms.Cutoff Criterion

We need only solve (6.93) for m̃
m . Hence, in order to ensure that Qm̃ is within of

Qm with probability 1 , we have to take a fraction m̃
m of samples that satisfies

m̃
m

1 m̃
m

b2(ln 2 ln )
2m 2 : c and therefore

m̃
m

c
1 c

(6.96)

The fraction m̃
m can be small for large m, which is exactly the case where we need

methods to speed up evaluation.

6.5.3 Greedy Optimization Strategies

Quite often the overall goal is not necessarily to find the single best element xi from
a set X to solve a problem, but to find a good subset X̃ X of size m̃ according to
some quality criterion Q[X̃]. Problems of this type include approximating a matrix
by a subset of its rows and columns (Section 10.2), finding approximate solutionsApplications
to Kernel Fisher Discriminant Analysis (Chapter 15) and finding a sparse solution
to the problem of Gaussian Process Regression (Section 16.3.4). These all have a
common structure:

(i) Finding an optimal set X̃ X is quite often a combinatorial problem, or it even
may be NP-hard, since it means selecting m̃ X̃ elements from a set of m X
elements. There are m

m̃ different choices, which clearly prevents an exhaustive
search over all of them. Additionally, the size of m̃ is often not known beforehand.
Hence we need a fast approximate algorithm.

(ii) The evaluation of Q[X̃ xi ] is inexpensive, provided Q[X̃] has been com-
puted before. This indicates that an iterative algorithm can be useful.

(iii) The value of Q[X], or equivalently how well we would do by taking the
whole set X, can be bounded efficiently by using Q[X̃] (or some by-products of
the computation of Q[M̃]) without actually computing Q[X].
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Algorithm 6.6 Sparse Greedy Algorithm

Require: Set of functions X, Precision , Criterion Q[ ]
Set X̃
repeat

Choose random subset X of size m from X X̃.
Pick x̂ argmax x X Q[X x ]
X X x̂
If needed, (re)compute bound on Q[X].

until Q[X̃] Bound on Q[X]
Output: X̃ Q[X̃]

(iv) The set of functions X is typically very large (i.e. more than 105 elements),
yet the individual improvements by fi via Q[X̃ xi ] do not differ too much,
meaning that specific xı̂ for which Q[X̃ xı̂ ] deviate by a large amount from the
rest of Q[X̃ xi ] do not exist.

In this case we may use a sparse greedy algorithm to find near optimal solutions
among the remaining X X̃ elements. This combines the idea of an iterative en-
largement of X̃ by one more element at a time (which is feasible since we canIterative

Enlargement of X̃ compute Q[X̃ fi ] cheaply) with the idea that we need not consider all fi as
possible candidates for the enlargement. This uses the reasoning in Section 6.5.1
combined with the fact that the distribution of the improvements is not too long
tailed (cf. (iv)). The overall strategy is described in Algorithm 6.6.

Problems 6.9 and 6.10 contain more examples of sparse greedy algorithms.

6.6 Summary

This chapter gave an overview of different optimization methods, which form the
basic toolbox for solving the problems arising in learning with kernels. The main
focus was on convex and differentiable problems, hence the overview of properties
of convex sets and functions defined on them.

The key insights in Section 6.1 are that convex sets can be defined by level sets of
convex functions and that convex optimization problems have one global minimum.
Furthermore, the fact that the solutions of convex maximization over polyhedral
sets can be found on the vertices will prove useful in some unsupervised learning
applications (Section 14.4).

Basic tools for unconstrained problems (Section 6.2) include interval cut-
ting methods, the Newton method, Conjugate Gradient descent, and Predictor-
Corrector methods. These techniques are often used as building blocks to solve
more advanced constrained optimization problems.

Since constrained minimization is a fairly complex topic, we only presented a
selection of fundamental results, such as necessary and sufficient conditions in
the general case of nonlinear programming. The KKT conditions for differentiable
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convex functions then followed immediately from the previous reasoning. The
main results are dualization, meaning the transformation of optimization prob-
lems via the Lagrangian mechanism into possibly simpler problems, and that op-
timality properties can be estimated via the KKT gap (Theorem 6.27).

Interior point algorithms are practical applications of the duality reasoning;
these seek to find a solution to optimization problems by satisfying the KKT opti-
mality conditions. Here we were able to employ some of the concepts introduced
at an earlier stage, such as predictor corrector methods and numerical ways of
finding roots of equations. These algorithms are robust tools to find solutions
on moderately sized problems (103 104 examples). Larger problems require de-
composition methods, to be discussed in Section 10.4, or randomized methods.
The chapter concluded with an overview of randomized methods for maximiz-
ing functions or finding the best subset of elements. These techniques are useful
once datasets are so large that we cannot reasonably hope to find exact solutions
to optimization problems.

6.7 Problems

6.1 (Level Sets ) Given the function f : 2 with f (x) : x1
p x2

p, for which p
do we obtain a convex function?

Now consider the sets x f (x) c for some c 0. Can you give an explicit
parametrization of the boundary of the set? Is it easier to deal with this parametrization?
Can you find other examples (see also [489] and Chapter 8 for details)?

6.2 (Convex Hulls ) Show that for any set X, its convex hull co X is convex. Further-
more, show that co X X if X is convex.

6.3 (Method of False Position [334] ) Given a unimodal (possessing one mini-
mum) differentiable function f : , develop a quadratic method for minimizing
f .

Hint: Recall the Newton method. There we used f (x) to make a quadratic approxima-
tion of f . Two values of f (x) are also sufficient to obtain this information, however.

What happens if we may only use f ? What does the iteration scheme look like? See
Figure 6.8 for a hint.

6.4 (Convex Minimization in one Variable ) Denote by f a convex function on
[a b]. Show that the algorithm below finds the minimum of f . What is the rate of
convergence in x to argmin x f (x)? Can you obtain a bound in f (x) wrt. minx f (x)?

input a b f and threshold
x1 a x2

a b
2 x3 b and compute f (x1) f (x2) f (x3)

repeat
if x3 x2 x2 x1 then
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x4
x2 x3

2 and compute f (x4)
else

x4
x1 x2

2 and compute f (x4)
end if
Keep the two points closest to the point with the minimum value of f (xi) and rename
them such that x1 x2 x3.

until x3 x1

6.5 (Newton Method in d ) Extend the Newton method to functions on d . What
does the iteration rule look like? Under which conditions does the algorithm converge? Do
you have to extend Theorem 6.13 to prove convergence?

6.6 (Rewriting Quadratic Functionals ) Given a function

f (x) x Qx c x d (6.97)

rewrite it into the form of (6.18). Give explicit expressions for x argmin x f (x) and the
difference in the additive constants.

6.7 (Kantorovich Inequality [278] ) Prove Theorem 6.16. Hint: note that without
loss of generality we may require x 2 1. Second, perform a transformation of coordi-
nates into the eigensystem of K. Finally, note that in the new coordinate system we are
dealing with convex combinations of eigenvalues i and 1

i
. First show (6.24) for only two

eigenvalues. Then argue that only the largest and smallest eigenvalues matter.

6.8 (Random Subsets ) Generate m random numbers drawn uniformly from the inter-
val [0 1]. Plot their distribution function. Plot the distribution of maxima of subsets of
random numbers. What can you say about the distribution of the maxima? What happens
if you draw randomly from the Laplace distribution, with density p( ) e (for 0)?

6.9 (Matching Pursuit [342] ) Denote by f 1 fM a set of functions , by
x1 xm a set of locations and by y1 ym a set of corresponding

observations.
Design a sparse greedy algorithm that finds a linear combination of functions f :

∑i i fi minimizing the squared loss between f (xi) and yi.
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Figure 6.8 From left to right: Newton method, method of false position, quadratic inter-
polation through 3 points. Solid line: f (x), dash-dotted line: interpolation.
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6.10 (Reduced Set Approximation [474] ) Let f (x) ∑m
i 1 ik(xi x) be a kernel ex-

pansion in a Reproducing Kernel Hilbert Space k (see Section 2.2.3). Give a sparse greedy
algorithm that finds an approximation to f in k by using fewer terms. See also Chapter
18 for more detail.

6.11 (Equality Constraints in LP and QP ) Find the dual optimization problem and
the necessary KKT conditions for the following optimization problem:

minimize
x

c x

subject to Ax b 0

Cx d 0

(6.98)

where c x m , b n , d n , A Rn m and C n . Hint: split up the equality
constraints into two inequality constraints. Note that you may combine the two Lagrange
multipliers again to obtain a free variable. Derive the corresponding conditions for

minimize
x

1
2 x Kx c x

subject to Ax b 0

Cx d 0

(6.99)

where K is a strictly positive definite matrix.

6.12 (Not Strictly Definite Quadratic Parts ) How do you have to change the dual
of (6.99) if K does not have full rank? Is it better not to dualize in this case? Do the KKT
conditions still hold?

6.13 (Dual Problems of Quadratic Programs ) Denote by P a quadratic optimiza-
tion problem of type (6.72) and by ( )D the dualization operation. Prove that the following
is true,

((PD)D)D PD and (((PD)D)D)D (PD)D (6.100)

where in general (PD)D P. Hint: use (6.80). Caution: you have to check whether KA
has full rank.

6.14 (Interior Point Equations for Linear Programs [336] ) Derive the interior
point equations for linear programs. Hint: use the expansions for the quadratic programs
and note that the reduced KKT system has only a diagonal term where we had K before.

How does the complexity of the problem scale with the size of A?

6.15 (Update Step in Interior Point Codes ) Show that the maximum value of sat-
isfying (6.84) can be found by

1
max 1 ( 1) 1 min

i [n]

Δ i

i
( 1) 1 min

i [n]

Δ i

i
(6.101)



 

II SUPPORT VECTOR MACHINES

The algorithms for constructing the separating hyperplane considered above will be utilized
for developing a battery of programs for pattern recognition.

V. N. Vapnik [560, p. 364]

Now that we have the necessary concepts and tools, we move on to the class of
Support Vector (SV) algorithms. SV algorithms are commonly considered the first
practicable spin-off of statistical learning theory. We described the basic ideas of
Support Vector machines (SVMs) in Chapter 1. It is now time for a much more
detailed discussion and description of SVMs, starting with the case of pattern
recognition (Chapter 7), which was historically the first to be developed.

Following this, we move on to a problem that can actually be considered as
being even simpler than pattern recognition. In pattern recognition, we try to
distinguish between patterns of at least two classes; in single-class classification
(Chapter 8), however, there is only one class. In the latter case, which belongs to
the realm of unsupervised learning, we try to learn a model of the data which
describes, in a weak sense, what the training data looks like. This model can then
be used to assess the “typicality” or novelty of previously unseen patterns, a task
which is rather useful in a number of application domains.

Chapter 9 introduces SV algorithms for regression estimation. These retain most
of the properties of the other SV algorithms, with the exception that in the regres-
sion case, the choice of the loss function, as described in Chapter 3, becomes a
more interesting issue.
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After this, we give details on how to implement the various types of SV al-
gorithms (Chapter 10), and we describe some methods for incorporating prior
knowledge about invariances of a given problem into SVMs (Chapter 11).

We conclude this part of the book by revisiting statistical learning theory, this
time with a much stronger emphasis on elements that are specific to SVMs and
kernel methods (Chapter 12).
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This chapter is devoted to a detailed description of SV classification (SVC) meth-
ods. We have already briefly visited the SVC algorithm in Chapter 1. There will be
some overlap with that chapter, but here we give a more thorough treatment.

We start by describing the classifier that forms the basis for SVC, the separatingOverview
hyperplane (Section 7.1). Separating hyperplanes can differ in how large a margin
of separation they induce between the classes, with corresponding consequences
on the generalization error, as discussed in Section 7.2. The “optimal” margin hy-
perplane is defined in Section 7.3, along with a description of how to compute it.
Using the kernel trick of Chapter 2, we generalize to the case where the optimal
margin hyperplane is not computed in input space, but in a feature space nonlin-
early related to the latter (Section 7.4). This dramatically increases the applicability
of the approach, as does the introduction of slack variables to deal with outliers
and noise in the data (Section 7.5). Many practical problems require us to classify
the data into more than just two classes. Section 7.6 describes how multi-class SV
classification systems can be built. Following this, Section 7.7 describes some vari-
ations on standard SV classification algorithms, differing in the regularizers and
constraints that are used. We conclude with a fairly detailed section on experi-
ments and applications (Section 7.8).

This chapter requires basic knowledge of kernels, as conveyed in the first halfPrerequisites
of Chapter 2. To understand details of the optimization problems, it is helpful (but
not indispensable) to get some background from Chapter 6. To understand the
connections to learning theory, in particular regarding the statistical basis of the
regularizer used in SV classification, it would be useful to have read Chapter 5.

7.1 Separating Hyperplanes

Suppose we are given a dot product space , and a set of pattern vectors
x1 xm . Any hyperplane in can be written asHyperplane

x w x b 0 w b (7.1)

In this formulation, w is a vector orthogonal to the hyperplane: If w has unit
length, then w x is the length of x along the direction of w (Figure 7.1). For
general w, this number will be scaled by w . In any case, the set (7.1) consists
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7.8 Experiments

7.2 Margins

7.3 Optimal Margin
Hyperplane
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7.4 Optimal Margin
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7.5 Soft Margin
Binary Classifiers

Classifiers
7.6 Multi−Class

7.1 Separating
Hyperplane

7.7 Variations

2 Kernels

of vectors that all have the same length along w. In other words, these are vectors
that project onto the same point on the line spanned by w.

In this formulation, we still have the freedom to multiply w and b by the same
non-zero constant. This superfluous freedom — physicists would call it a “gauge”
freedom — can be abolished as follows.

Definition 7.1 (Canonical Hyperplane) The pair (w b) is called a canonical
form of the hyperplane (7.1) with respect to x1 xm , if it is scaled such that

min
i 1 m

w xi b 1 (7.2)

which amounts to saying that the point closest to the hyperplane has a distance of 1 w
(Figure 7.2).

Note that the condition (7.2) still allows two such pairs: given a canonical hyper-
plane (w b), another one satisfying (7.2) is given by ( w b). For the purpose of
pattern recognition, these two hyperplanes turn out to be different, as they are
oriented differently; they correspond to two decision functions,Decision

Function
fw b : 1

x fw b(x) sgn w x b (7.3)

which are the inverse of each other.
In the absence of class labels yi 1 associated with the xi, there is no way

of distinguishing the two hyperplanes. For a labelled dataset, a distinction exists:
The two hyperplanes make opposite class assignments. In pattern recognition,
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Figure 7.1 A separable classification problem, along with a separating hyperplane, written
in terms of an orthogonal weight vector w and a threshold b. Note that by multiplying both
w and b by the same non-zero constant, we obtain the same hyperplane, represented in
terms of different parameters. Figure 7.2 shows how to eliminate this scaling freedom.

,
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Figure 7.2 By requiring the scaling of w and b to be such that the point(s) closest to the
hyperplane satisfy w xi b 1, we obtain a canonical form (w b) of a hyperplane. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 1 w .
This can be seen by considering two opposite points which precisely satisfy w xi b 1
(cf. Problem 7.4).

we attempt to find a solution fw b which correctly classifies the labelled examples
(xi yi) 1 ; in other words, which satisfies fw b(xi) yi for all i (in this
case, the training set is said to be separable), or at least for a large fraction thereof.

The next section will introduce the term margin, to denote the distance to a sep-
arating hyperplane from the point closest to it. It will be argued that to generalize
well, a large margin should be sought. In view of Figure 7.2, this can be achieved
by keeping w small. Readers who are content with this level of detail may skip
the next section and proceed directly to Section 7.3, where we describe how to
construct the hyperplane with the largest margin.
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7.2 The Role of the Margin

The margin plays a crucial role in the design of SV learning algorithms. Let us start
by formally defining it.

Definition 7.2 (Geometrical Margin) For a hyperplane x w x b 0 , we
call

(w b)(x y) : y( w x b) w (7.4)

the geometrical margin of the point (x y) 1 . The minimum valueGeometrical
Margin

(w b) : min
i 1 m

(w b)(xi yi) (7.5)

shall be called the geometrical margin of (x1 y1) (xm ym). If the latter is omitted, it
is understood that the training set is meant.

Occasionally, we will omit the qualification geometrical, and simply refer to the
margin.

For a point (x y) which is correctly classified, the margin is simply the distance
from x to the hyperplane. To see this, note first that the margin is zero on the
hyperplane. Second, in the definition, we effectively consider a hyperplane

(ŵ b̂) : (w w b w ) (7.6)

which has a unit length weight vector, and then compute the quantity y( ŵ x b̂).
The term ŵ x , however, simply computes the length of the projection of x onto
the direction orthogonal to the hyperplane, which, after adding the offset b̂, equals
the distance to it. The multiplication by y ensures that the margin is positive
whenever a point is correctly classified. For misclassified points, we thus get a
margin which equals the negative distance to the hyperplane. Finally, note that
for canonical hyperplanes, the margin is 1 w (Figure 7.2). The definition ofMargin of

Canonical
Hyperplanes

the canonical hyperplane thus ensures that the length of w now corresponds to
a meaningful geometrical quantity.

It turns out that the margin of a separating hyperplane, and thus the length of
the weight vector w, plays a fundamental role in support vector type algorithms.
Loosely speaking, if we manage to separate the training data with a large margin,
then we have reason to believe that we will do well on the test set. Not surprisingly,
there exist a number of explanations for this intuition, ranging from the simple to
the rather technical. We will now briefly sketch some of them.

The simplest possible justification for large margins is as follows. Since theInsensitivity to
Pattern Noise training and test data are assumed to have been generated by the same underlying

dependence, it seems reasonable to assume that most of the test patterns will lie
close (in ) to at least one of the training patterns. For the sake of simplicity, let us
consider the case where all test points are generated by adding bounded pattern
noise (sometimes called input noise) to the training patterns. More precisely, given
a training point (x y), we will generate test points of the form (x Δx y), where
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Figure 7.3 Two-dimensional toy ex-
ample of a classification problem: Sep-
arate ‘o’ from ‘+’ using a hyperplane.
Suppose that we add bounded noise to
each pattern. If the optimal margin hy-
perplane has margin , and the noise
is bounded by r , then the hyper-
plane will correctly separate even the
noisy patterns. Conversely, if we ran the
perceptron algorithm (which finds some
separating hyperplane, but not neces-
sarily the optimal one) on the noisy
data, then we would recover the opti-
mal hyperplane in the limit r .

Δx is bounded in norm by some r 0. Clearly, if we manage to separate the
training set with a margin r, we will correctly classify all test points: Since all
training points have a distance of at least to the hyperplane, the test patterns will
still be on the correct side (Figure 7.3, cf. also [152]).

If we knew beforehand, then this could actually be turned into an optimal
margin classifier training algorithm, as follows. If we use an r which is slightly
smaller than , then even the patterns with added noise will be separable with a
nonzero margin. In this case, the standard perceptron algorithm can be shown to
converge.1

Therefore, we can run the perceptron algorithm on the noisy patterns. If the al-
gorithm finds a sufficient number of noisy versions of each pattern, with different
perturbations Δx, then the resulting hyperplane will not intersect any of the balls
depicted in Figure 7.3. As r approaches , the resulting hyperplane should bet-
ter approximate the maximum margin solution (the figure depicts the limit r ).
This constitutes a connection between training with pattern noise and maximizing
the margin. The latter, in turn, can be thought of as a regularizer, comparable to
those discussed earlier (see Chapter 4 and (2.49)). Similar connections to training
with noise, for other types of regularizers, have been pointed out before for neural
networks [50].

1. Rosenblatt’s perceptron algorithm [439] is one of the simplest conceivable iterative pro-
cedures for computing a separating hyperplane. In its simplest form, it proceeds as fol-
lows. We start with an arbitrary weight vector w0. At step n , we consider the train-
ing example (xn yn). If it is classified correctly using the current weight vector (i.e., if
sgn xn wn 1 yn), we set wn : wn 1; otherwise, we set wn : wn 1 yixi (here, 0
is a learning rate). We thus loop over all patterns repeatedly, until we can complete one full
pass through the training set without a single error. The resulting weight vector will thus
classify all points correctly. Novikoff [386] proved that this procedure terminates, provided
that the training set is separable with a nonzero margin.
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Figure 7.4 Two-dimensional toy exam-
ple of a classification problem: Separate
‘o’ from ‘+’ using a hyperplane passing
through the origin. Suppose the patterns
are bounded in length (distance to the ori-
gin) by R, and the classes are separated by
an optimal hyperplane (parametrized by
the angle ) with margin . In this case,
we can perturb the parameter by some
Δ with Δ arcsin R , and still correctly
separate the data.

A similar robustness argument can be made for the dependence of the hyper-
plane on the parameters (w b) (cf. [504]). If all points lie at a distance of at leastParameter Noise

from the hyperplane, and the patterns are bounded in length, then small per-
turbations to the hyperplane parameters will not change the classification of the
training data (see Figure 7.4).2 Being able to perturb the parameters of the hyper-
plane amounts to saying that to store the hyperplane, we need fewer bits than
we would for a hyperplane whose exact parameter settings are crucial. Interest-
ingly, this is related to what is called the Minimum Description Length principle
([583, 433, 485], cf. also [522, 305, 94]): The best description of the data, in terms of
generalization error, should be the one that requires the fewest bits to store.

We now move on to a more technical justification of large margin algorithms.VC Margin
Bound For simplicity, we only deal with hyperplanes that have offset b 0, leaving

f (x) sgn w x . The theorem below follows from a result in [24].

Theorem 7.3 (Margin Error Bound) Consider the set of decision functions f (x)
sgn w x with w Λ and x R, for some R Λ 0. Moreover, let 0, and

denote the fraction of training examples with margin smaller than w , referred to as
the margin error.Margin Error

For all distributions P generating the data, with probability at least 1 over the
drawing of the m training patterns, and for any 0 and (0 1), the probability
that a test pattern drawn from P will be misclassified is bounded from above, by

c
m

R2Λ2

2 ln2 m ln(1 ) (7.7)

Here, c is a universal constant.

2. Note that this would not hold true if we allowed patterns of arbitrary length — this type
of restriction of the pattern lengths pops up in various places, such as Novikoff’s theorem
[386], Vapnik’s VC dimension bound for margin classifiers (Theorem 5.5), and Theorem 7.3.
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Let us try to understand this theorem. It makes a probabilistic statement about a
probability, by giving an upper bound on the probability of test error, which itself
only holds true with a certain probability, 1 . Where do these two probabilities
come from? The first is due to the fact that the test examples are randomly drawn
from P; the second is due to the training examples being drawn from P. Strictly
speaking, the bound does not refer to a single classifier that has been trained on
some fixed data set at hand, but to an ensemble of classifiers, trained on various
instantiations of training sets generated by the same underlying regularity P.

It is beyond the scope of the present chapter to prove this result. The basic ingre-
dients of bounds of this type, commonly referred to as VC bounds, are described
in Chapter 5; for further details, see Chapter 12, and [562, 491, 504, 125]. Several
aspects of the bound are noteworthy. The test error is bounded by a sum of the
margin error , and a capacity term (the term in (7.7)), with the latter tend-
ing to zero as the number of examples, m, tends to infinity. The capacity term can
be kept small by keeping R and Λ small, and making large. If we assume that
R and Λ are fixed a priori, the main influence is . As can be seen from (7.7), a
large leads to a small capacity term, but the margin error gets larger. A small

, on the other hand, will usually cause fewer points to have margins smaller than
w , leading to a smaller margin error; but the capacity penalty will increase

correspondingly. The overall message: Try to find a hyperplane which is aligned
such that even for a large , there are few margin errors.

Maximizing , however, is the same as minimizing the length of w. Hence we
might just as well keep fixed, say, equal to 1 (which is the case for canonical
hyperplanes), and search for a hyperplane which has a small w and few points
with a margin smaller than 1 w ; in other words (Definition 7.2), few points such
that y w x 1.

It should be emphasized that dropping the condition w Λ would prevent
us from stating a bound of the kind shown above. We could give an alternative
bound, where the capacity depends on the dimensionality of the space . The
crucial advantage of the bound given above is that it is independent of that
dimensionality, enabling us to work in very high dimensional spaces. This will
become important when we make use of the kernel trick.

It has recently been pointed out that the margin also plays a crucial role in im-
proving asymptotic rates in nonparametric estimation [551]. This topic, however,
is beyond the scope of the present book.

To conclude this section, we note that large margin classifiers also have advan-Implementation
in Hardware tages of a practical nature: An algorithm that can separate a dataset with a certain

margin will behave in a benign way when implemented in hardware. Real-world
systems typically work only within certain accuracy bounds, and if the classifier
is insensitive to small changes in the inputs, it will usually tolerate those inaccura-
cies.

We have thus accumulated a fair amount of evidence in favor of the following
approach: Keep the margin training error small, and the margin large, in order to
achieve high generalization ability. In other words, hyperplane decision functions
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should be constructed such that they maximize the margin, and at the same time
separate the training data with as few exceptions as possible. Sections 7.3 and 7.5
respectively will deal with these two issues.

7.3 Optimal Margin Hyperplanes

Let us now derive the optimization problem to be solved for computing the opti-
mal hyperplane. Suppose we are given a set of examples (x1 y1) (xm ym) xi

yi 1 . Here and below, the index i runs over 1 m by default. We assume
that there is at least one negative and one positive yi. We want to find a decision
function fw b(x) sgn w x b satisfying

fw b(xi) yi (7.8)

If such a function exists (the non-separable case will be dealt with later), canoni-
cality (7.2) implies

yi xi w b 1 (7.9)

As an aside, note that out of the two canonical forms of the same hyperplane, (w b)
and ( w b), only one will satisfy equations (7.8) and (7.11). The existence of class
labels thus allows to distinguish two orientations of a hyperplane.

Following the previous section, a separating hyperplane which generalizes well
can thus be constructed by solving the following problem:

minimize
w b

(w)
1
2

w 2 (7.10)

subject to yi xi w b 1 for all i 1 m (7.11)

This is called the primal optimization problem.
Problems like this one are the subject of optimization theory. For details on how

to solve them, see Chapter 6; for a short intuitive explanation, cf. the remarks
following (1.26) in the introductory chapter. We will now derive the so-called dual
problem, which can be shown to have the same solutions as (7.10). In the present
case, it will turn out that it is more convenient to deal with the dual. To derive it,
we introduce the Lagrangian,Lagrangian

L(w b )
1
2

w 2
m

∑
i 1

i yi( xi w b) 1 (7.12)

with Lagrange multipliers i 0. Recall that as in Chapter 1, we use bold face
Greek variables to refer to the corresponding vectors of variables, for instance,

( 1 m).
The Lagrangian L must be maximized with respect to i, and minimized with

respect to w and b (see Theorem 6.26). Consequently, at this saddle point, the
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derivatives of L with respect to the primal variables must vanish,

b
L(w b ) 0

w
L(w b ) 0 (7.13)

which leads to
m

∑
i 1

i yi 0 (7.14)

and

w
m

∑
i 1

i yixi (7.15)

The solution vector thus has an expansion in terms of training examples. Note
that although the solution w is unique (due to the strict convexity of (7.10), and
the convexity of (7.11)), the coefficients i need not be.

According to the KKT theorem (Chapter 6), only the Lagrange multipliers i

that are non-zero at the saddle point, correspond to constraints (7.11) which are
precisely met. Formally, for all i 1 m, we have

i[yi( xi w b) 1] 0 (7.16)

The patterns xi for which i 0 are called Support Vectors. This terminology isSupport Vectors
related to corresponding terms in the theory of convex sets, relevant to convex
optimization (e.g., [334, 45]).3 According to (7.16), they lie exactly on the margin.4

All remaining examples in the training set are irrelevant: Their constraints (7.11)
are satisfied automatically, and they do not appear in the expansion (7.15), since
their multipliers satisfy i 0.5

This leads directly to an upper bound on the generalization ability of optimal
margin hyperplanes. To this end, we consider the so-called leave-one-out method
(for further details, see Section 12.2) to estimate the expected test error [335, 559].
This procedure is based on the idea that if we leave out one of the training

3. Given any boundary point of a convex set, there always exists a hyperplane separating
the point from the interior of the set. This is called a supporting hyperplane.

SVs lie on the boundary of the convex hulls of the two classes, thus they possess support-
ing hyperplanes. The SV optimal hyperplane is the hyperplane which lies in the middle of
the two parallel supporting hyperplanes (of the two classes) with maximum distance.

Conversely, from the optimal hyperplane, we can obtain supporting hyperplanes for all
SVs of both classes, by shifting it by 1 w in both directions.
4. Note that this implies the solution (w b), where b is computed using yi( w xi b) 1 for
SVs, is in canonical form with respect to the training data. (This makes use of the reasonable
assumption that the training set contains both positive and negative examples.)
5. In a statistical mechanics framework, Anlauf and Biehl [12] have put forward a similar
argument for the optimal stability perceptron, also computed using constrained optimization.
There is a large body of work in the physics community on optimal margin classification.
Some further references of interest are [310, 191, 192, 394, 449, 141]; other early works
include [313].



198 Pattern Recognition

examples, and train on the remaining ones, then the probability of error on the left
out example gives us a fair indication of the true test error. Of course, doing this for
a single training example leads to an error of either zero or one, so it does not yet
give an estimate of the test error. The leave-one-out method repeats this procedure
for each individual training example in turn, and averages the resulting errors.

Let us return to the present case. If we leave out a pattern xi , and construct
the solution from the remaining patterns, the following outcomes are possible (cf.
(7.11)):

1. yi xi w b 1. In this case, the pattern is classified correctly and does not
lie on the margin. These are patterns that would not have become SVs anyway.

2. yi xi w b 1. In other words, xi exactly meets the constraint (7.11). In
this case, the solution w does not change, even though the coefficients i would
change: Namely, if xi might have become a Support Vector (i.e., i 0) had
it been kept in the training set. In that case, the fact that the solution is the
same, no matter whether xi is in the training set or not, means that xi can be
written as ∑SVs i yixi with, i 0. Note that condition 2 is not equivalent to saying
that xi may be written as some linear combination of the remaining Support
Vectors: Since the sign of the coefficients in the linear combination is determined
by the class of the respective pattern, not any linear combination will do. Strictly
speaking, xi must lie in the cone spanned by the yixi, where the xi are all Support
Vectors.6 For more detail, see [565] and Section 12.2.

3. 0 yi xi w b 1. In this case, xi lies within the margin, but still on the
correct side of the decision boundary. Thus, the solution looks different from the
one obtained with xi in the training set (in that case, xi would satisfy (7.11) after
training); classification is nevertheless correct.

4. yi xi w b 0. This means that xi is classified incorrectly.

Note that cases 3 and 4 necessarily correspond to examples which would have
become SVs if kept in the training set; case 2 potentially includes such situations.
Only case 4, however, leads to an error in the leave-one-out procedure. Conse-
quently, we have the following result on the generalization error of optimal mar-
gin classifiers [570]:7

Proposition 7.4 The expectation of the number of Support Vectors obtained during train-Leave-One-Out
Bound ing on a training set of size m, divided by m, is an upper bound on the expected proba-

bility of test error of the SVM trained on training sets of size m 1.8

6. Possible non-uniqueness of the solution’s expansion in terms of SVs is related to zero
Eigenvalues of (yi yjk(xi xj))i j , cf. Proposition 2.16. Note, however, the above caveat on the
distinction between linear combinations, and linear combinations with coefficients of fixed
sign.
7. It also holds for the generalized versions of optimal margin classifiers described in the
following sections.
8. Note that the leave-one-out procedure performed with m training examples thus yields
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Figure 7.5 The optimal hyperplane
(Figure 7.2) is the one bisecting the
shortest connection between the con-
vex hulls of the two classes.

A sharper bound can be formulated by making a further distinction in case 2,
between SVs that must occur in the solution, and those that can be expressed in
terms of the other SVs (see [570, 565, 268, 549] and Section 12.2).

We now return to the optimization problem to be solved. Substituting the con-
ditions for the extremum, (7.14) and (7.15), into the Lagrangian (7.12), we arrive at
the dual form of the optimization problem:Quadratic

Program of
Optimal Margin
Classifier

maximize
m

W( )
m

∑
i 1

i
1
2

m

∑
i j 1

i j yi y j xi x j (7.17)

subject to i 0 i 1 m (7.18)

and
m

∑
i 1

i yi 0 (7.19)

On substitution of the expansion (7.15) into the decision function (7.3), we obtain
an expression which can be evaluated in terms of dot products, taken between the
pattern to be classified and the Support Vectors,

f (x) sgn
m

∑
i 1

i yi x xi b (7.20)

To conclude this section, we note that there is an alternative way to derive the
dual optimization problem [38]. To describe it, we first form the convex hulls C

a bound valid for training sets of size m 1. This difference, however, does not usually
mislead us too much. In statistical terms, the leave-one-out error is called almost unbiased.
Note, moreover, that the statement talks about the expected probability of test error — there
are thus two sources of randomness. One is the expectation over different training sets of
size m 1, the other is the probability of test error when one of the SVMs is faced with a test
example drawn from the underlying distribution generating the data. For a generalization,
see Theorem 12.9.
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and C of both classes of training points,

C : ∑
yi 1

cixi ∑
yi 1

ci 1 ci 0 (7.21)

It can be shown that the maximum margin hyperplane as described above is theConvex Hull
Separation one bisecting the shortest line orthogonally connecting C and C (Figure 7.5).

Formally, this can be seen by considering the optimization problem

minimize
c m ∑

yi 1
cixi ∑

yi 1
cixi

2

subject to ∑
yi 1

ci 1 ∑
yi 1

ci 1 ci 0 (7.22)

and using the normal vector w ∑yi 1 cixi ∑yi 1 cixi, scaled to satisfy the canon-
icality condition (Definition 7.1). The threshold b is explicitly adjusted such that the
hyperplane bisects the shortest connecting line (see also Problem 7.7).

7.4 Nonlinear Support Vector Classifiers

Thus far, we have shown why it is that a large margin hyperplane is good from a
statistical point of view, and we have demonstrated how to compute it. Although
these two points have worked out nicely, there is still a major drawback to the
approach: Everything that we have done so far is linear in the data. To allow
for much more general decision surfaces, we now use kernels to nonlinearly
transform the input data x1 xm into a high-dimensional feature space,
using a map Φ : xi xi; we then do a linear separation there.

To justify this procedure, Cover’s Theorem [113] is sometimes alluded to. This
theorem characterizes the number of possible linear separations of m points in
general position in an N-dimensional space. If m N 1, then all 2m separations
are possible — the VC dimension of the function class is n 1 (Section 5.5.6). If
m N 1, then Cover’s Theorem states that the number of linear separationsCover’s Theorem
equals

2
N

∑
i 0

m 1

i
(7.23)

The more we increase N, the more terms there are in the sum, and thus the larger
is the resulting number. This theorem formalizes the intuition that the number of
separations increases with the dimensionality. It requires, however, that the points
are in general position — therefore, it does not strictly make a statement about
the separability of a given dataset in a given feature space. E.g., the feature map
might be such that all points lie on a rather restrictive lower-dimensional manifold,
which could prevent us from finding points in general position.

There is another way to intuitively understand why the kernel mapping in-
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Figure 7.6 By map-
ping the input data
(top left) nonlin-
early (via Φ) into a
higher-dimensional
feature space
(here: 3), and
constructing a sep-
arating hyperplane
there (bottom left), an
SVM (top right) corre-
sponds to a nonlinear
decision surface in
input space (here:

2 , bottom right). We
use x1 x2 to denote
the entries of the
input vectors, and
w1 w2 w3 to denote
the entries of the
hyperplane normal
vector in .

creases the chances of a separation, in terms of concepts of statistical learning
theory. Using a kernel typically amounts to using a larger function class, thus in-
creasing the capacity of the learning machine, and rendering problems separable
that are not linearly separable to start with.

On the practical level, the modification necessary to perform the algorithm“Kernelizing” the
Optimal Margin
Hyperplane

in a high-dimensional feature space are minor. In the above sections, we made
no assumptions on the dimensionality of , the space in which we assumed
our patterns belong. We only required to be equipped with a dot product.
The patterns xi that we talked about previously thus need not coincide with
the input patterns. They can equally well be the results of mapping the original
input patterns xi into a high-dimensional feature space. Consequently, we take
the stance that wherever we wrote x, we actually meant Φ(x). Maximizing the
target function (7.17), and evaluating the decision function (7.20), then requires
the computation of dot products Φ(x) Φ(xi) in a high-dimensional space. These
expensive calculations are reduced significantly by using a positive definite kernel
k (see Chapter 2), such thatKernel Trick

Φ(x) Φ(xi) k(x xi) (7.24)

leading to decision functions of the form (cf. (7.20))

f (x) sgn
m

∑
i 1

yi ik(x xi) b (7.25)
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Σf(x)=sgn ( + b)

input vector x

classification

comparison:  e.g.k k k k

support vectors
x 1 ... x4

weightsλ1 λ2  λ3  λ4

k(x,x i)=exp(−||x−x i||
2 / c)

k(x,x i)=tanh(κ(x.x i)+θ)

k(x,x i)=(x.x i)
d

f(x)=sgn ( Σ λi k(x,x i) + b)
i

Figure 7.7 Architecture of SVMs. The kernel function k is chosen a priori; it determines the
type of classifier (for instance, polynomial classifier, radial basis function classifier, or neural
network). All other parameters (number of hidden units, weights, threshold b) are found
during training, by solving a quadratic programming problem. The first layer weights xi

are a subset of the training set (the Support Vectors); the second layer weights i yi i are
computed from the Lagrange multipliers (cf. (7.25)).

At this point, a small aside regarding terminology is in order. As explained in
Chapter 2, the input domain need not be a vector space. Therefore, the Support
Vectors in (7.25) (i.e., those xi with i 0) are not necessarily vectors. One could
choose to be on the safe side, and only refer to the corresponding Φ(xi) as SVs.
Common usage employs the term in a somewhat loose sense for both, however.

Consequently, everything that has been said about the linear case also applies
to nonlinear cases, obtained using a suitable kernel k, instead of the Euclidean dot
product (Figure 7.6). By using some of the kernel functions described in Chapter 2,
the SV algorithm can construct a variety of learning machines (Figure 7.7), some
of which coincide with classical architectures: polynomial classifiers of degree d,Kernels

k(x xi) x xi
d (7.26)

radial basis function classifiers with Gaussian kernel of width c 0,

k(x xi) exp x xi
2 c (7.27)

and neural networks (e.g., [49, 235]) with tanh activation function,

k(x xi) tanh( x xi Θ) (7.28)

The parameters 0 and Θ are the gain and horizontal shift. As we shall
see later, the tanh kernel can lead to very good results. Nevertheless, we should
mention at this point that from a mathematical point of view, it has certain short-
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comings, cf. the discussion following (2.69).
To find the decision function (7.25), we solve the following problem (cf. (7.17)):Quadratic

Program
maximize W( )

m

∑
i 1

i
1
2

m

∑
i j 1

i j yiy jk(xi x j) (7.29)

subject to the constraints (7.18) and (7.19).
If k is positive definite, Qi j : (yiy jk(xi x j))i j is a positive definite matrix (Prob-

lem 7.6), which provides us with a convex problem that can be solved efficiently
(cf. Chapter 6). To see this, note that (cf. Proposition 2.16)

m

∑
i j 1

i j yiy jk(xi x j)
m

∑
i 1

i yiΦ(xi)
m

∑
j 1

j y jΦ(x j) 0 (7.30)

for all m .
As described in Chapter 2, we can actually use a larger class of kernels without

destroying the convexity of the quadratic program. This is due to the fact that
the constraint (7.19) excludes certain parts of the space of multipliers i. As a
result, we only need the kernel to be positive definite on the remaining points.
This is precisely guaranteed if we require k to be conditionally positive definite
(see Definition 2.21). In this case, we have Q 0 for all coefficient vectors
satisfying (7.19).

To compute the threshold b, we take into account that due to the KKT conditionsThreshold
(7.16), j 0 implies (using (7.24))
m

∑
i 1

yi ik(x j xi) b yj (7.31)

Thus, the threshold can for instance be obtained by averaging

b yj

m

∑
i 1

yi ik(x j xi) (7.32)

over all points with j 0; in other words, all SVs. Alternatively, one can compute
b from the value of the corresponding double dual variable; see Section 10.3 for
details. Sometimes it is also useful not to use the “optimal” b, but to change it in
order to adjust the number of false positives and false negatives.

Figure 1.7 shows how a simple binary toy problem is solved, using a Support
Vector Machine with a radial basis function kernel (7.27). Note that the SVs are the
patterns closest to the decision boundary — not only in the feature space, where
by construction, the SVs are the patterns closest to the separating hyperplane, but
also in the input space depicted in the figure. This feature differentiates SVMs
from other types of classifiers. Figure 7.8 shows both the SVs and the centers ex-
tracted by k-means, which are the expansion patterns that a classical RBF network
approach would employ.

In a study comparing the two approaches on the USPS problem of handwrittenComparison to
RBF Network character recognition, a SVM with a Gaussian kernel outperformed the classical

RBF network using Gaussian kernels [482]. A hybrid approach, where the SVM
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Figure 7.8 RBF centers automat-
ically computed by the Support
Vector algorithm (indicated by ex-
tra circles), using a Gaussian ker-
nel. The number of SV centers ac-
cidentally coincides with the num-
ber of identifiable clusters (indi-
cated by crosses found by k-means
clustering, with k 2 and k 3 for
balls and circles, respectively), but
the naive correspondence between
clusters and centers is lost; indeed,
3 of the SV centers are circles, and
only 2 of them are balls. Note that
the SV centers are chosen with re-
spect to the classification task to be
solved (from [482]).

algorithm was used to identify the centers (or hidden units) for the RBF network
(that is, as a replacement for k-means), exhibited a performance which was in
between the previous two. The study concluded that the SVM algorithm yielded
two advantages. First, it better identified good expansion patterns, and second, its
large margin regularizer led to second-layer weights that generalized better. We
should add, however, that using clever engineering, the classical RBF algorithm
can be improved to achieve a performance close to the one of SVMs [427].

7.5 Soft Margin Hyperplanes

So far, we have not said much about when the above will actually work. In
practice, a separating hyperplane need not exist; and even if it does, it is not
always the best solution to the classification problem. After all, an individual
outlier in a data set, for instance a pattern which is mislabelled, can crucially affect
the hyperplane. We would rather have an algorithm which can tolerate a certain
fraction of outliers.

A natural idea might be to ask for the algorithm to return the hyperplane
that leads to the minimal number of training errors. Unfortunately, it turns out
that this is a combinatorial problem. Worse still, the problem is even hard to
approximate: Ben-David and Simon [34] have recently shown that it is NP-hard to
find a hyperplane whose training error is worse by some constant factor than the
optimal one. Interestingly, they also show that this can be alleviated by taking
into account the concept of the margin. By disregarding points that are within
some fixed positive margin of the hyperplane, then the problem has polynomial
complexity.

Cortes and Vapnik [111] chose a different approach for the SVM, following [40].
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To allow for the possibility of examples violating (7.11), they introduced so-called
slack variables,Slack Variables

i 0 where i 1 m (7.33)

and use relaxed separation constraints (cf. (7.11)),

yi( xi w b) 1 i i 1 m (7.34)

Clearly, by making i large enough, the constraint on (xi yi) can always be met. In
order not to obtain the trivial solution where all i take on large values, we thus
need to penalize them in the objective function. To this end, a term ∑i i is included
in (7.10).

In the simplest case, referred to as the C-SV classifier, this is done by solving, forC-SVC
some C 0,

minimize
w m

(w )
1
2

w 2 C
m

m

∑
i 1

i (7.35)

subject to the constraints (7.33) and (7.34). It is instructive to compare this to
Theorem 7.3, considering the case 1. Whenever the constraint (7.34) is met
with i 0, the corresponding point will not be a margin error. All non-zero slacks

correspond to margin errors; hence, roughly speaking, the fraction of margin
errors in Theorem 7.3 increases with the second term in (7.35). The capacity term,
on the other hand, increases with w . Hence, for a suitable positive constant C,
this approach approximately minimizes the right hand side of the bound.

Note, however, that if many of the i attain large values (in other words, if the
classes to be separated strongly overlap, for instance due to noise), then ∑m

i 1 i can
be significantly larger than the fraction of margin errors. In that case, there is no
guarantee that the hyperplane will generalize well.

As in the separable case (7.15), the solution can be shown to have an expansion

w
m

∑
i 1

i yixi (7.36)

where non-zero coefficients i can only occur if the corresponding example (xi yi)
precisely meets the constraint (7.34). Again, the problem only depends on dot
products in , which can be computed by means of the kernel.

The coefficients i are found by solving the following quadratic programming
problem:

maximize
m

W( )
m

∑
i 1

i
1
2

m

∑
i j 1

i j yi y jk(xi x j) (7.37)

subject to 0 i
C
m

for all i 1 m (7.38)

and
m

∑
i 1

i yi 0 (7.39)

To compute the threshold b, we take into account that due to (7.34), for Support
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Vectors xj for which j 0, we have (7.31). Thus, the threshold can be obtained by
averaging (7.32) over all Support Vectors x j (recall that they satisfy j 0) with

j C.
In the above formulation, C is a constant determining the trade-off between

two conflicting goals: minimizing the training error, and maximizing the margin.
Unfortunately, C is a rather unintuitive parameter, and we have no a priori way
to select it.9 Therefore, a modification was proposed in [481], which replaces C by
a parameter ; the latter will turn out to control the number of margin errors and-SVC
Support Vectors.

As a primal problem for this approach, termed the -SV classifier, we consider

minimize
w m b

(w )
1
2

w 2 1
m

m

∑
i 1

i (7.40)

subject to yi( xi w b) i (7.41)

and i 0 0 (7.42)

Note that no constant C appears in this formulation; instead, there is a parameter
, and also an additional variable to be optimized. To understand the role of
, note that for 0, the constraint (7.41) simply states that the two classes are

separated by the margin 2 w (cf. Problem 7.4).
To explain the significance of , let us first recall the term margin error: by this,Margin Error

we denote points with i 0. These are points which are either errors, or lie within
the margin. Formally, the fraction of margin errors is

Remp[g] :
1
m

i yig(xi) (7.43)

Here, g is used to denote the argument of the sgn in the decision function (7.25):
f sgn g. We are now in a position to state a result that explains the significance
of .-Property

Proposition 7.5 ([481]) Suppose we run -SVC with k on some data with the result that
0. Then

(i) is an upper bound on the fraction of margin errors.

(ii) is a lower bound on the fraction of SVs.

(iii) Suppose the data (x1 y1) (xm ym) were generated iid from a distribution
P(x y) P(x)P(y x), such that neither P(x y 1) nor P(x y 1) contains any dis-
crete component. Suppose, moreover, that the kernel used is analytic and non-constant.
With probability 1, asymptotically, equals both the fraction of SVs and the fraction of
errors.

The proof can be found in Section A.2.
Before we get into the technical details of the dual derivation, let us take a look

9. As a default value, we use C m 10 unless stated otherwise.
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Figure 7.9 Toy problem (task: separate circles from disks) solved using -SV classification,
with parameter values ranging from 0 1 (top left) to 0 8 (bottom right). The larger
we make , the more points are allowed to lie inside the margin (depicted by dotted lines).
Results are shown for a Gaussian kernel, k(x x ) exp( x x 2).

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for the
toy example in Figure 7.9.
Note that upper bounds the fraction of errors and lower bounds the fraction of SVs, and
that increasing , i.e., allowing more errors, increases the margin.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71
fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86
margin w 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

at a toy example illustrating the influence of (Figure 7.9). The corresponding
fractions of SVs and margin errors are listed in table 7.1.

The derivation of the -SVC dual is similar to the above SVC formulations, onlyDerivation of the
Dual slightly more complicated. We consider the Lagrangian

L(w b )
1
2

w 2 1
m

m

∑
i 1

i

m

∑
i 1

( i(yi( xi w b) i) i i) (7.44)

using multipliers i i 0. This function has to be minimized with respect to
the primal variables w b , and maximized with respect to the dual variables

. To eliminate the former, we compute the corresponding partial derivatives
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and set them to 0, obtaining the following conditions:

w
m

∑
i 1

i yixi (7.45)

i i 1 m (7.46)
m

∑
i 1

i yi 0 (7.47)

m

∑
i 1

i (7.48)

Again, in the SV expansion (7.45), the i that are non-zero correspond to a con-
straint (7.41) which is precisely met.

Substituting (7.45) and (7.46) into L, using i i 0, and incorporating ker-
nels for dot products, leaves us with the following quadratic optimization problem
for -SV classification:Quadratic

Program
for -SVC maximize

m
W( )

1
2

m

∑
i j 1

i j yiy jk(xi x j) (7.49)

subject to 0 i
1
m

(7.50)
m

∑
i 1

i yi 0 (7.51)

m

∑
i 1

i (7.52)

As above, the resulting decision function can be shown to take the form

f (x) sgn
m

∑
i 1

i yik(x xi) b (7.53)

Compared with the C-SVC dual (7.37), there are two differences. First, there is an
additional constraint (7.52).10 Second, the linear term ∑m

i 1 i no longer appears in
the objective function (7.49). This has an interesting consequence: (7.49) is now
quadratically homogeneous in . It is straightforward to verify that the same
decision function is obtained if we start with the primal function

(w )
1
2

w 2 C
1
m

m

∑
i 1

i (7.54)

10. The additional constraint makes it more challenging to come up with efficient training
algorithms for large datasets. So far, two approaches have been proposed which work well.
One of them slightly modifies the primal problem in order to avoid the other equality con-
straint (related to the offset b) [98]. The other one is a direct generalization of a correspond-
ing algorithm for C-SVC, which reduces the problem for each chunk to a linear system, and
which does not suffer any disadvantages from the additional constraint [407, 408]. See also
Sections 10.3.2, 10.4.3, and 10.6.3 for further details.
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i.e., if one does use C, cf. Problem 7.16.
To compute the threshold b and the margin parameter , we consider two

sets S , of identical size s 0, containing SVs xi with 0 i 1 and yi 1,
respectively. Then, due to the KKT conditions, (7.41) becomes an equality with

i 0. Hence, in terms of kernels,

b
1
2s ∑

x S S

m

∑
j 1

j y jk(x x j) (7.55)

1
2s ∑

x S

m

∑
j 1

j y jk(x x j) ∑
x S

m

∑
j 1

j y jk(x x j) (7.56)

Note that for the decision function, only b is actually required.
A connection to standard SV classification, and a somewhat surprising interpre-Connection

-SVC — C-SVC tation of the regularization parameter C, is described by the following result:

Proposition 7.6 (Connection -SVC — C-SVC [481]) If -SV classification leads to
0, then C-SV classification, with C set a priori to 1 , leads to the same decision

function.

Proof If we minimize (7.40), and then fix to minimize only over the remaining
variables, nothing will change. Hence the solution w0 b0 0 minimizes (7.35), for
C 1, subject to (7.41). To recover the constraint (7.34), we rescale to the set of
variables w w b b . This leaves us with the objective function
(7.35), up to a constant scaling factor 2, using C 1 .

For further details on the connection between -SVMs and C-SVMs, see [122, 38].
A complete account has been given by Chang and Lin [98], who show that for a
given problem and kernel, there is an interval [ min max] of admissible values
for , with 0 min max 1. The boundaries of the interval are computed
by considering ∑i i as returned by the C-SVM in the limits C and C 0,
respectively.

It has been noted that -SVMs have an interesting interpretation in terms of
reduced convex hulls [122, 38] (cf. (7.21)). If a problem is non-separable, the convex
hulls will no longer be disjoint. Therefore, it no longer makes sense to search for the
shortest line connecting them, and the approach of (7.22) will fail. In this situation,
it seems natural to reduce the convex hulls in size, by limiting the size of the
coefficients ci in (7.21) to some value (0 1). Intuitively, this amounts to limiting
the influence of individual points — note that in the original problem (7.22), two
single points can already determine the solution. It is possible to show that the -
SVM formulation solves the problem of finding the hyperplane orthogonal to the
closest line connecting the reduced convex hulls [122].

We now move on to another aspect of soft margin classification. When weRobustness and
Outliers introduced the slack variables, we did not attempt to justify the fact that in the

objective function, we used a penalizer ∑m
i 1 i. Why not use another penalizer,

such as ∑m
i 1

p
i , for some p 0 [111]? For instance, p 0 would yield a penalizer
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that exactly counts the number of margin errors. Unfortunately, however, it is also a
penalizer that leads to a combinatorial optimization problem. Penalizers yielding
optimization problems that are particularly convenient, on the other hand, are
obtained for p 1 and p 2. By default, we use the former, as it possesses an
additional property which is statistically attractive. As the following proposition
shows, linearity of the target function in the slack variables i leads to a certain
“outlier” resistance of the estimator. As above, we use the shorthand xi for Φ(xi).

Proposition 7.7 (Resistance of SV classification [481]) Suppose w can be expressed
in terms of the SVs which are not at bound,

w
m

∑
i 1

ixi (7.57)

with i 0 only if i (0 1 m) (where the i are the coefficients of the dual solution).
Then local movements of any margin error xm parallel to w do not change the hyperplane.11

The proof can be found in Section A.2. For further results in support of the p 1
case, see [527].

Note that the assumption (7.57) is not as restrictive as it may seem. Even though
the SV expansion of the solution, w ∑m

i 1 i yixi, often contains many multipliers
i which are at bound, it is nevertheless quite conceivable, especially when dis-

carding the requirement that the coefficients be bounded, that we can obtain an
expansion (7.57) in terms of a subset of the original vectors.

For instance, if we have a 2-D problem that we solve directly in input space, i.e.,
with k(x x ) x x , then it suffices to have two linearly independent SVs which
are not at bound, in order to express w. This holds true regardless of whether or
not the two classes overlap, even if there are many SVs which are at the upper
bound. Further information on resistance and robustness of SVMs can be found in
Sections 3.4 and 9.3.

We have introduced SVs as those training examples xi for which i 0. In
some cases, it is useful to further distinguish different types of SVs. For reference
purposes, we give a list of different types of SVs (Table 7.2).

In Section 7.3, we used the KKT conditions to argue that in the hard margin case,
the SVs lie exactly on the margin. Using an identical argument for the soft margin
case, we see that in this instance, in-bound SVs lie on the margin (Problem 7.9).

Note that in the hard margin case, where max , every SV is an in-bound
SV. Note, moreover, that for kernels that produce full-rank Gram matrices, such as
the Gaussian (Theorem 2.18), in theory every SV is essential (provided there are
no duplicate patterns in the training set).12

11. Note that the perturbation of the point is carried out in feature space. What it precisely
corresponds to in input space therefore depends on the specific kernel chosen.
12. In practice, Gaussian Gram matrices usually have some eigenvalues that are close to 0.
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Table 7.2 Overview of different types of SVs. In each case, the condition on the Lagrange
multipliers i (corresponding to an SV xi) is given. In the table, max stands for the upper
bound in the optimization problem; for instance, max

C
m in (7.38) and max

1
m in (7.50).

Type of SV Definition Properties
(standard) SV 0 i lies on or in margin
in-bound SV 0 i max lies on margin
bound SV i max usually lies in margin

(“margin error”)
essential SV appears in all possible becomes margin error

expansions of solution when left out (Section 7.3)

7.6 Multi-Class Classification

So far, we have talked about binary classification, where the class labels can
only take two values: 1. Many real-world problems, however, have more than
two classes — an example being the widely studied optical character recognition
(OCR) problem. We will now review some methods for dealing with this issue.

7.6.1 One Versus the Rest

To get M-class classifiers, it is common to construct a set of binary classifiers
f 1 f M, each trained to separate one class from the rest, and combine them
by doing the multi-class classification according to the maximal output before ap-
plying the sgn function; that is, by taking

argmax
j 1 M

gj(x) where g j(x)
m

∑
i 1

yi
j
i k(x xi) bj (7.58)

(note that f j(x) sgn (g j(x)), cf. (7.25)).
The values g j(x) can also be used for reject decisions. To see this, we considerReject Decisions

the difference between the two largest g j(x) as a measure of confidence in the
classification of x. If that measure falls short of a threshold , the classifier rejects
the pattern and does not assign it to a class (it might instead be passed on to
a human expert). This has the consequence that on the remaining patterns, a
lower error rate can be achieved. Some benchmark comparisons report a quantity
referred to as the punt error, which denotes the fraction of test patterns that must
be rejected in order to achieve a certain accuracy (say 1% error) on the remaining
test samples. To compute it, the value of is adjusted on the test set [64].

The main shortcoming of (7.58), sometimes called the winner-takes-all approach,
is that it is somewhat heuristic. The binary classifiers used are obtained by training
on different binary classification problems, and thus it is unclear whether their
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real-valued outputs (before thresholding) are on comparable scales.13 This can be
a problem, since situations often arise where several binary classifiers assign the
pattern to their respective class (or where none does); in this case, one class must
be chosen by comparing the real-valued outputs.

In addition, binary one-versus-the-rest classifiers have been criticized for deal-
ing with rather asymmetric problems. For instance, in digit recognition, the clas-
sifier trained to recognize class ‘7’ is usually trained on many more negative than
positive examples. We can deal with these asymmetries by using values of the reg-
ularization constant C which differ for the respective classes (see Problem 7.10). It
has nonetheless been argued that the following approach, which is more symmet-
ric from the outset, can be advantageous.

7.6.2 Pairwise Classification

In pairwise classification, we train a classifier for each possible pair of classes
[178, 463, 233, 311]. For M classes, this results in (M 1)M 2 binary classifiers.
This number is usually larger than the number of one-versus-the-rest classifiers;
for instance, if M 10, we need to train 45 binary classifiers rather than 10 as
in the method above. Although this suggests large training times, the individual
problems that we need to train on are significantly smaller, and if the training
algorithm scales superlinearly with the training set size, it is actually possible to
save time.

Similar considerations apply to the runtime execution speed. When we try to
classify a test pattern, we evaluate all 45 binary classifiers, and classify according
to which of the classes gets the highest number of votes. A vote for a given
class is defined as a classifier putting the pattern into that class.14 The individual
classifiers, however, are usually smaller in size (they have fewer SVs) than they
would be in the one-versus-the-rest approach. This is for two reasons: First, the
training sets are smaller, and second, the problems to be learned are usually easier,
since the classes have less overlap.

Nevertheless, if M is large, and we evaluate the (M 1)M 2 classifiers, then the
resulting system may be slower than the corresponding one-versus-the-rest SVM.
To illustrate this weakness, consider the following hypothetical situation: Suppose,
in a digit recognition task, that after evaluating the first few binary classifiers,
both digit 7 and digit 8 seem extremely unlikely (they already “lost” on several
classifiers). In that case, it would seem pointless to evaluate the 7-vs-8 classifier.
This idea can be cast into a precise framework by embedding the binary classifiers
into a directed acyclic graph. Each classification run then corresponds to a directed
traversal of that graph, and classification can be much faster [411].

13. Note, however, that some effort has gone into developing methods for transforming the
real-valued outputs into class probabilities [521, 486, 410].
14. Some care has to be exercised in tie-breaking. For further detail, see [311].
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7.6.3 Error-Correcting Output Coding

The method of error-correcting output codes was developed in [142], and later
adapted to the case of SVMs [5]. In a nutshell, the idea is as follows. Just as we
can generate a binary problem from a multiclass problem by separating one class
from the rest — digit 0 from digits 1 through 9, say — we can generate a large
number of further binary problems by splitting the original set of classes into two
subsets. For instance, we could separate the even digits from the odd ones, or we
could separate digits 0 through 4 from 5 through 9. It is clear that if we design
a set of binary classifiers f 1 f L in the right way, then the binary responses
will completely determine the class of a test patterns. Each class corresponds to a
unique vector in 1 L; for M classes, we thus get a so-called decoding matrix M

1 M L. What happens if the binary responses are inconsistent with each other;
if, for instance, the problem is noisy, or the training sample is too small to estimate
the binary classifiers reliably? Formally, this means that we will obtain a vector
of responses f 1(x) f L(x) which does not occur in the matrix M. To deal with
these cases, [142] proposed designing a clever set of binary problems, which yields
robustness against some errors. Here, the closest match between the vector of
responses and the rows of the matrix is determined using the Hamming distance
(the number of entries where the two vectors differ; essentially, the L distance).
Now imagine a situation where the code is such that the minimal Hamming
distance is three. In this case, we can guarantee that we will correctly classify all
test examples which lead to at most one error amongst the binary classifiers.

This method produces very good results in multi-class tasks; nevertheless, it
has been pointed out that it does not make use of a crucial quantity in classifiers:
the margin. Recently [5], a version was developed that replaces the Hamming-
based decoding with a more sophisticated scheme that takes margins into account.
Recommendations are also made regarding how to design good codes for margin
classifiers, such as SVMs.

7.6.4 Multi-Class Objective Functions

Arguably the most elegant multi-class algorithm, and certainly the method most
closely aligned with Vapnik’s principle of always trying to solve problems directly,
entails modifying the SVM objective function in such a way that it simultaneously
allows the computation of a multi-class classifier. For instance [593, 58], we can
modify (7.35) and use the following quadratic program:

minimize
wr

r m br

1
2

M

∑
r 1

wr
2 C

m

m

∑
i 1

∑
r yi

r
i (7.59)

subject to wyi xi byi wr xi br 2 r
i

r
i 0 (7.60)
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where m 1 M yi, and yi 1 M is the multi-class label of the
pattern xi (cf. Problem 7.17).

In terms of accuracy, the results obtained with this approach are comparable to
those obtained with the widely used one-versus-the-rest approach. Unfortunately,
the optimization problem is such that it has to deal with all SVs at the same
time. In the other approaches, the individual binary classifiers usually have much
smaller SV sets, with beneficial effects on the training time. For further multiclass
approaches, see [160, 323]. Generalizations to multi-label problems, where patterns
are allowed to belong to several classes at the same time, are discussed in [162].

Overall, it is fair to say that there is probably no multi-class approach that gen-
erally outperforms the others. For practical problems, the choice of approach will
depend on constraints at hand. Relevant factors include the required accuracy, the
time available for development and training, and the nature of the classification
problem (e.g., for a problem with very many classes, it would not be wise to use
(7.59)). That said, a simple one-against-the-rest approach often produces accept-
able results.

7.7 Variations on a Theme

There are a number of variations of the standard SV classification algorithm, such
as the elegant leave-one-out machine [589, 592] (see also Section 12.2.2 below), the
idea of Bayes point machines [451, 239, 453, 545, 392], and extensions to feature
selection [70, 224, 590]. Due to lack of space, we only describe one of the variations;
namely, linear programming machines.Linear

Programming
Machines

As we have seen above, the SVM approach automatically leads to a decision
function of the form (7.25). Let us rewrite it as f (x) sgn (g(x)), with

g(x)
m

∑
i 1

ik(x xi) b (7.61)

In Chapter 4, we showed that this form of the solution is essentially a consequence
of the form of the regularizer w 2 (Theorem 4.2). The idea of linear programming
(LP) machines is to use the kernel expansion as an ansatz for the solution, but to
use a different regularizer, namely the 1 norm of the coefficient vector [343, 344,1 Regularizer
74, 184, 352, 37, 591, 593, 39]. The main motivation for this is that this regularizer
is known to induce sparse expansions (see Chapter 4).

This amounts to the objective function

Rreg[g] :
1
m 1 C Remp[g] (7.62)

where 1 ∑m
i 1 i denotes the 1 norm in coefficient space, using the soft

margin empirical risk,

Remp[g]
1
m ∑

i
i (7.63)
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with slack terms

i max 1 yig(xi) 0 (7.64)

We thus obtain a linear programming problem;

minimize
m b

1
m

m
∑

i 1
( i i ) C

m
∑

i 1
i

subject to yig(xi) 1 i

i i i 0

(7.65)

Here, we have dealt with the 1-norm by splitting each component i into its
positive and negative part: i i i in (7.61). The solution differs from (7.25)
in that it is no longer necessarily the case that each expansion pattern has a weight

i yi, whose sign equals its class label. This property would have to be enforced
separately (Problem 7.19). Moreover, it is also no longer the case that the expansion
patterns lie on or beyond the margin — in LP machines, they can basically be
anywhere.

LP machines can also benefit from the -trick. In this case, the programming-LPMs
problem can be shown to take the following form [212]:

minimize
m b

1
m

m
∑

i 1
i

subject to 1
m

m
∑

i 1
( i i ) 1

yig(xi) i

i i i 0

(7.66)

We will not go into further detail at this point. Additional information on
linear programming machines from a regularization point of view is given in
Section 4.9.2.

7.8 Experiments

7.8.1 Digit Recognition Using Different Kernels

Handwritten digit recognition has long served as a test bed for evaluating and
benchmarking classifiers [318, 64, 319]. Thus, it was imperative in the early days of
SVM research to evaluate the SV method on widely used digit recognition tasks. In
this section we report results on the US Postal Service (USPS) database (described
in Section A.1). We shall return to the character recognition problem in Chapter 11,
where we consider the larger MNIST database.

As described above, the difference between C-SVC and -SVC lies only in the
fact that we have to select a different parameter a priori. If we are able to do this
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Table 7.3 Performance on the USPS set, for three different types of classifier, constructed
with the Support Vector algorithm by choosing different functions k in (7.25) and (7.29).
Error rates on the test set are given; and for each of the ten-class-classifiers, we also show
the average number of Support Vectors of the ten two-class-classifiers. The normalization
factor of 256 is tailored to the dimensionality of the data, which is 16 16.

polynomial: k(x x ) x x 256 d

d 1 2 3 4 5 6 7
raw error/% 8.9 4.7 4.0 4.2 4.5 4.5 4.7
av. # of SVs 282 237 274 321 374 422 491

RBF: k(x x ) exp x x 2 (256 c)
c 4.0 2.0 1.2 0.8 0.5 0.2 0.1
raw error/% 5.3 5.0 4.9 4.3 4.4 4.4 4.5
av. # of SVs 266 240 233 235 251 366 722

sigmoid: k(x x ) tanh(2 x x 256 Θ)
Θ 0.8 0.9 1.0 1.1 1.2 1.3 1.4

raw error/% 6.3 4.8 4.1 4.3 4.3 4.4 4.8
av. # of SVs 206 242 254 267 278 289 296

well, we obtain identical performance. The experiments reported were carried out
before the development of -SVC, and thus all use C-SVC code.

In the present study, we put particular emphasis on comparing different types
of SV classifiers obtained by choosing different kernels. We report results for poly-
nomial kernels (7.26), Gaussian radial basis function kernels (7.27), and sigmoid
kernels (7.28), summarized in Table 7.3. In all three cases, error rates around 4%
can be achieved.

Note that in practical applications, it is usually helpful to scale the argumentKernel Scaling
of the kernel, such that the numerical values do not get extremely small or large
as the dimension of the data increases. This helps avoid large roundoff errors,
and prevents over- and underflow. In the present case, the scaling was done by
including the factor 256 in Table 7.3.

The results show that the Support Vector algorithm allows the construction of
a range of learning machines, all of which perform well. The similar performance
for the three different functions k suggests that among these cases, the choice of
the set of decision functions is less important than capacity control in the chosen
type of structure. This phenomenon is well-known for the Parzen window density
estimator in N (e.g., [226])

p(x)
1
m

m

∑
i 1

1
N k

x xi (7.67)

It is of great importance in this case to choose an appropriate value of the band-
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Figure 7.10 2D toy example of a binary classification problem solved using a soft margin
SVC. In all cases, a Gaussian kernel (7.27) is used. From left to right, we decrease the kernel
width. Note that for a large width, the decision boundary is almost linear, and the data
set cannot be separated without error (see text). Solid lines represent decision boundaries;
dotted lines depict the edge of the margin (where (7.34) becomes an equality with i 0).

width parameter for a given amount of data. Similar parallels can be drawn to
the solution of ill-posed problems; for a discussion, see [561].

Figure 7.10 shows a toy example using a Gaussian kernel (7.27), illustrating that
it is crucial to pick the right kernel parameter. In all cases, the same value of C
was used, but the kernel width c was varied. For large values of c, the classifier is
almost linear, and it cannot separate the data set without errors. For a small width
(right), the data set is practically memorized. For an intermediate width (middle),
a trade-off is made between allowing some training errors and using a “simple”
decision boundary.

In practice, both the kernel parameters and the value of C (or ) are often chosenParameter
Choice using cross validation. To this end, we first split the data set into p parts of equal

size, say, p 10. We then perform ten training runs. Each time, we leave out one
of the ten parts and use it as an independent validation set for optimizing the
parameters. In the simplest case, we choose the parameters which work best, on
average over the ten runs. It is common practice, however, to then train on the full
training set, using these average parameters. There are some problems with this.
First, it amounts to optimizing the parameters on the same set as the one used for
training, which can lead to overfitting. Second, the optimal parameter settings for
data sets of size m and 9

10 m, respectively, do not usually coincide. Typically, the
smaller set will require a slightly stronger regularization. This could mean a wider
Gaussian kernel, a smaller polynomial degree, a smaller C, or a larger . Even
worse, it is theoretically possible that there is a so-called phase transition (e.g.,
[393]) in the learning curve between the two sample sizes. This means that the
generalization error as a function of the sample size could change dramatically
between 9

10 m and m. Having said all this, practitioners often do not care about
these theoretical precautions, and use the unchanged parameters with excellent
results. For further detail, see Section 12.2.

In some cases, one can try to avoid the whole procedure by using an educated
guess. Below, we list several methods.
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Use parameter settings that have worked well for similar problems. Here, some
care has to be exercised in the scaling of kernel parameters. For instance, when
using an RBF kernel, c must be rescaled to ensure that xi x j

2 c roughly lies in
the same range, even if the scaling and dimension of the data are different.

For many problems, there is some prior expectation regarding the typical error
rate. Let us assume we are looking at an image classification task, and we have
already tried three other approaches, all of which yielded around 5% test error.
Using SV classifiers, we can incorporate this knowledge by choosing a value
for which is in that range, say 5%. The reason for this guess is that we know
(Proposition 7.5) that the margin error is then below 5%, which in turn implies that
the training error is below 5%. The training error will typically be smaller than the
test error, thus it is consistent that it should be upper bounded by the 5% test error.

In a slightly less elegant way, one can try to mimic this procedure for C-SV
classifiers. To this end, we start off with a large value of C, and reduce it until
the number of Lagrange multipliers that are at the upper bound (in other words,
the number of margin errors) is in a suitable range (say, somewhat below 5%).
Compared to the above procedure for choosing , the disadvantage is that this
entails a number of training runs. We can also monitor the number of actual
training errors during the training runs, but since not every margin error is a
training error, this is often less sensitive. Indeed, the difference between training
error and test error can often be quite substantial. For instance, on the USPS set,
most of the results reported here were obtained with systems that had essentially
zero training error.

One can put forward scaling arguments which indicate that C 1 R2, where R
is a measure for the range of the data in feature space that scales like the length
of the points in . Examples thereof are the standard deviation of the distance of
the points to their mean, the radius of the smallest sphere containing the data (cf.
(5.61) and (8.17)), or, in some cases, the maximum (or mean) length k(xi xi) over
all data points (see Problem 7.25).

Finally, we can use theoretical tools such as VC bounds (see, for instance, Fig-
ure 5.5) or leave-one-out bounds (Section 12.2).

Having seen that different types of SVCs lead to similar performance, the ques-
tion arises as to how these performances compare with other approaches. Table 7.4
gives a summary of a number of results on the USPS set. Note that the best SVM
result is 3 0%; it uses additional techniques that we shall explain in chapters 11
and 13. It is known that the USPS test set is rather difficult — the human error rate
is 2.5% [79]. For a discussion, see [496]. Note, moreover, that some of the results
reported in the literature for the USPS set were obtained with an enhanced train-
ing set: For instance, the study of Drucker et al. [148] used an enlarged training set
of size 9709, containing some additional machine-printed digits, and found that
this improves the accuracy on the test set. Similarly, Bottou and Vapnik [65] used
a training set of size 9840. Since there are no machine-printed digits in the com-
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Table 7.4 Summary of error rates on the USPS set. Note that two variants of this database
are used in the literature; one of them (denoted by USPS ) is enhanced by a set of machine-
printed characters which have been found to improve the test error. Note that the virtual
SV systems perform best out of all systems trained on the original USPS set.

Classifier Training set Test error Reference
Linear SVM USPS 8.9% [470]
Relevance Vector Machine USPS 5.1% Chapter 16
Hard margin SVM USPS 4.6% [62]
SVM USPS 4.0% [470]
Hyperplane on KPCA features USPS 4.0% Chapter 14
KFD USPS 3.7% Chapter 15
Virtual SVM USPS 3.2% Chapter 11
Virtual SVM, local kernel USPS 3.0% Chapter 13

Nearest neighbor USPS 5.9% [496]
LeNet1 USPS 5.0% [318]
Local learning Approach USPS 3.3% [65]
Boosted Neural Net USPS 2.6% [148]
Tangent distance USPS 2.6% [496]

Human error rate — 2.5% [79]

monly used test set (size 2007), this addition distorts the original learning problem
to a situation where results become somewhat hard to interpret. For our experi-
ments, we only had the original 7291 training examples at our disposal. Of all the
systems trained on this original set, the SVM system of Chapter 13 performs best.

7.8.2 Universality of the Support Vector Set

In the present section, we report empirical evidence that the SV set contains all
the information necessary to solve a given classification task: Using the Support
Vector algorithm to train three different types of handwritten digit classifiers, we
observe that these types of classifiers construct their decision surface from small,
strongly overlapping subsets of the database.

To study the Support Vector sets for three different types of SV classifiers, we useOverlap of SV
Sets the optimal kernel parameters on the USPS set according to Table 7.3. Table 7.5

shows that all three classifiers use around 250 Support Vectors per two-class-
classifier (less than 4% of the training set), of which there are 10. The total number
of different Support Vectors of the ten-class-classifiers is around 1600. It is less than
2500 (10 times the above 250), since for instance a particular vector that has been
used as a positive SV (i.e., yi 1 in (7.25)) for digit 7, might at the same time be
a negative SV (yi 1) for digit 1.

Table 7.6 shows that the SV sets of the different classifiers have about 90%
overlap. This surprising result has been reproduced on the MNIST OCR set [467].
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Table 7.5 First row: Total number of different SVs in three different ten-class-classifiers
(i.e., number of elements of the union of the ten two-class-classifier SV sets), obtained by
choosing different functions k in (7.25) and (7.29); Second row: Average number of SVs per
two-class-classifier (USPS database size: 7291) (from [470]).

Polynomial RBF Sigmoid

total # of SVs 1677 1498 1611
average # of SVs 274 235 254

Table 7.6 Percentage of the SV set of [column] contained in the SV set of [row]; for ten-
class classifiers (top), and binary recognizers for digit class 7 (bottom) (USPS set) (from [470]).

Polynomial RBF Sigmoid

Polynomial 100 93 94
RBF 83 100 87

Sigmoid 90 93 100

Polynomial RBF Sigmoid

Polynomial 100 84 93
RBF 89 100 92

Sigmoid 93 86 100

Using a leave-one-out procedure similar to Proposition 7.4, Vapnik and Watkins
have put forward a theoretical argument for shared SVs. We state it in the follow-
ing form: If the SV set of three SV classifiers had no overlap, we could obtain a
fourth classifier which has zero test error.

To see why this is the case, note that if a pattern is left out of the training set,Voting Argument
for Shared SVs it will always be classified correctly by voting between the three SV classifiers

trained on the remaining examples: Otherwise, it would have been an SV of at least
two of them, if kept in the training set. The expectation of the number of patterns
which are SVs of at least two of the three classifiers, divided by the training set
size, thus forms an upper bound on the expected test error of the voting system.
Regarding error rates, it would thus in fact be desirable to be able to construct
classifiers with different SV sets. An alternative explanation, studying the effect
of the input density on the kernel, was recently proposed by Williams [597].
Finally, we add that the result is also plausible in view of the similar regularization
characteristics of the different kernels that were used (see Chapter 4).

As described in Section 7.3, the Support Vector set contains all the information aTraining on SV
Sets given classifier needs for constructing the decision function. Due to the overlap in

the Support Vector sets of different classifiers, we can even train classifiers on the
Support Vector set of another classifier; the latter having a different kernel to the
former. Table 7.7 shows that this leads to results comparable to those after training
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Table 7.7 Training classifiers on the Support Vector sets of other classifiers, leads to perfor-
mances on the test set (USPS problem) which are as good as the results for training on the
full database (number of errors on the 2007-element test set are shown, for two-class clas-
sifiers separating digit 7 from the rest). Additionally, the results for training on a random
subset of the database of size 200 are displayed.

trained on: poly-SVs rbf-SVs tanh-SVs full db rnd. subs.
kernel size: 178 189 177 7291 200

Poly 13 13 12 13 23
RBF 17 13 17 15 27
tanh 15 13 13 15 25

on the whole database. In Section 11.3, we will use this finding as a motivation for
a method to make SVMs transformation invariant, to obtain virtual SV machines.

What do these results concerning the nature of Support Vectors tell us? Learn-
ing can be viewed as inferring regularities from a set of training examples. Much
research has been devoted to the study of various learning algorithms, which al-
low the extraction of these underlying regularities. No matter how different the
outward appearance of these algorithms is, they must all rely on intrinsic regular-
ities of the data. If the learning has been successful, these intrinsic regularities are
captured in the values of certain parameters of a learning machine; for a polyno-
mial classifier, these parameters are the coefficients of a polynomial, for a neural
network, they are weights, biases, and gains, and for a radial basis function classi-
fier, they are weights, centers, and widths. This variety of different representations
of the intrinsic regularities, however, conceals the fact that they all stem from a
common root. This is why SVMs with different kernel functions identify the same
subset of the training examples as crucial for the regularity to be learned.

7.8.3 Other Applications

SVMs have been successfully applied in other computer vision tasks, which relate
to the OCR problems discussed above. Examples include object and face detection
and recognition, as well as image retrieval [57, 467, 399, 419, 237, 438, 99, 75].

Another area where SVMs have been used with success is that of text catego-
rization. Being a high-dimensional problem, text categorization has been found to
be well suited for SVMs. A popular benchmark is the Reuters-22173 text corpus.
The news agency Reuters collected 21450 news stories from 1997, and partitioned
and indexed them into 135 different categories. The feature typically used to clas-
sify Reuters documents are 104-dimensional vectors containing word frequencies
within a document (sometimes called the “bag-of-words” representation of texts,
as it completely discards the information on word ordering). Using this coding,
SVMs have led to excellent results, see [155, 265, 267, 150, 333, 542, 149, 326].

Since the use of classification techniques is ubiquitous throughout technology,
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we cannot give an exhaustive listing of all successful SVM applications. We thus
conclude the list with some of the more exotic applications, such as in High-
Energy-Physics [19, 558], in the monitoring of household appliances [390], in
protein secondary structure prediction [249], and, with rather intriguing results,
in the design of decision feedback equalizers (DFE) in telephony [105].

7.9 Summary

This chapter introduced SV pattern recognition algorithms. The crucial idea is
to use kernels to reduce a complex classification task to one that can be solved
with separating hyperplanes. We discussed what kind of hyperplane should be
constructed in order to get good generalization performance, leading to the idea
of large margins. It turns out that the concept of large margins can be justified
in a number of different ways, including arguments based on statistical learning
theory, and compression schemes. We described in detail how the optimal margin
hyperplane can be obtained as the solution of a quadratic programming problem.
We started with the linear case, where the hyperplane is constructed in the space
of the inputs, and then moved on to the case where we use a kernel function to
compute dot products, in order to compute the hyperplane in a feature space.

Two further extensions greatly increase the applicability of the approach. First,
to deal with noisy data, we introduced so-called slack variables in the optimization
problem. Second, for problems that have more than just two classes, we described
a number of generalizations of the binary SV classifiers described initially.

Finally, we reported applications and benchmark comparisons for the widely
used USPS handwritten digit task. SVMs turn out to work very well in this field,
as well as in a variety of other domains mentioned briefly.

7.10 Problems

7.1 (Weight Vector Scaling ) Show that instead of the “1” on the right hand side of the
separation constraint (7.11), we can use any positive number 0, without changing the
optimal margin hyperplane solution. What changes in the soft margin case?

7.2 (Dual Perceptron Algorithm [175] ) Kernelize the perceptron algorithm described
in footnote 1. Which of the patterns will appear in the expansion of the solution?

7.3 (Margin of Optimal Margin Hyperplanes [62] ) Prove that the geometric mar-
gin of the optimal margin hyperplane can be computed from the solution via

2
m

∑
i 1

i (7.68)
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Also prove that

2 2W( ) w 2 (7.69)

Note that for these relations to hold true, needs to be the solution of (7.29).

7.4 (Relationship Between w and the Geometrical Margin ) (i) Consider a sep-
arating hyperplane in canonical form. Prove that the margin, measured perpendicularly to
the hyperplane, equals 1 w , by considering two opposite points which precisely satisfy

w xi b 1.
(ii) How does the corresponding statement look for the case of -SVC? Use the con-

straint (7.41), and assume that all slack variables are 0.

7.5 (Compression Bound for Large Margin Classification ) Formalize the ideas
stated in Section 7.2: Assuming that the data are separable and lie in a ball of radius R,
how many bits are necessary to encode the labels of the data by encoding the parameters
of a hyperplane? Formulate a generalization error bound in terms of the compression ratio
by using the analysis of Vapnik [561, Section 4.6]. Compare the resulting bound with
Theorem 7.3. Take into account the eigenvalues of the Gram matrix, using the ideas of
from [604] (cf. Section 12.4).

7.6 (Positive Definiteness of the SVC Hessian ) From Definition 2.4, prove that the
matrix Qi j : (yiy jk(xi x j))i j is positive definite.

7.7 (Geometric Interpretation of Duality in SVC [38] ) Prove that the program-
ming problem (7.10), (7.11) has the same solution as (7.22), provided the threshold b is
adjusted such that the hyperplane bisects the shortest connection of the two convex hulls.
Hint: Show that the latter is the dual of the former. Interpret the result geometrically.

7.8 (Number of Points Required to Define a Hyperplane ) From (7.22), argue that
no matter what the dimensionality of the space, there can always be situations where two
training points suffice to determine the optimal hyperplane.

7.9 (In-Bound SVs in Soft Margin SVMs ) Prove that in-bound SVs lie exactly on
the margin. Hint: Use the KKT conditions, and proceed analogously to Section 7.3, where
it was shown that in the hard margin case, all SVs lie exactly on the margin.

Argue, moreover, that bound SVs can lie both on or in the margin, and that they will
“usually” lie in the margin.

7.10 (Pattern-Dependent Regularization ) Derive a version of the soft margin classi-
fication algorithm which uses different regularization constants Ci for each training exam-
ple. Start from (7.35), replace the second term by 1

m ∑m
i 1 Ci i, and derive the dual. Discuss

both the mathematical form of the result, and possible applications (cf. [462]).

7.11 (Uncertain Labels ) In this chapter, we have been concerned mainly with the case
where the patterns are assigned to one of two classes, i.e., y 1 . Consider now the
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case where the assignment is not strict, i.e., y [ 1 1]. Modify the soft margin variants
of the SV algorithm, (7.34), (7.35) and (7.41), (7.40), such that

whenever y 0, the corresponding pattern has effectively no influence

if all labels are in 1 , the original algorithm is recovered

if y 1, then the corresponding pattern has less influence than it would have for
y 1.

7.12 (SVMs vs. Parzen Windows ) Develop algorithms that approximate the SVM
(soft or hard margin) solution by starting from the Parzen Windows algorithm (Figure 1.1)
and sparsifying the expansion of the solution.

7.13 (Squared Error SVC [111] ) Derive a version of the soft margin classification
algorithm which penalizes the errors quadratically. Start from (7.35), replace the second
term by 1

m ∑m
i 1

2
i , and derive the dual. Compare the result to the usual C-SVM, both in

terms of algorithmic differences and in terms of robustness properties. Which algorithm
would you expect to work better for Gaussian-like noise, which one for noise with longer
tails (and thus more outliers) (cf. Chapter 3)?

7.14 (C-SVC with Group Error Penalty ) Suppose the training data are partitioned
into groups,

(x1
1 y1

1) (xm1
1 ym1

1 )
...

...

(x1 y1) (xm ym ) (7.70)

where x j
i and y j

i 1 (it is understood that the index i runs over 1 2 and
the index j runs over 1 2 mi ).

Suppose, moreover, that we would like to count a point as misclassified already if one
point belonging to the same group is misclassified.

Design an SV algorithm where each group’s penalty equals the slack of the worst point
in that group.

Hint: Use the objective function

1
2

w 2 ∑
i

Ci i (7.71)

and the constraints

y j
i ( w x j

i b) 1 i (7.72)

i 0 (7.73)

Show that the dual problem consists of maximizing

W( ) ∑
i j

j
i

1
2 ∑

i j i j

j
i

j
i y j

i y j
i x j

i x j
i (7.74)
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subject to

0 ∑
i j

j
i y j

i 0 j
i and ∑

j

j
i Ci (7.75)

Argue that typically, only one point per group will become an SV.
Show that C-SVC is a special case of this algorithm.

7.15 ( -SVC with Group Error Penalty ) Derive a -version of the algorithm in
Problem 7.14.

7.16 (C-SVC vs. -SVC ) As a modification of -SVC (Section 7.5), compute the dual
of (w ) w 2 2 C( (1 m) ∑m

i 1 i) (note that in -SVC, C 1 is used).
Argue that due to the homogeneity of the objective function, the dual solution gets scaled
by C, however, the decision function will not change. Hence we may set C 1.

7.17 (Multi-class vs. Binary SVC [593] ) (i) Prove that the multi-class SVC formu-
lation of (7.59) specializes to the binary C-SVC (7.35) in the case k 2, by using
w1 w2, b1 b2, and i

1
2

r
i for pattern xi in class r. (ii) Derive the dual of (7.59).

7.18 (Multi-Class -SVC ) Derive a -version of the approach described in Sec-
tion 7.6.4.

7.19 (LPM with Constrained Signs ) Modify the LPM algorithm such that it is guar-
anteed that each expansion pattern will have a coefficient i whose sign equals the class
label yi. Hint: Do not introduce additional constraints, but eliminate the i variables and
use a different ansatz for the solution.

7.20 (Multi-Class LPM [593] ) In analogy to Section 7.6.4, develop a multi-class ver-
sion of the LP machine (Section 7.7).

7.21 (Version Space [368, 239, 451, 238] ) Consider hyperplanes passing through
the origin, x w x 0 , with weight vectors w w 1. The set of all such hy-
perplanes forms a unit sphere in weight space. Each training example (x y) 1
splits the sphere into two halves: one that correctly classifies (x y), i.e., sgn w x y,
and one that does not. Each training example thus corresponds to a hemisphere (or, equiv-
alently, an oriented great circle) in weight space, and a training set (x1 y1) (xm ym)
corresponds to the intersection of m hemispheres, called the version space.

1. Discuss how the distances between the training example and the hyperplane in the two
representations are related.

2. Discuss the relationship to the idea of the Hough transform [255]. The Hough transform
is sometimes used in image processing to detect lines. In a nutshell, each point gets to cast
votes in support for all potential lines that are consistent with it, and at the end, the lines
can be read off the histogram of votes.

3. Prove that if all xi have the same norm, the maximum margin weight vector corresponds
to the center of the largest m 1-dimensional sphere that fits into version space.
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4. Construct situations where the center of the above largest sphere will generalize poorly,
and compare it to the center of mass of version space, called the Bayes point.

5. If you disregard the labels of the training examples, there is no longer a single area on the
unit sphere which is distinguished from the others due to its corresponding to the correct
labelling. Instead, the sphere is split into a number of cells. Argue that the expectation of
the natural logarithm of this number equals the VC entropy (Section 5.5.6).

7.22 (Kernels on Sets ) Use the construction of Proposition 2.19 to define a kernel
that compares two points x x by comparing the version spaces (see Problem 7.21)
of the labelled examples (x 1) and (x 1). Define a prior distribution P on the unit sphere
in , and discuss the implications of its choice for the induced kernel. What can you say
about the connection between this kernel and the kernel x x ?

7.23 (Training Algorithms for -SVC ) Try to come up with efficient training al-
gorithms for -SVC, building on the material presented in Chapter 10.

(i) Design a simple chunking algorithm that gradually removes all non-SVs.
(ii) Design a decomposition algorithm.
(iii) Is it possible to modify the SMO algorithm such that it deals with the additional

equality constraint that -SVC comes with? What is the smallest set of patterns that
you can optimize over without violating the two equality constraints? Can you design
a generalized SMO algorithm for this case?

7.24 (Prior Class Probabilities ) Suppose that it is known a priori that and
are the probabilities that a pattern belongs to the class 1, respectively. Discuss ways
of modifying the simple classification algorithm described in Section 1.2 to take this
information into account.

7.25 (Choosing C ) Suppose that R is a measure for the range of the data in feature
space that scales like the length of the points in (cf. Section 7.8.1). Argue that C should
scale like 1 R2.15 Hint: consider scaling the data by some 0. How do you have to
scale C such that f (x) w Φ(x j) b (where w ∑i i yiΦ(xi)) remains invariant
( j [m])?16 Discuss measures R that can be used. Why does R : max j k(x j x j) not
make sense for the Gaussian RBF kernel?

Moreover, argue that in the asymptotic regime, the upper bound on the j should scale
with 1 m, justifying the use of m in (7.38).

7.26 (Choosing C, Part II ) Problem 7.25 does not take into account the class labels,
and hence also not the potential overlap of the two classes. Note that this is different in
the -approach, which automatically scales the margin with the noise. Can you modify the
recommendation in Problem 7.25 to get a selection criterion for C which takes into account
the labels, e.g., in the form of prior information on the noise level?

15. Thanks to Olivier Chapelle for this suggestion.
16. Note that in the -parametrization, this scale invariance comes for free.



 

8 Single-Class Problems: Quantile Estimation
and Novelty Detection

This chapter describes an SV approach to the problem of novelty detection and
high-dimensional quantile estimation [475]. This is an unsupervised problem, which
can be described as follows. Suppose we are given some dataset drawn from an
underlying probability distribution P, and we want to estimate a “simple” subset S
of input space, such that the probability that a test point drawn from P lies outside
of S equals some a priori specified value between 0 and 1.

We approach the problem by trying to estimate a function f which is positive
on S and negative on the complement. The functional form of f is given by a ker-
nel expansion in terms of SVs; it is regularized by controlling the length of the
weight vector in an associated feature space (or, equivalently, by maximizing a
margin). The expansion coefficients are found by solving a quadratic program-
ming problem, which can be done by carrying out sequential optimization over
pairs of input patterns. We also state theoretical results concerning the statistical
performance. The algorithm is a natural extension of the Support Vector classifi-
cation algorithm, as described in the previous chapter, to the case of unlabelled
data.

The chapter is organized as follows. After a review of some previous work inOverview
Section 8.2, taken from [475], we describe SV algorithms for single class problems.
Section 8.4 gives details of the implementation of the optimization procedure,
specifically for the case of single-class SVMs. Following this, we report theoretical
results characterizing the present approach (Section 8.5). In Section 8.7, we deal
with the application of the algorithm to artificial and real-world data.

The prerequisites of the chapter are almost identical to the previous chapter.Prerequisites
Those who have read Chapter 7, should be fine with the current chapter. Sec-
tion 8.2 requires some knowledge of probability theory, as explained in Section B.1;
readers who are only interested in the algorithms, however, can skip this slightly
more technical section. Likewise, there are some technical parts of Section 8.5
which would benefit from knowledge of Chapter 5, but these can be skipped if
desired.
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8.3 Single Class
Support Vector Machines

7 Pattern Recognition8.2 Multi−Dimensional
Quantiles

8.5, 8.6 Theoretical
Analysis

8.4 Implementation 8.7 Experiments

8.1 Introduction

There have been a number of attempts to transfer the idea of using kernels to com-
pute dot products in feature spaces to the domain of unsupervised learning. The
problems in this domain are, however, less precisely specified. Generally, they can
be characterized as estimating functions of the data which tell you something inter-
esting about the underlying distributions. For instance, kernel PCA (Chapter 14)
can be described as computing functions which on the training data produce unit
variance outputs while having minimum norm in feature space. Another kernel-
based unsupervised learning technique, regularized principal manifolds (Chap-
ter 17), computes functions which give a mapping onto a lower-dimensional man-
ifold minimizing a regularized quantization error. Clustering algorithms are fur-
ther examples of unsupervised learning techniques which can be kernelized [480].

An extreme point of view is that unsupervised learning is about estimating the
density of the distribution P generating the data. Knowledge of the density would
then allow us to solve whatever problem can be solved on the basis of data sampled
from that density.

The present chapter addresses an easier problem: it proposes an algorithm
that computes a binary function which is supposed to capture regions in input
space where the probability density is in some sense large (its support, or, more
generally, quantiles); that is, a function which is nonzero in a region where most
of the data are located. In doing so, this method is in line with Vapnik’s principle
never to solve a problem which is more general than the one we actually need
to solve [561]. Moreover, it is also applicable in cases where the density of the
data’s distribution is not even well-defined, as can be the case if the distribution
has singular components.
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8.2 A Distribution’s Support and Quantiles

In order to describe previous work, it is convenient to introduce the following
definition of a (multi-dimensional) quantile function [158]. Let x1 xm be an iidQuantile

Function sample of a random experiment in a set with distribution P. Let be a class
of measurable subsets of and let be a real-valued function defined on . The
quantile function with respect to (P ) is

U( ) inf (C) P(C) C 0 1 (8.1)

Loosely speaking, the quantile function measures how large a set one needs in
order to capture a certain amount of probability mass of P.

An interesting special case is the empirical quantile function, where P is the em-
pirical distribution

Pm
emp(C)

1
m

m

∑
i 1

IC(xi) (8.2)

which is the fraction of observations that fall into C.
We denote by C ( ) and Cm( ) the (not necessarily unique) C that attain the

infimum (when it is achievable). Intuitively speaking, these are the smallest sets
(where size is measured by ) which contain a probability mass .

The most common choice of is Lebesgue measure (loosely speaking, the volume
of the set C), in which case C ( ) is the minimum volume set C that contains at
least a fraction of the probability mass. Estimators of the form Cm( ) are called
minimum volume estimators. Of course, it is not sufficient that the estimated set
have a small volume and contain a fraction of the training examples. In machine
learning applications, we want to find a set that contains a fraction of test examples
that is close to . This is where the complexity trade-off enters (see Figure 8.1),
as with the methodology that we have already described in a number of learning
scenarios. On the one hand, we want to use a large class , to ensure that it contains
sets C which are very small yet can contain a fraction of training examples.
On the other hand, if we allowed just any set, the chosen set C could consist of
only the training points (we would then “memorize” the training points), and it
would generalize poorly to test examples; in other words, it would not contain a
large probability mass P(C). Therefore, we have to consider classes of sets which
are suitably restricted. As we will see below, this can be achieved using an SVM
regularizer.

Observe that for being all measurable sets, and being the Lebesgue measure,
C (1) is the support of the density p corresponding to P, assuming it exists (noteSupport of a

Distribution that C (1) is well defined even when p does not exist). For smaller classes , C (1)
is the minimum volume C containing the support of p. In the case where

1, it seems the first work was reported in [454, 229], in which 2 , with
being the class of closed convex sets in (they actually considered density contour
clusters; cf. [475] for a definition). Nolan [385] considered higher dimensions, with
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Figure 8.1 A single-class toy problem, with two different solutions. The left graph depicts
a rather complex solution, which captures all training points (thus, Pm

emp of the estimated
region equals 1, cf. (8.2)), while having small volume in 2. On the right, we show a solution
which misses one training point (it does not capture all of Pm

emp), but since it is “simpler,”
it is conceivable that it will nevertheless capture more of the true underlying distribution P
that is assumed to have generated the data. In the present context, a function is used to
measure the simplicity of the estimated region. In the algorithm described below, is a SV
style regularizer.

being the class of ellipsoids. Tsybakov [550] studied an estimator based on piece-
wise polynomial approximation of C ( ) and showed it attains the asymptotically
minimax rate for certain classes of densities. Polonik [417] studied the estimation
of C ( ) by Cm( ). He derived asymptotic rates of convergence in terms of various
measures of richness of . More information on minimum volume estimators can
be found in that work, and in [475].

Let us conclude this section with a short discussion of how the present work
relates to the above. The present chapter describes an algorithm which finds
regions close to C ( ). Our class is defined implicitly via a kernel k as the set
of half-spaces in a SV feature space. We do not try to minimize the volume of
C in input space. Instead, we minimize a SV style regularizer which, using a
kernel, controls the smoothness of the estimated function describing C. In terms of
multi-dimensional quantiles, the present approach employs (Cw) w 2, where
Cw x fw(x) , and (w ) are respectively a weight vector and an offset
parametrizing a hyperplane in the feature space associated with the kernel.

8.3 Algorithms

We consider unlabelled training data

X x1 xm (8.3)

where m is the number of observations, and is some set. For simplicity, we
think of it as a compact subset of N . Let Φ be a feature map ; in other
words, a map into a dot product space such that the dot product in the image
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of Φ can be computed by evaluating some simple kernel (Chapters 2 and 4),

k(x x ) Φ(x) Φ(x ) (8.4)

such as the Gaussian,

k(x x ) e x x 2 c (8.5)

Indices i and j are understood to range over 1 m (in compact notation: i j
[m]). Bold face Greek letters denote m-dimensional vectors whose components are
labelled using normal face type.

In the remainder of this section, we shall describe an algorithm which returns
a function f that takes the value 1 in a “small” region capturing most of the
data points, and 1 elsewhere. The strategy, inspired by the previous chapter, is
to map the data into the feature space corresponding to the kernel, and to separate
them from the origin with maximum margin. For a new point x, the value f (x)
is determined by evaluating which side of the hyperplane it falls on, in feature
space. Due to the freedom to utilize different types of kernel functions, this simple
geometric picture corresponds to a variety of nonlinear estimators in input space.

To separate the data set from the origin, we solve the following quadratic
program:

minimize
w m

1
2

w 2 1
m ∑

i
i (8.6)

subject to w Φ(xi) i i 0 (8.7)

Here, (0 1] is a parameter which is introduced in close analogy to the -SV
classification algorithm detailed in the previous chapter. Its meaning will become
clear later.

Since nonzero slack variables i are penalized in the objective function, we canSlack Variables
expect that if w and solve this problem, then the decision function,

f (x) sgn ( w Φ(x) ) (8.8)

will equal 1 for most examples xi contained in the training set,1 while the regular-
ization term w will still be small. For an illustration, see Figure 8.2. As in -SVC
(Section 7.5), the trade-off between these two goals is controlled by a parameter .

Using multipliers i i 0, we introduce a Lagrangian,

L(w )
1
2

w 2 1
m ∑

i
i ∑

i
i( w Φ(xi) i) ∑

i
i i (8.9)

and set the derivatives with respect to the primal variables w equal to zero,
yielding

w ∑
i

iΦ(xi) (8.10)

1. We use the convention that sgn (z) equals 1 for z 0 and 1 otherwise.
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Figure 8.2 In the 2-D toy example depicted, the hyperplane w Φ(x) (with normal
vector w and offset ) separates all but one of the points from the origin. The outlier Φ(x) is
associated with a slack variable , which is penalized in the objective function (8.6). The
distance from the outlier to the hyperplane is w ; the distance between hyperplane
and origin is w . The latter implies that a small w corresponds to a large margin
of separation from the origin.

i
1
m i

1
m ∑

i
i 1 (8.11)

Eq. (8.10) is the familiar Support Vector expansion (cf. (7.15)). Together with (8.4),
it transforms the decision function (8.8) into a kernel expansion,

f (x) sgn ∑
i

ik(xi x) (8.12)

Substituting (8.10)–(8.11) into L (8.9), and using (8.4), we obtain the dual problem:Single-Class
Quadratic
Program minimize

m

1
2 ∑

i j
i jk(xi x j) (8.13)

subject to 0 i
1
m

(8.14)

∑
i

i 1 (8.15)

We can show that at the optimum, the two inequality constraints (8.7) become
equalities if i and i are nonzero, which implies 0 i 1 ( m) (KKT condi-
tions). Therefore, we can recover by exploiting that for any such i, the corre-
sponding pattern xi satisfies

w Φ(xi) ∑
j

jk(x j xi) (8.16)

Note that if approaches 0, the upper bounds on the Lagrange multipliers tend to
infinity and the second inequality constraint in (8.14) becomes void. We then have
a hard margin problem, since the penalization of errors becomes infinite, as can be
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seen from the primal objective function (8.6). The problem is still feasible, since we
have placed no restriction on the offset , so can become a large negative number
in order to satisfy (8.7).

It is instructive to compare (8.13)–(8.15) to a Parzen windows estimator (cf.Parzen Windows
page 6). To this end, suppose we use a kernel which can be normalized as a
density in input space, such as the Gaussian (8.5). If we use 1 in (8.14),
then the two constraints only allow the solution 1 m 1 m. Thus the
kernel expansion in (8.12) reduces to a Parzen windows estimate of the underlying
density. For 1, the equality constraint (8.15) still ensures that the decision
function is a thresholded density; in that case, however, the density will only
be represented by a subset of training examples (the SVs) — those which are
important for the decision (8.12) to be taken. Section 8.5 will explain the precise
meaning of the parameter .

To conclude this section, we note that balls can also be used to describe the data
in feature space, close in spirit to the algorithms described in [470], with hard
boundaries, and [535], with “soft margins” (cf. also the algorithm described in
Section 5.6). Again, we try to put most of the data into a small ball by solving

minimize
R m c

R2 1
m ∑

i
i for 0 1

subject to Φ(xi) c 2 R2
i and i 0 for i [m] (8.17)

This leads to the dual,

minimize∑
i j

i jk(xi x j) ∑
i

ik(xi xi) (8.18)

subject to 0 i
1
m

and ∑
i

i 1 (8.19)

and the solution

c ∑
i

iΦ(xi) (8.20)

corresponding to a decision function of the form

f (x) sgn R2 ∑
i j

i jk(xi x j) 2 ∑
i

ik(xi x) k(x x) (8.21)

As above, R2 is computed such that for any xi with 0 i 1 ( m) the argument
of the sgn is zero.

For kernels k(x x ) which only depend on x x (the translation invariant ker-
nels, such as RBF kernels), k(x x) is constant. In this case, the equality constraint
implies that the linear term in the dual target function (8.18) is constant, and the
problem (8.18–8.19) turns out to be equivalent to (8.13–8.15). It can be shown that
the same holds true for the decision function, hence the two algorithms coincide in
this case. This is geometrically plausible: for constant k(x x), all mapped patterns
lie on a sphere in feature space. Therefore, finding the smallest ball containing the
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Figure 8.3 For RBF kernels, which de-
pend only on x x , k(x x) is constant,
and the mapped data points thus lie on
a hypersphere in feature space. In this
case, finding the smallest sphere enclos-
ing the data is equivalent to maximizing
the margin of separation from the origin
(cf. Figure 8.2).

points amounts to finding the smallest segment of the sphere on which the data
lie. This segment, however, can be found in a straightforward way by simply in-
tersecting the data sphere with a hyperplane — the hyperplane with maximum
margin of separation from the origin cuts off the smallest segment (Figure 8.3).

8.4 Optimization

The previous section formulated quadratic programs (QPs) for computing regions
that capture a certain fraction of the data. These constrained optimization prob-
lems can be solved via an off-the-shelf QP package (cf. Chapter 6). In the present
section, however, we describe an algorithm which takes advantage of the precise
form of the QPs [475], which is an adaptation of the SMO (Sequential Minimal Op-
timization) algorithm [409]. Although most of the material on implementations is
dealt with in Chapter 10, we will spend a few moments to describe the single
class algorithm here. Further information on SMO in general can be found in Sec-
tion 10.5; additional information on single-class SVM implementations, including
variants which work in an online setting, can be found in Section 10.6.3.

The SMO algorithm has been reported to work well in C-SV classification. The
latter has a structure resembling the present optimization problem: just as the dual
of C-SV classification (7.37), the present dual also has only one equality constraint
(8.15).2

The strategy of SMO is to break up the constrained minimization of (8.13) into
the smallest optimization steps possible. Note that it is not possible to modify
variables i individually without violating the sum constraint (8.15). We therefore
resort to optimizing over pairs of variables.

2. The -SV classification algorithm (7.49), on the other hand, has two equality constraints.
Therefore, it is not directly amenable to an SMO approach, unless we remove the equality
constraint arising from the offset b, as done in [98].
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Thus, consider optimizing over two variables i and j with all other variablesElementary SMO
Optimization
Step

fixed. Using the shorthand Ki j : k(xi x j), (8.13)–(8.15)) then reduce to (up to a
constant)

minimize
i j

1
2

2
i Kii

2
j Kj j 2 i jKi j ci i c j j

subject to i j

0 i j
1
m

(8.22)

in analogy to (10.63) below. Here the constants ci c j, and are defined as follows;

ci :
m

∑
l i j

l Kil c j :
m

∑
l i j

l Kjl and 1
m

∑
l i j

l (8.23)

To find the minimum, we use i j . This allows us to obtain a constrained
optimization problem in i alone by elimination of j. For convenience we intro-
duce : Kii Kj j 2Ki j.

minimize
i

2
i i ci c j 2 (Ki j Kj j)

subject to L i H where L max(0 1 ( m)) and H min(1 ( m) )

Without going into details (a similar calculation can be found in Section 10.5.1) the
minimizer i of this optimization problem is given by

i min(max(L ˜ i) H) (8.24)

where ˜ i, the unconstrained solution, is given by

˜ i
old
i

1 c j ci Kj j
old
j Ki j

old
j

old
i Kii

old
i (8.25)

old
i

1 f old(x j) f old(xi) (8.26)

Finally, j can be obtained via j i. Eq. (8.26) tells us that the change in
i will depend on the difference between the values f (xi) and f (x j). The less close

these values are, i.e., the larger the difference in the distances to the hyperplane,
the larger the possible change in the set of variables. Note, however, that there
is no guarantee that the actual change in i will indeed be large, since i has to
satisfy the constraint L i H. Finally, the size of plays an important role,
too (for the case of 0 see Lemma 10.3). The larger it is, the smaller the likely
change in i.

We next briefly describe how to do the overall optimization.

Initialization of the Algorithm We start by setting a random fraction of all
i to 1 ( m). If m is not an integer, then one of the examples is set to a

value in (0 1 ( m)) to ensure that ∑i i 1. Furthermore, we set the initial
to max f (xi) i [m] i 0 .

Optimization Algorithm We then select the first variable for the elementary opti-
mization step in one of two following ways. Here, we use the shorthand SVnb for
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the indices of variables which are not at bound (see also Section 10.5.5 for a more
detailed description of such a strategy),

SVnb : i i [m] 0 i 1 ( m) (8.27)

These correspond to points which will sit exactly on the hyperplane once opti-
mization is complete, and which will therefore have a strong influence on its pre-
cise position.

(i) We scan over the entire data set3 until we find a variable that violates a
KKT condition (Section 6.3.1); in other words, a point such that (Oi ) i 0
or ( Oi) (1 ( m) i) 0. Calling this variable i, we pick j according
to

j argmax
n SVnb

Oi On (8.28)

(ii) Same as (i), but the scan is only performed over SVnb.

In practice, one scan of type (i) is followed by multiple scans of type (ii), until
there are no KKT violators in SVnb, whereupon the optimization goes back to a
single scan of type (i). If the type (i) scan finds no KKT violators, the optimization
algorithm terminates.

In unusual circumstances, the choice heuristic (8.28) cannot make positive progress.
Therefore, a hierarchy of other choice heuristics is applied to ensure positive
progress. These other heuristics are the same as in the case of pattern recogni-
tion, cf. Chapter 10 and [409], and were found to work well in the experiments
reported below.

We conclude this section by stating a trick which is of importance in implemen-
tations. In practice, we must use a nonzero accuracy tolerance in tests for equalityTolerance in the

Margin of numerical quantities. In particular, comparisons of this type are used in de-
termining whether a point lies on the margin. Since we want the final decision
function to return 1 for points which lie on the margin, we need to subtract this
tolerance from at the end.

In the next section, it will be argued that subtracting something from is also
advisable from a statistical point of view.

8.5 Theory

We now analyze the algorithm theoretically, starting with the uniqueness of the
hyperplane (Proposition 8.1). We describe the connection to pattern recognition
(Proposition 8.2), and show that the parameter characterizes the fractions of
SVs and outliers. The latter term refers to points which are on the wrong side ofOutlier

3. This scan can be accelerated by not checking patterns which are on the correct side of the
hyperplane by a large margin, using the method of [266].



8.5 Theory 237

o o

o

w

o

o
o

o

o

o

||w||ρ/

. Figure 8.4 A separable data
set, with the unique supporting
hyperplane separating the data
from the origin with maximum
margin.

the hyperplane (Proposition 8.3). Following this, we give a robustness result for
the soft margin (Proposition 8.4) and we present a theoretical result regarding the
generalization error (Theorem 8.6).

As in some of the earlier chapters, we will use boldface letters to denote the
feature space images of the corresponding patterns in input space,

xi : Φ(xi) (8.29)

We will call a data set

X : x1 xm (8.30)

separable if there exists some w such that w xi 0 for i [m] (see alsoSeparable
Dataset Lemma 6.24). If we use a Gaussian kernel (8.5), then any data set x1 xm is

separable after it is mapped into feature space, since in this case, all patterns lie
inside the same orthant and have unit length (Section 2.3).

The following proposition is illustrated in Figure 8.4.

Proposition 8.1 (Supporting Hyperplane) If the data set X is separable, then there
exists a unique supporting hyperplane with the properties that (1) it separates all dataSupporting

Hyperplane from the origin, and (2) its distance to the origin is maximal among all such hyperplanes.
For any 0, the supporting hyperplane is given by

minimize
w

1
2

w 2 subject to w xi i [m] (8.31)

Proof Due to the separability, the convex hull of the data does not contain the
origin. The existence and uniqueness of the hyperplane then follows from the
supporting hyperplane theorem [45, e.g.].

In addition, separability implies that there actually exists some 0 and w
such that w xi for i [m] (by rescaling w, this can be seen to work for
arbitrarily large ). The distance from the hyperplane z : w z to the
origin is w . Therefore the optimal hyperplane is obtained by minimizing w
subject to these constraints; that is, by the solution of (8.31).

The following result elucidates the relationship between single-class classification
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and binary classification.

Proposition 8.2 (Connection to Pattern Recognition) (i) Suppose (w ) parametrizes
the supporting hyperplane for the data X. Then (w 0) parametrizes the optimal separating
hyperplane for the labelled data set

(x1 1) (xm 1) ( x1 1) ( xm 1) (8.32)

(ii) Suppose (w 0) parametrizes the optimal separating hyperplane passing through the
origin for a labelled data set

(x1 y1) (xm ym) (yi 1 for i [m]) (8.33)

aligned such that w xi is positive for yi 1. Suppose, moreover, that w is the
margin of the optimal hyperplane. Then (w ) parametrizes the supporting hyperplane for
the unlabelled data set X y1x1 ymxm .

Proof Ad (i). By construction, the separation of X is a point-symmetric problem.
Hence, the optimal separating hyperplane passes through the origin, as if it did
not, we could obtain another optimal separating hyperplane by reflecting the first
one with respect to the origin — this would contradict the uniqueness of the
optimal separating hyperplane.

Next, observe that ( w ) parametrizes the supporting hyperplane for the data
set reflected through the origin, and that it is parallel to that given by (w ).
This provides an optimal separation of the two sets, with distance 2 w , and
a separating hyperplane (w 0).
Ad (ii). By assumption, w is the shortest vector satisfying yi w xi (note
that the offset is 0). Hence, equivalently, it is also the shortest vector satisfying
w yixi for i [m].

Note that the relationship is similar for nonseparable problems. In this case, margin
errors in binary classification (points which are either on the wrong side of the
separating hyperplane or which fall inside the margin) translate into outliers in
single-class classification, which are points that fall on the wrong side of the
hyperplane. Proposition 8.2 then holds, cum grano salis, for the training sets with
margin errors and outliers, respectively, removed.

The utility of Proposition 8.2 lies in the fact that it allows us to recycle certain
results from binary classification (Chapter 7) for use in the single-class scenario.
The following property, which explains the significance of the parameter , is such
a case.-Property

Proposition 8.3 ( -Property) Assume the solution of (8.6),(8.7) satisfies 0. The
following statements hold:
(i) is an upper bound on the fraction of outliers.
(ii) is a lower bound on the fraction of SVs.
(iii) Suppose the data X were generated independently from a distribution P(x) which does
not contain discrete components. Suppose, moreover, that the kernel is analytic and non-
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, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin w 0.84 0.70 0.62 0.48

Figure 8.5 First two pictures: A single-class SVM applied to two toy problems; c 0 5,
domain: [ 1 1]2. Note how in both cases, at least a fraction 1 of all examples is in the
estimated region (cf. table). The large value of causes the additional data points in the
upper left corner to have almost no influence on the decision function. For smaller values
of , such as 0 1 (third picture), these points can no longer be ignored. Alternatively, we
can force the algorithm to take these ‘outliers’ (OLs) into account by changing the kernel
width (8.5): in the fourth picture, using c 0 1 0 5, the data are effectively analyzed on
a different length scale, which leads the algorithm to consider the outliers as meaningful
points.

constant. With probability 1, asymptotically, equals both the fraction of SVs and the
fraction of outliers.

The proof can be found in [475]. The result also applies to the soft margin ball
algorithm of [535], provided that it is stated in the -parametrization given in
(8.17). Figure 8.5 displays a 2-D toy example, illustrating how the choice of and
the kernel width influence the solution.

Proposition 8.4 (Resistance) Local movements of outliers parallel to w do not change
the hyperplane.Resistance

Proof (Proposition 8.4) Suppose xo is an outlier, for which o 0; hence by the
KKT conditions (Chapter 6) o 1 ( m). Transforming it into xo : xo w,
where o w , leads to a slack which is still nonzero, o 0, hence we still
have o 1 ( m). Therefore, is still feasible, as is the primal solution
(w ). Here, we use i (1 o) i for i o, w (1 o)w, and as
computed from (8.16). Finally, the KKT conditions are still satisfied, as o 1 ( m)
still holds. Thus (Section 6.3), remains the solution.

Note that although the hyperplane does not change, its parametrization in w and
is different. In single-class SVMs, the hyperplane is not constrained to be in

canonical form as it was in SV classifiers (Definition 7.1).
We now move on to the subject of generalization. The goal is to bound theGeneralization

Error probability that a novel point drawn from the same underlying distribution lies
outside of the estimated region. As in the case of pattern recognition, it turns out
that the margin plays a central role. In the single-class case there is no margin
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between the two classes, for the simple reason that there is just one class. We
can nevertheless introduce a “safety margin” and make a conservative statement
about a slightly larger region than the one estimated. In a sense, this is not so
different from pattern recognition: in Theorem 7.3, we try to separate the training
data into two half-spaces separated by a margin, and then make a statement about
the actual test error (rather than the margin test error); that is, about the probability
that a new point will be misclassified, no matter whether it falls inside the margin
or not. Just as in the single-class case, the statement regarding the test error thus
refers to a region slightly larger than the one in which we try to put the training
data.

Definition 8.5 Let f be a real-valued function on a space . Fix . For x let
d(x f ) max 0 f (x) Similarly, for a training sequence X : (x1 xm), we
define

(X f ) ∑
x X

d(x f ) (8.34)

Theorem 8.6 (Generalization Error Bound) Suppose we are given a set of m exam-
ples X m, generated from an unknown distribution P that does not have discrete
components. Suppose, moreover, that we solve the optimization problem (8.6),(8.7) (or
equivalently (8.13)–(8.15)) and obtain a solution fw given explicitly by (8.12). Let
Rw : x fw(x) denote the induced decision region. With probability 1 over
the draw of the random sample X m, for any 0,

P x x Rw
2
m

k log2
m2

2
(8.35)

where

k
c1 log2(c2 ˆ 2m)

ˆ 2

2
ˆ

log2 e
(2m 1) ˆ

2
1 2 (8.36)

c1 16c2, c2 ln(2) (4c2), c 103, ˆ w , (X fw 0 ) (X fw 0),
and is given by (8.16).

The proof can be found in [475].
The training sample X defines (via the algorithm) the decision region Rw . We

expect that new points generated according to P will lie in Rw . The theorem gives
a probabilistic guarantee that new points lie in the larger region Rw .

The parameter can be adjusted when running the algorithm to trade off
incorporating outliers against minimizing the “size” of Rw . Adjusting changes
the value of . Note that since is measured with respect to while the bound
applies to , any point which is outside of the region to which the bound
applies will make a contribution to that is bounded away from 0. Therefore,
(8.35) does not imply that asymptotically, we will always estimate the complete
support.

The parameter allows us to trade off the confidence with which we wish the
assertion of the theorem to hold against the size of the predictive region Rw :
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we can see from (8.36) that k, and hence the rhs of (8.35), scales inversely with .
In fact, it scales inversely with ˆ ; in other words, it increases with w. This justifies
measuring the complexity of the estimated region by the size of w, and minimizing

w 2 in order to find a region that generalizes well. In addition, the theorem
suggests not to use the offset returned by the algorithm, which corresponds to

0, but a smaller value (with 0).
In the present form, Theorem 8.6 is not a practical means to determine the

parameters and explicitly. It is loose in several ways. The constant c used
is far from its smallest possible value. Furthermore, no account is taken of the
smoothness of the kernel. If that were done (by using refined bounds on the
covering numbers of the induced class of functions, as in Chapter 12), then the
first term in (8.36) would increase much more slowly when decreasing . The
fact that the second term would not change indicates a different trade-off point.
Nevertheless, the theorem provides some confidence that and are suitable
parameters to adjust.

8.6 Discussion

Before we move on to experiments, it is worthwhile to discuss some aspects of the
algorithm described. As mentioned in the introduction, we could view it as being
in line with Vapnik’s principle never to solve a problem which is more general thanVapnik’s

Principle the one that we are actually interested in [561]. For instance, in situations where
one is only interested in detecting novelty, it is not always necessary to estimate
a full density model of the data. Indeed, density estimation is more difficult than
what we are doing, in several respects.

Mathematically speaking, a density only exists if the underlying probabilityExistence of a
Density measure possesses an absolutely continuous distribution function. The general

problem of estimating the measure for a large class of sets, say the sets measurable
in Borel’s sense, is not solvable, however (for a discussion, see [562]). Therefore
we need to restrict ourselves to making a statement about the measure of some
sets. Given a small class of sets, the simplest estimator which accomplishes this
task is the empirical measure, which simply looks at how many training points
fall into the region of interest. The present algorithm does the opposite. It starts
with the number of training points that are supposed to fall into the region, and
then estimates a region with the desired property. Often, there will be many such
regions — the solution becomes unique only by applying a regularizer, which in
the SV case enforces that the region be small in a feature space associated with the
kernel.

Therefore, we must keep in mind that the measure of smallness in this sense
depends on the kernel used, in a way that is no different to any other method
that regularizes in a feature space. A similar problem, however, already appears
in density estimation when done in input space. Let p denote a density on .
If we perform a (nonlinear) coordinate transformation in the input domain ,
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then the density values change; loosely speaking, what remains constant is p(x) dx,
where dx is also transformed. When directly estimating the probability measure of
regions, we are not faced with this problem, as the regions automatically change
accordingly.

An attractive property of the measure of smallness that the present algorithmRegularization
Interpretation uses is that it can also be placed in the context of regularization theory, leading to

an interpretation of the solution as maximally smooth in a sense which depends
on the specific kernel used. More specifically, if k is a Green’s function of ϒ ϒ for
an operator ϒ mapping into some dot product space (cf. Section 4.3), then the dual
objective function that we minimize equals

∑
i j

i jk(xi x j) ϒ f 2 (8.37)

using f (x) ∑i ik(xi x). In addition, we show in Chapter 4 that the regularization
operators of common kernels can be shown to correspond to derivative operators
— therefore, minimizing the dual objective function has the effect of maximizing
the smoothness of the function f (which is, up to a thresholding operation, the
function we estimate). This, in turn, is related to a prior with density p( f ) e ϒ f 2

on the function space (cf. Chapter 16).
Interestingly, as the minimization of the dual objective function also corre-

sponds to a maximization of the margin in feature space, an equivalent interpre-
tation is in terms of a prior on the distribution of the unknown other class (the
“novel” class in a novelty detection problem) — trying to separate the data from
the origin amounts to assuming that the novel examples lie around the origin.

The main inspiration for the approach described stems from the earliest work ofEarlier Work
Vapnik and collaborators. In 1962, they proposed an algorithm for characterizing
a set of unlabelled data points by separating it from the origin using a hyperplane
[573, 570]. However, they quickly moved on to two-class classification problems,
both in terms of algorithms and in terms of the theoretical development of statis-
tical learning theory which originated in those days.

From an algorithmic point of view, we can identify two shortcomings of the
original approach, which may have caused research in this direction to stop for
more than three decades. First, the original algorithm [570] was limited to linear
decision rules in input space; second, there was no way of dealing with outliers. In
conjunction, these restrictions are indeed severe — a generic dataset need not be
separable from the origin by a hyperplane in input space. The two modifications
that the single-class SVM incorporates dispose of these shortcomings. First, the
kernel trick allows for a much larger class of functions by nonlinearly mapping
into a high-dimensional feature space, and thereby increases the chances of a
separation from the origin being possible. In particular, using a Gaussian kernel
(8.5), such a separation is always possible, as shown in Section 8.5. The second
modification directly allows for the possibility of outliers. This ‘softness’ of the
decision rule is incorporated using the -trick, which we have already seen in
the classification case (Section 7.5), leading to a direct handle on the fraction of
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outliers.
Given (0 1], the resulting algorithm computes (8.6) subject to (8.7), and

thereby constructs a region R such that for OL i : xi R , we have OL
mCombinatorial

Problem The “ ” is sharp in the sense that if we multiply the solution w by (1 ) (with
0), it becomes a “ .” The algorithm does not solve the following combinatorial

problem, however: given (0 1], compute

minimize
w OL [m]

1
2

w 2

subject to w Φ(xi) 1 for i [m] OL and
OL
m

(8.38)

Ben-David et al. [31] analyze a problem related to (8.38): they consider a sphere
(which for some feature spaces is equivalent to a half-space, as shown in Sec-
tion 8.3), fix its radius, and attempt to find its center such that it encloses as many
points as possible. They prove that it is already NP hard to approximate the maxi-
mal number to within a factor smaller than 3 418.

We conclude this section by mentioning another kernel-based algorithm thatKernel-Based
Vector
Quantization

has recently been proposed for the use on unlabelled data [541]. This algorithm
applies to vector quantization, a standard process which finds a codebook such
that the training set can be approximated by elements of the codebook with small
error. Vector quantization is briefly described in Example 17.2 below; for further
detail, see [195].

Given some metric d, the kernel-based approach of [541] uses a kernel that
indicates whether two points lie within a distance R 0 of each other,

k(x x ) I (x x ) :d(x x ) R (8.39)

Let Φm be the empirical kernel map (2.56) with respect to the training set. The main
idea is that if we can find a vector m such that

Φm(xi) 0 (8.40)

holds true for all i 1 m, then each point xi lies within a distance R of some
point xj which has a positive weight wj 0. To see this, note that otherwise all
nonzero components of would get multiplied by components of Φm which are
0, and the dot product in (8.40) would equal 0.

To perform vector quantization, we can thus use optimization techniques, which
produce a vector that satisfies (8.40) while being sparse. As in Section 7.7, this
can be done using linear programming techniques. Once optimization is complete,
the nonzero entries of indicate the codebook vectors.

8.7 Experiments

We apply the method to artificial and real-world data. Figure 8.6 shows a compar-
ison with a Parzen windows estimator on a 2-D problem, along with a family of
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Figure 8.6 A single-class SVM applied to a toy problem; c 0 5, domain: [ 1 1]2, for
various settings of the offset . As discussed in Section 8.3, 1 yields a Parzen windows
expansion. However, to get a Parzen windows estimator of the distribution’s support, we
must not use the offset returned by the algorithm (which would allow all points to lie
outside the estimated region). Therefore, in this experiment, we adjusted the offset such
that a fraction 0 1 of patterns lie outside. From left to right, we show the results
for 0 1 0 2 0 4 1 . The rightmost picture corresponds to the Parzen estimator which
utilizes all kernels; the other estimators use roughly a fraction of kernels. Note that as a
result of the averaging over all kernels, the Parzen windows estimate does not model the
shape of the distribution very well for the chosen parameters.

estimators which lie “in between” the present one and the Parzen one.
Figure 8.7 shows a plot of the outputs w Φ(x) on training and test sets of the

USPS database of handwritten digits (Section A.1). We used a Gaussian kernel
(8.5), which has the advantage that the data are always separable from the origin
in feature space (Section 2.3). For the kernel parameter c, we used 0 5 256. This
value was chosen a priori, and is a common value for SVM classifiers on that data
set, cf. Chapter 7.4 The algorithm was given only the training instances of digit 0.
Testing was done on both digit 0 and on all other digits. We present results for two
values of , one large, one small; for values in between, the results are qualitatively
similar. In the first experiment, we used 50%, thus aiming for a description of
“0-ness” which only captures half of all zeros in the training set. As shown in figure
8.7, this leads to zero false positives (i.e., even though the learning machine has not
seen any non-0s during training, it correctly identifies all non-0s as such), while
still recognizing 44% of the digits 0 in the test set. Higher recognition rates can be
achieved using smaller values of . For 5%, we get 91% correct recognition of
digits 0 in the test set, with a fairly moderate false positive rate of 7%.

Although leading to encouraging results, this experiment does not really ad-
dress the actual task the algorithm was designed for. Therefore, we next focus on
a problem of novelty detection. Again, we utilized the USPS set; this time, however,
we trained the algorithm on the test set and used it to identify outliers — it is well
known that the USPS test set (Figure 8.8) contains a number of patterns which

4. In [236], the following procedure is used to determine a value of c. For small c, all training
points become SVs — the algorithm just memorizes the data, and will not generalize well.
As c increases, the number of SVs drops. As a simple heuristic, we can thus start with a
small value of c and increase it until the number of SVs does not decrease any further.
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Figure 8.7 Experiments using the USPS
OCR dataset. Recognizer for digit 0; out-
put histogram for the exemplars of 0 in the
training/test set, and on test exemplars of
other digits. The x-axis gives the output val-
ues; in other words, the argument of the
sgn function in (8.12). For 50% (top),
we get 50% SVs and 49% outliers (consis-
tent with Proposition 8.3), 44% true positive
test examples, and zero false positives from
the “other” class. For 5% (bottom), we
get 6% and 4% for SVs and outliers, respec-
tively. In that case, the true positive rate is
improved to 91%, while the false positive
rate increases to 7%. The offset is marked
in the graphs.
Note, finally, that the plots show a Parzen
windows density estimate of the output his-
tograms. In reality, many examples sit ex-
actly at the offset value (the non-bound
SVs). Since this peak is smoothed out by
the estimator, the fractions of outliers in the
training set appear slightly larger than they
should be.

6 9 2 8 1 8 8 6 5 3

2 3 8 7 0 3 0 8 2 7

Figure 8.8 20 examples randomly drawn from the USPS test set, with class labels.

are hard or impossible to classify, due to segmentation errors or mislabelling. In
this experiment, we augmented the input patterns by ten extra dimensions corre-
sponding to the class labels of the digits. The rationale for this is that if we dis-
regard the labels, there would be no hope of identifying mislabelled patterns as
outliers. With the labels, the algorithm has the chance to identify both unusual
patterns and usual patterns with unusual labels. Figure 8.9 shows the 20 worst
outliers for the USPS test set, respectively. Note that the algorithm indeed extracts
patterns which are very hard to assign to their respective classes. In the exper-
iment, we used the same kernel width as above, and a value of 5%. The latter
was chosen to roughly reflect the expectation as to how many “bad” patterns there
are in the test set: most good learning algorithms achieve error rates of 3 - 5% on
the USPS benchmark (for a list of results, cf. Table 7.4).
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Table 8.1 Experimental results for various values of the outlier control constant , USPS
test set, size m 2007. Note that bounds the fractions of outliers and Support Vectors
from above and below, respectively (cf. Proposition 8.3). As we are not in the asymptotic
regime, there is some slack in the bounds; nevertheless, can be used to control these
fractions. Note, moreover, that training times (CPU time in seconds on a Pentium II running
at 450 MHz) increase as approaches 1. This is related to the fact that almost all Lagrange
multipliers are at the upper bound in that case (cf. Section 8.4). The system used in the
outlier detection experiments is shown in boldface.

fraction of OLs fraction of SVs training time
1% 0.0% 10.0% 36
3% 0.1% 10.0% 31
5% 1.4% 10.6% 36

10% 6.2% 13.7% 65
30% 27.5% 31.8% 269
50% 47.4% 51.2% 1284
70% 68.3% 70.7% 1512
90% 89.4% 90.1% 2349

9−513 1−507 0−458 1−377 7−282 2−216 3−200 9−186 5−179 0−162

3−153 6−143 6−128 0−123 7−117 5−93 0−78 7−58 6−52 3−48

Figure 8.9 Outliers identified by the proposed algorithm, ranked by the negative output of
the SVM (the argument of (8.12)). The outputs (for convenience in units of 10 5) are written
underneath each image in italics, the (alleged) class labels are given in bold face. Note that
most of the examples are “difficult” in that they are either atypical or mislabelled.

In the last experiment, we tested the runtime scaling behavior of the SMO solver
used for training (Figure 8.10). Performance was found to depend on . For the
small values of which are typically used in outlier detection tasks, the algorithm
scales very well to larger data sets, with a dependency of training times on the
sample size which is at most quadratic.

In addition to the experiments reported above, the present algorithm has since
been applied in several other domains, such as the modelling of parameter regimes
for the control of walking robots [528], condition monitoring of jet engines [236],
and hierarchical clustering problems [35].



8.8 Summary 247

6 7 8 9 10 11
1

2

3

4

5

6

7

8

ν= 1%
ν= 2%
ν= 5%
ν=10%

log2(m)

log2 (t)

6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

ν=20%
ν=30%
ν=40%
ν=50%

log2(m)

log2 (t)

Figure 8.10 Training times t (in seconds) vs. data set sizes m (both axes depict logs at base
2; CPU time in seconds on a Pentium II running at 450 MHz, training on subsets of the
USPS test set); c 0 5 256. As in Table 8.1, it can be seen that larger values of generally
lead to longer training times (note that the plots use different y-axis ranges). Times also
differ in their scaling with the sample size, however. The exponents can be directly read
from the slope of the graphs, as they are plotted in log scale with equal axis spacing: for
small values of ( 5%), the training times are approximately linear in the training set
size (left plot). The scaling gets worse as increases. For large values of , training times
are roughly proportional to the sample size raised to the power of 2 5 (right plot). The
results should be taken only as an indication of what is going on: they were obtained
using fairly small training sets; the largest being 2007, the size of the USPS test set. As a
consequence, they are fairly noisy, and strictly speaking, they refer only to the examined
regime. Encouragingly, the scaling is better than the cubic scaling that we would expect
when solving the optimization problem using all patterns at once, cf. Section 8.4. Moreover,
for small values of , which are typically used in outlier detection (in Figure 8.9, we used

5%), the algorithm is particularly efficient.

8.8 Summary

In the present chapter, we described SV algorithms that can be applied to unla-
belled data. Statistically speaking, these are a solution to the problem of multi-
dimensional quantile estimation. Practically speaking, they provide a “descrip-
tion” of the dataset that can thought of as a “single-class” classifier, which can tell
whether a new point is likely to have been generated by the same regularity as the
training data. This makes them applicable to problems such as novelty detection.

We began with a discussion of the quantile estimation problem, which led us
to a quantile estimation algorithm, which is very similar to the SV classification
algorithm in that it uses the same type of large margin regularizer. To deal with
outliers in the data, we made use of the -trick introduced in the previous chapter.
We described an SMO-style optimization problem to compute the unique solution
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of the algorithm, and we provided a theoretical analysis of a number of aspects,
such as robustness with respect to outliers, and generalization to unseen data.

Finally, we described outlier detection experiments using real-world data. It is
worthwhile to note at this point that single-class approaches have abundant prac-
tical applications. Suggestions include information retrieval, problems in medical
diagnosis [534], marketing [33], condition monitoring of machines [138], estimat-
ing manufacturing yields [531], econometrics and generalized nonlinear principal
curves [550, 308], regression and spectral analysis [417], tests for multimodality
and clustering [416] and others [374]. Many of these papers, in particular those
with a theoretical slant [417, 114, e.g.], do not go all the way in devising practical
algorithms that work on high-dimensional real-world-problems, a notable excep-
tion being the work of Tarassenko et al. [534]. The single-class SVM described in
this chapter constitutes a practical algorithm with well-behaved computational
complexity (convex quadratic programming) for these problems.

8.9 Problems

8.1 (Uniqueness of the Supporting Hyperplane ) Using Lemma 6.24 (cf. Fig-
ure 6.7), prove that if the convex hull of the training data does not contain the origin,
then there exists a unique hyperplane with the properties that (1) it separates all data from
the origin, and (2) its distance to the origin is maximal among all such hyperplanes. (cf.
Proposition 8.1).

Hint: argue that you can limit yourself to finding the maximum margin of separation
over all weight vectors of length w 1; that is, over a convex set.

8.2 (Soft Ball Algorithm [535] ) Extend the hard ball algorithm described in Sec-
tion 5.6 to the soft margin case; in other words, derive (8.18) and (8.19) from (8.17).

8.3 (Hard Margin Limit for Positive Offsets ) Show that if we require 0 in the
primal problem, we end up with the constraint ∑i i 1 instead of ∑i i 1 (see (8.15)).
Consider the hard margin limit 0 and argue that in this case, the problem can become
infeasible, and the multipliers i can diverge during the optimization. Give a geometric
interpretation of why this happens for 0, but not if is free.

8.4 (Positivity of ) Prove that the solution of (8.6) satisfies 0.

8.5 (Hard Margin Identities ) Consider the hard margin optimization problem, con-
sisting of minimizing w 2 subject to w xi for i [m] (here, 0 is a constant).
Prove that the following identities hold true for the solution :

2

d2 w 2 2W( ) (8.41)

Here, W( ) denotes the value of the dual objective function, and d is the distance of the
hyperplane to the origin. Hint: use the KKT conditions and the primal constraints.
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8.6 ( -Property for Single-Class SVMs [475] ) Prove Proposition 8.3, using the
techniques from the proof of Proposition 7.5.

8.7 (Graphical Proof of -Property ) Give a graphical proof of the first two statements
of Proposition 8.3 along the lines of Figure 9.5.

8.8 ( -Property for the Soft Ball Algorithm ) Prove Proposition 8.3 for the soft ball
algorithm (8.18), (8.19).

8.9 (Multi-class SV Classification ) Implement the single-class algorithm and use it
to solve a multi-class classification problem by training a single-class recognizer on each
class. Discuss how to best compare the outputs of the individual recognizers in order to get
to a multi-class decision.

8.10 (Negative Data [476] ) Derive a variant of the single-class algorithm that can
handle negative data by reflecting the negative points at the origin in feature space, and
then solving the usual one-class problem. Show that this leads to the following problem:

minimize
m

1
2 ∑

i j
i j yiy jk(xi x j) (8.42)

subject to 0 i
1
m

(8.43)

∑
i

i 1 (8.44)

Argue, moreover, that the decision function takes the form

f (x) sgn ∑
i

i yik(xi x) (8.45)

and that can be computed by exploiting that for any xi such that i (0 1 ( m)),

w Φ(xi) ∑
j

j y jk(x j xi) (8.46)

Show that the algorithm (8.13) is a special case of the above one. Discuss the connection to
the SVC algorithm (Chapter 7), in particular with regard to how the two algorithms deal
with unbalanced data sets.

8.11 (Separation from General Points [476] ) Derive a variant of the single-class
algorithm that, rather than separating the points from the origin in feature space, separates
them from the mean of some other set of points Φ(z1) Φ(zt). Argue that this lets you
take into account the unknown “other” class in a “weak” sense. Hint: modify the first
constraint in (8.7) to

w Φ(xi)
1
t

t

∑
n 1

Φ(zn) i (8.47)
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and the decision function to

f (x) sgn w Φ(x)
1
t

t

∑
n 1

Φ(zn) (8.48)

Prove that the dual problem takes the following form:

minimize
m

1
2 ∑

i j
i j k(xi x j) q qj qi (8.49)

subject to 0 i
1
m

(8.50)

∑
i

i 1 (8.51)

where q 1
t2 ∑np k(zn zp) and qj

1
t ∑n k(x j zn).

Discuss the special case where you try to separate a data set from its own mean and
argue that this provides a method for computing one-sided quantiles with large margin.

8.12 (Cross-Validation ) Discuss the question of how to validate whether a single-
class SVM generalizes well. What are the main differences with the problem of pattern
recognition?

8.13 (Leave-One-Out Bound ) Using Theorem 12.9, prove that the generalization
error of single-class SVMs trained on samples of size m 1 is bounded by the number
of SVs divided by m.

Note that this bound makes a statement about the case where 0 (cf. Theorem 8.6).
Argue that this can cause the bound to be loose. Compare the case of pattern recognition,
and argue that the usual leave-one-out bound is also loose there, since it makes a statement
about the probability of a test point being misclassified or lying inside the margin.

8.14 (Kernel-Dependent Generalization Error Bounds ) Modify Theorem 8.6 to
take into account properties of the kernel along the lines of the entropy number methods
described in Chapter 12.

8.15 (Model Selection ) Try to come up with principled model selection methods for
single-class SVMs. How would you recommend to choose and the kernel parameter?
How would you choose (Theorem 8.6)?



 

9 Regression Estimation

In this chapter, we explain the ideas underlying Support Vector (SV) machines for
function estimation. We start by giving a brief summary of the motivations andOverview
formulations of an SV approach for regression estimation (Section 9.1), followed
by a derivation of the associated dual programming problems (Section 9.2). After
some illustrative examples, we cover extensions to linear programming settings
and a -variant that utilizes a more convenient parametrization. In Section 9.6, we
discuss some applications, followed by a summary (Section 9.7) and a collection
of problems for the reader.

Although it is not strictly indispensable, we recommend that the reader firstPrerequisites
study the basics of the SVM classification algorithm, at least at the level of detail
given in Chapter 1. The derivation of the dual (Section 9.2) is self-contained, but
would benefit from some background in optimization (Chapter 6), especially in
the case of the more advanced formulations given in Section 9.2.2. If desired, these
can actually be skipped at first reading. Section 9.3 describes a modification of
the standard SV regression algorithm, along with some considerations on issues
such as robustness. The latter can be best understood within the context given in
Section 3.4. Finally, Section 9.4 deals with linear programming regularizers, which
were discussed in detail in Section 4.9.2.

9.1 Linear Regression with Insensitive Loss Function

SVMs were first developed for pattern recognition. As described in Chapter 7, they
represent the decision boundary in terms of a typically small subset of all train-
ing examples — the Support Vectors. When the SV algorithm was generalized to
the case of regression estimation (that is, to the estimation of real-valued functions,
rather than just 1 -valued ones, as in the case in pattern recognition), it was cru-
cial to find a way of retaining this feature. In order for the sparseness property to
carry over to the case of SV Regression, Vapnik devised the so-called -insensitive
loss function (Figure 1.8) [561],-Insensitive

Loss
y f (x) max 0 y f (x) (9.1)
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which does not penalize errors below some 0, chosen a priori.1 The rationale
behind this choice is the following. In pattern recognition, when measuring the
loss incurred for a particular pattern, there is a large area where we accrue zero
loss: whenever a pattern is on the correct side of the decision surface, and does
not touch the margin, it does not contribute any loss to the objective function
(7.35). Correspondingly, it does not carry any information about the position of
the decision surface — after all, the latter is computed by minimizing that very
objective function. This is the underlying reason why the pattern does not appear
in the SV expansion of the solution. A loss function for regression estimation must
also have an insensitive zone; hence we use the -insensitive loss.

The regression algorithm is then developed in close analogy to the case of
pattern recognition. Again, we estimate linear functions, use a w 2 regularizer,
and rewrite everything in terms of dot products to generalize to the nonlinear case.
The basic SV regression algorithm, which we will henceforth call -SVR, seeks to
estimate linear functions2,

f (x) w x b where w x b (9.2)

based on independent and identically distributed (iid) data,

(x1 y1) (xm ym) (9.3)

Here, is a dot product space in which the (mapped) input patterns live (i.e., the
feature space induced by a kernel). The goal of the learning process is to find a

1. The insensitive zone is sometimes referred to as the -tube. Actually, this term is lightly
misleading, as in multi-dimensional problems, the insensitive zone has the shape of a slab
rather than a tube; in other words, the region between two parallel hyperplanes, differing
in their y offset.
2. Strictly speaking, these should be called affine functions. We will not indulge in these fine
distinctions. The crucial bit is that the part to which we apply the kernel trick is linear.
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function f with a small risk (or test error) (cf. Chapter 3),

R[ f ] c( f x y) dP(x y) (9.4)

where P is the probability measure which is assumed to be responsible for the
generation of the observations (9.3), and c is a loss function, such as c( f x y)
( f (x) y)2, or one of many other possible choices (Chapter 3). The particular
loss function for which we would like to minimize (9.4) depends on the specific
regression estimation problem at hand. Note that this does not necessarily have to
coincide with the loss function used in our learning algorithm. First, there might
be additional constraints that we would like our regression estimation to satisfy,
for instance that it have a sparse representation in terms of the training data —
in the SV case, this is achieved through the insensitive zone in (9.1). Second, we
cannot minimize (9.4) directly in any case, since we do not know P. Instead, we
are given the sample (9.3), and we try to obtain a small risk by minimizing the
regularized risk functional,

1
2

w 2 C Remp[ f ] (9.5)

Here,Regularized Risk
Functional

Remp[ f ] :
1
m

m

∑
i 1

yi f (xi) (9.6)

measures the -insensitive training error, and C is a constant determining the
trade-off with the complexity penalizer w 2. In short, minimizing (9.5) captures
the main insight of statistical learning theory, stating that in order to obtain a small
risk, we need to control both training error and model complexity, by explaining
the data with a simple model (Chapter 5).

A small w 2 corresponds to a linear function (9.2) that is flat — in feature
space. Note that in the case of pattern recognition, we use the same regularizer
(cf. (7.35)); however, it corresponded to a large margin in this case. How does thisFlatness

vs. Margin difference arise? A related question, it turns out, is why SV regression requires an
extra parameter , while SV pattern recognition does not.

Let us try to understand how these seemingly different problems are actually
identical.

Definition 9.1 ( -margin) Let (E E), (G G) be normed spaces, and E. We
define the -margin of a function f : G as

m ( f ) : inf x x E x x f (x) f (x ) G 2 (9.7)

Let us look at a 1-D toy problem (Figure 9.1). In pattern recognition, we are looking
for a function which exceeds some constant (using the canonical hyperplanes
of Definition 7.1, this constant is 1) on the positive patterns, and which is
smaller than on the negative patterns. The points where the function takes
the values define the -margin in the space of the patterns (the x-axis in
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Figure 9.1 1D toy problem:
separate ’x’ from ’o’. The
SV classification algorithm
constructs a linear function
f (x) w x b satisfying
the canonicality condition
min f (x) x 1 (or
equivalently, 1). To maxi-
mize the margin m ( f ), we have
to minimize w .

the plot). Therefore, the flatter the function f , the larger the classification margin.
This illustrates why both SV regression and SV pattern recognition use the same
regularizer w 2, albeit with different effects. For more detail on these issues and
on the -margin, cf. Section 9.8; cf. also [561, 418].

The minimization of (9.5) is equivalent to the following constrained optimiza-
tion problem:Primal Objective

Function, -SVR
minimize

w ( ) m b
(w ( ))

1
2

w 2 C
1
m

m

∑
i 1

( i i ) (9.8)

subject to ( w xi b) yi i (9.9)

yi ( w xi b) i (9.10)
( )
i 0 (9.11)

Here and below, it is understood that i 1 m, and that bold face Greek letters
denote m-dimensional vectors of the corresponding variables; ( ) is a shorthand
implying both the variables with and without asterisks.

9.2 Dual Problems

9.2.1 -Insensitive Loss

The key idea is to construct a Lagrangian from the objective function and the
corresponding constraints, by introducing a dual set of variables. It can be shown
that this function has a saddle point with respect to the primal and dual variables
at the solution; for details see Chapter 6. We define a Lagrangian,

L :
1
2

w 2 C
m

m

∑
i 1

( i i )
m

∑
i 1

( i i i i ) (9.12)

m

∑
i 1

i( i yi w xi b)

m

∑
i 1

i ( i yi w xi b)



9.2 Dual Problems 255

where the dual variables (or Lagrange multipliers) in (9.12) have to satisfy positiv-
ity constraints,

( )
i

( )
i 0 (9.13)

It follows from the saddle point condition (Chapter 6) that the partial derivatives
of L with respect to the primal variables (w b i i ) have to vanish for optimality;

bL ∑m
i 1( i i ) 0 (9.14)

wL w ∑m
i 1( i i)xi 0 (9.15)

( )
i

L C
m

( )
i

( )
i 0 (9.16)

Substituting (9.14), (9.15), and (9.16) into (9.12) yields the dual optimization prob-
lem,

maximize
( ) m

1
2

m
∑

i j 1
( i i)( j j) xi x j

m
∑

i 1
( i i)

m
∑

i 1
yi( i i)

subject to
m
∑

i 1
( i i ) 0 and i i [0 C m]

(9.17)

In deriving (9.17), we eliminate the dual variables i i through condition (9.16).
Eq. (9.15) can be rewritten as

w
m

∑
i 1

( i i)xi thus f (x)
m

∑
i 1

( i i) xi x b (9.18)

This is the familiar SV expansion, stating that w can be completely described as aSV Expansion
linear combination of a subset of the training patterns xi.

Note that just as in the pattern recognition case, the complete algorithm can be
described in terms of dot products between the data. Even when evaluating f (x),
we need not compute w explicitly. This will allow the formulation of a nonlinear
extension using kernels.

So far we have neglected the issue of computing b. The latter can be done byComputing
the Offset b exploiting the Karush-Kuhn-Tucker (KKT) conditions (Chapter 6). These state that

at the point of the solution, the product between dual variables and constraints
has to vanish;

i( i yi w xi b) 0

i ( i yi w xi b) 0
(9.19)

and

( C
m i) i 0

( C
m i ) i 0

(9.20)

This allows us to draw several useful conclusions.

First, only examples (xi yi) with corresponding ( )
i C m can lie outside the
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-insensitive tube (i.e., ( )
i 0) around f .

Second, we have i i 0. In other words, there can never be a set of dual
variables i i which are both simultaneously nonzero (cf. Problem 9.1).

Third, for ( )
i (0 C m) we have ( )

i 0, and furthermore the second factor in
(9.19) must vanish. Hence b can be computed as follows:

b yi w xi for i (0 C m)

b yi w xi for i (0 C m)
(9.21)

Theoretically, it suffices to use any Lagrange multiplier in (0 C m), If given the
choice between several such multipliers (usually there are many multipliers which
are not ‘at bound,’ meaning that they do not equal 0 or C m), it is safest to use one
that is not too close to 0 or C m.
Another way of computing b will be discussed in the context of interior point opti-
mization (cf. Chapter 10). There, b turns out to be a by-product of the optimization
process. See also [291] for further methods to compute the constant offset.

A final note must be made regarding the sparsity of the SV expansion. From (9.19)
it follows that the Lagrange multipliers may be nonzero only for f (xi) yi ;
in other words, for all examples inside the -tube (the shaded region in Figure 1.8)
the i i vanish. This is because when f (xi) yi the second factor in (9.19)
is nonzero, hence i i must be zero for the KKT conditions to be satisfied.
Therefore we have a sparse expansion of w in terms of xi (we do not need all xi

to describe w). The examples that come with nonvanishing coefficients are called
Support Vectors. It is geometrically plausible that the points inside the tube do not
contribute to the solution: we could remove any one of them, and still obtain the
same solution, therefore they cannot carry any information about it.

9.2.2 More General Loss Functions

We will now consider loss functions c(x y f (x)) which for fixed x and y are convex
in f (x). This requirement is chosen as we want to ensure the existence and unique-
ness (for strict convexity) of a minimum of optimization problems (Chapter 6).
Further detail on loss functions can be found in Chapter 3; for now, we will focus
on how, given a loss function, the optimization problems are derived.

For the sake of simplicity, we will additionally assume c to be symmetric, to have
(at most) two (for symmetry) discontinuities at 0 in the first derivative,
and to be zero in the interval [ ]. All loss functions from table 3.1 belong to
this class. Hence c will take on the form

c(x y f (x)) c̃( y f (x) ) (9.22)

Note the similarity to Vapnik’s -insensitive loss. It is rather straightforward to
extend this special choice to more general convex loss functions: for nonzero loss
functions in the interval [ ], we use an additional pair of slack variables.
Furthermore we might choose different loss functions c̃i, c̃i and different values
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of i, i for each example. At the expense of additional Lagrange multipliers in the
dual formulation, additional discontinuities can also be dealt with. In a manner
analogous to (9.8), we arrive at a convex minimization problem [512] (note that for
ease of notation, we have absorbed the sample size in C; cf. (9.8)):

minimize
w ( ) m b

1
2 w 2 C

m
∑

i 1
(c̃( i) c̃( i ))

subject to
w xi b yi i

yi w xi b i

i i 0

(9.23)

Again, by standard Lagrange multiplier techniques, using exactly the same rea-
soning as in the case, we can compute the dual optimization problem. In some
places, we will omit the indices i and to avoid tedious notation. This yields

maximize
( ) m

1
2

m
∑

i j 1
( i i)( j j) xi x j

m
∑

i 1
(yi( i i) ( i i))

C
m
∑

i 1
(T( i ) T( i))

where
w

m
∑

i 1
( i i)xi

T( ) : c̃( ) c̃( )

subject to

m
∑

i 1
( i i ) 0

C c̃( )

inf C c̃

0

(9.24)

Let us consider the examples of Table 3.1 as special cases. We will explicitly show
for two examples how (9.24) can be further simplified to reduce it to a form that is
practically useful. In the -insensitive case, where c̃( ) , we get

T( ) 1 0 (9.25)

We can further conclude from c̃( ) 1 that

inf C 0 and [0 C] (9.26)

In the case of piecewise polynomial loss, we have to distinguish two different
cases: and . In the first case we get

T( )
1

p p 1
p 1

p 1
p p 1

p
1 p p (9.27)

and inf C 1 p p 1 C
1

p 1
1

p 1 ; thus

T( )
p 1

p
C

p
p 1

p
p 1 (9.28)
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Table 9.1 Terms of the convex optimization problem depending on the choice of the loss
function.

CT( )
-insensitive 0 [0 C] 0
Laplacian 0 [0 C] 0
Gaussian 0 [0 ) 1

2 C 1 2

Huber’s
robust loss

0 [0 C] 1
2 C 1 2

Polynomial 0 [0 ) p 1
p C

1
p 1

p
p 1

Piecewise
polynomial

0 [0 C] p 1
p C

1
p 1

p
p 1

In the second case ( ) we have

T( )
p 1

p
p 1

p
(9.29)

and inf C ; hence [0 C] These two cases can be combined to
yield

[0 C] and T( )
p 1

p
C

p
p 1

p
p 1 (9.30)

Table 9.1 contains a summary of the various conditions on , and formulas for
T( ) for different loss functions.3 Note that the maximum slope of c̃ determines the
region of feasibility of , meaning that s : sup c̃( ) leads to compact
intervals [0 Cs] for . This means that the influence of a single pattern is bounded,
leading to robust estimators (cf. Chapter 3 and Proposition 9.4 below). We also
observe experimentally that the performance of an SVM depends on the loss
function used [376, 515, 95].

A cautionary remark is necessary regarding the use of loss functions other than
the -insensitive loss. Unless 0, we lose the advantage of a sparse decompo-
sition. This may be acceptable in the case of few data, but will render the pre-
diction step rather slow otherwise. Hence we have to trade off a potential loss in
prediction accuracy with faster predictions. Note, however, that this issue could
be addressed using reduced set algorithms like those described in Chapter 18,
or sparse decomposition techniques [513]. In a Bayesian setting, Tipping [539] re-
cently showed how the squared loss function can be used without sacrificing spar-
sity, cf. Section 16.6.

3. The table displays CT( ) instead of T( ), since the former can be plugged directly into
the corresponding optimization equations.



9.2 Dual Problems 259

Σ

. . .

output Σ vi k (x,xi) + b

weightsv1 v2  vm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product <Φ(x),Φ(xi)>= k(x,xi)<, > <, > <, >

Φ(x1) Φ(x2)

Figure 9.2 Architecture of a regression machine constructed using the SV algorithm. In
typical regression applications, the inputs would not be visual patterns. Nevertheless, in
this example, the inputs are depicted as handwritten digits.

9.2.3 The Bigger Picture

Let us briefly review the basic properties of the SV algorithm for regression, as
described so far. Figure 9.2 contains a graphical overview of the different steps in
the regression stage. The input pattern (for which a prediction is to be made) is
mapped into feature space by a map Φ. Then dot products are computed with the
images of the training patterns under the map Φ. This corresponds to evaluating
kernel functions k(xi x). Finally, the dot products are added up using the weights

i i i. This, plus the constant term b, yields the final prediction output. The
process described here is very similar to regression in a neural network, with the
difference that in the SV case, the weights in the input layer are a subset of the
training patterns.

The toy example in Figure 9.3 demonstrates how the SV algorithm chooses
the flattest function among those approximating the original data with a given
precision. Although requiring flatness only in feature space, we observe that the
functions are also smooth in input space. This is due to the fact that kernels can be
associated with smoothness properties via regularization operators, as explained
in more detail in Chapter 4.

Finally, Figure 9.4 shows the relation between approximation quality and spar-
sity of representation in the SV case. The lower the precision required for approx-
imating the original data, the fewer SVs are needed to encode this data. The non-
SVs are redundant — even without these patterns in the training set, the SVM
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Figure 9.3 From top to bottom: approximation of the function sinc x with precisions
0 1 0 2 and 0 5. The solid top and dashed bottom lines indicate the size of the -tube,

here drawn around the target function sinc x. The dotted line between them is the regression
function.

Figure 9.4 Left to right: regression (solid line), data points (small dots) and SVs (big dots)
for an approximation of sinc x (dotted line) with 0 1 0 2 and 0 5. Note the decrease in
the number of SVs.

would have constructed exactly the same function f . We might be tempted to use
this property as an efficient means of data compression, namely by storing only
the support patterns, from which the estimate can be reconstructed completely.
Unfortunately, this approach turns out not to work well in the case of noisy high-
dimensional data, since for moderate approximation quality, the number of SVs
can be rather high [572].

9.3 -SV Regression

The parameter of the -insensitive loss is useful if the desired accuracy of the
approximation can be specified beforehand. In some cases, however, we just want
the estimate to be as accurate as possible, without having to commit ourselves to
a specific level of accuracy a priori. We now describe a modification of the -SVR
algorithm, called -SVR, which automatically computes [481].

To estimate functions (9.2) from empirical data (9.3) we proceed as follows. At
each point xi, we allow an error . Everything above is captured in slack variables

( )
i , which are penalized in the objective function via a regularization constant C,

chosen a priori. The size of is traded off against model complexity and slack
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variables via a constant 0:

minimize
w ( ) m b

(w ( ) )
1
2

w 2 C
1
m

m

∑
i 1

( i i ) (9.31)

subject to ( w xi b) yi i (9.32)

yi ( w xi b) i (9.33)
( )
i 0 0 (9.34)

For the constraints, we introduce multipliers ( )
i

( )
i 0, and obtain the La-

grangian,Primal Problem
-SVR

L(w b ( ) ( ) ( )) (9.35)
1
2

w 2 C
C
m

m

∑
i 1

( i i )
m

∑
i 1

( i i i i )

m

∑
i 1

i( i yi w xi b )
m

∑
i 1

i ( i w xi b yi )

To minimize (9.31), we have to find the saddle point of L, meaning that we min-
imize over the primal variables w b ( )

i and maximize over the dual variables
( )
i

( )
i . Setting the derivatives with respect to the primal variables equal to

zero yields the four equations

w ∑
i

( i i)xi (9.36)

C ∑
i

( i i ) 0 (9.37)

m

∑
i 1

( i i ) 0 (9.38)

C
m

( )
i

( )
i 0 (9.39)

As in Section 9.2, the ( )
i are nonzero in the SV expansion (9.36) only when a

constraint (9.32) or (9.33) is precisely met.
Substituting the above four conditions into L leads to the dual optimization

problem (sometimes called the Wolfe dual). We will state it in the kernelized form:
as usual, we substitute a kernel k for the dot product, corresponding to a dot
product in some feature space related to input space via a nonlinear map Φ,

k(x x ) Φ(x) Φ(x ) x x (9.40)

Rewriting the constraints, and noting that ( )
i 0 do not appear in the dual,

we arrive at the -SVR Optimization Problem: for 0 C 0,-SVR Dual
Program

maximize
( ) m

W( ( ))
m

∑
i 1

( i i)yi
1
2

m

∑
i j 1

( i i)( j j)k(xi x j) (9.41)

subject to
m

∑
i 1

( i i ) 0 (9.42)
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( )
i 0 C

m (9.43)
m

∑
i 1

( i i ) C (9.44)

The regression estimate then takes the form (cf. (9.2), (9.36), (9.40))

f (x)
m

∑
i 1

( i i)k(xi x) b (9.45)

where b (and ) can be computed by taking into account that (9.32) and (9.33)
become equalities with ( )

i 0 for points with 0 ( )
i C m, due to the KKT

conditions. Here, substitution of ∑ j( j j)k(x j x) for w x is understood, cf.
(9.36), (9.40). Geometrically, this amounts to saying that we can compute the
thickness and vertical position of the tube by considering some points that sit
exactly on the edge of the tube.4

We now show that has an interpretation similar to the case of -SV pattern
recognition (Section 7.5). This is not completely obvious: recall that in the case of
pattern recognition, we introduced to replace C. In regression, on the other hand,
we introduced it to replace .

Before we give the result, the following observation concerning is helpful. If
1, then necessarily 0, since it does not pay to increase . This can be seen

either from (9.31) — the slacks are “cheaper” — or by noting that for 1, (9.43)
implies (9.44), since i i 0 for all i (9.58). Therefore, (9.44) is redundant, and all
values 1 are actually equivalent. Hence, we restrict ourselves to 0 1.

If 1, we mostly find 0. It is still possible that 0, for instance if the
data are noise-free and can be perfectly interpolated with a low capacity model.
The case 0 is not what we are interested in: it corresponds to plain L1-loss
regression.

Below, we will use the term errors to refer to training points lying outside the
tube, and the term fraction of errors/SVs to denote the relative numbers of er-
rors/SVs; that is, these respective quantities are divided by m. In this proposi-
tion, we define the modulus of absolute continuity of a function f as the function
( ) : sup ∑i f (bi) f (ai) , where the supremum is taken over all disjoint inter-

vals (ai bi) with ai bi satisfying ∑i(bi ai) . Loosely speaking, the condition
on the conditional density of y given x asks that it be absolutely continuous ‘on
average.’-Property

Proposition 9.2 Suppose -SVR is applied to some data set and the resulting is
nonzero. The following statements hold:

4. Should it occur, for instance due to numerical problems, that it is impossible to find two
non-bound SVs at the two edges of the tube, then we can replace them by the SVs which
are closest to the tube. The SV closest to the top of the tube can be found by minimizing
yi w xi over all points with i 0; similarly, for the bottom SVs we minimize w xi yi

over the points with i 0. We then proceed as we would with the non-bound SVs, cf.
Problem 9.16.
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Figure 9.5 Graphical depiction of the -trick. Imag-
ine increasing , starting from 0. The first term in

1
m ∑m

i 1( i i ) (cf. (9.31)) increases proportionally
to , while the second term decreases proportionally
to the fraction of points outside of the tube. Hence,
grows as long as the latter fraction is larger than . At
the optimum, it must therefore be (Proposition 9.2,
(i)). Next, imagine decreasing , starting from some
large value. Again, the change in the first term is pro-
portional to , but this time, the change in the second
term is proportional to the fraction of SVs (even points
on the edge of the tube contribute). Hence, shrinks as
long as the fraction of SVs is smaller than , leading
eventually to Proposition 9.2, (ii).

(i) is an upper bound on the fraction of errors.

(ii) is a lower bound on the fraction of SVs.

(iii) Suppose the data (9.3) were generated iid from a distribution P(x y) P(x)P(y x),
with P(y x) continuous and the expectation of the modulus of absolute continuity of its
density satisfying lim 0 Ex [ ( )] 0. With probability 1, asymptotically, equals both
the fraction of SVs and the fraction of errors.

The proposition shows that 0 1 can be used to control the number of errors.
Since the constraint (9.42) implies that (9.44) is equivalent to ∑i

( )
i C 2, we

conclude that Proposition 9.2 actually holds separately for the upper and the lower
edge of the tube, with 2 each. As an aside, note that by the same argument, the
number of SVs at the two edges of the standard -SVR tube asymptotically agree.

The proof of Proposition 9.2 can be found in Section A.2. In its stead, we use a
graphical argument that should make the result plausible (Figure 9.5). For further
information on the -trick in a more general setting, cf. Section 3.4.3.

Let us briefly discuss how -SVR relates to -SVR (Section 9.1). Both algorithmsConnection
-SVR / -SVR use the -insensitive loss function, but -SVR automatically computes . From a

Bayesian viewpoint, this automatic adaptation of the loss function can be inter-
preted as adapting the error model, controlled by the hyperparameter (cf. Chap-
ter 3). Comparing (9.17) (substitution of a kernel for the dot product is understood)
and (9.41), we note that -SVR requires an additional term ∑m

i 1( i i), which,
for fixed 0, encourages some of the ( )

i to be 0. Accordingly, the constraint
(9.44), which appears in -SVR, is not needed. The primal problems (9.8) and (9.31)
differ in the term . If 0, then the optimization can grow arbitrarily large,
hence zero empirical risk can be obtained even when all are zero.

In the following sense, -SVR includes -SVR. Note that in the general case,
using kernels, w̄ is a vector in feature space.

Proposition 9.3 If -SVR leads to the solution ¯ w̄ b̄, then -SVR with set a priori to
¯ , and the same value of C, has the solution w̄ b̄.
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Proof If we minimize (9.31), then fix and minimize only over the remaining
variables, the solution does not change.

Using the -insensitive loss function, only the patterns outside the -tube enterConnection to
Robust
Estimators

the empirical risk term, whereas the patterns closest to the actual regression have
zero loss. This does not mean that it is only the ‘outliers’ that determine the
regression. In fact, the contrary is the case:

Proposition 9.4 (Resistance of SV Regression) Using Support Vector Regression
with the -insensitive loss function (9.1), local movements of target values of points out-
side the tube do not influence the regression.

Proof Shifting yi locally does not change the status of (xi yi) as being a point
outside the tube. The dual solution ( ) then remains feasible; which is to say it
satisfies the constraints (the point still has ( )

i C m). In addition, the primal
solution, with i transformed according to the movement of xi, is also feasible.
Finally, the KKT conditions are still satisfied, as ( )

i C m. Thus (Chapter 6), ( )

remains the solution.

The proof relies on the fact that everywhere outside the tube, the upper bound
on the ( )

i is the same. This, in turn, is precisely the case if the loss function
increases linearly outside the -tube (cf. Chapter 3 for requirements for robust
loss functions). Inside, a range of functions is permissible, provided their first
derivative is smaller than that of the linear part.

In the case of -SVR with -insensitive loss, the above proposition implies that
essentially, the regression is a generalization of an estimator for the mean of a
random variable which

(a) throws away the largest and smallest examples (a fraction 2 of either cate-
gory — in Section 9.3, it is shown that the sum constraint (9.42) implies that Propo-
sition 9.2 can be applied separately for the two sides, using 2); and

(b) estimates the mean by taking the average of the two extremal ones of the
remaining examples.

This resistance to outliers is close in spirit to robust estimators like the trimmed
mean. In fact, we could get closer to the idea of the trimmed mean, which firstTrimmed Mean
throws away the largest and smallest points and then computes the mean of the
remaining points, by using a quadratic loss inside the -tube. This would leave us
with Huber’s robust loss function (see Table 3.1).

Note, moreover, that the parameter is related to the breakdown point of the
corresponding robust estimator [251]. As it specifies the fraction of points which
may be arbitrarily bad outliers, is related to the fraction of some arbitrary
distribution that may be added to a known noise model without leading to a
failure of the estimator.

Finally, we add that by a simple modification of the loss function (cf. [594]),
namely weighting the slack variables ( ) above and below the tube in the target
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Table 9.2 Asymptotic behavior of the fraction of errors and SVs.
The found by -SV regression is largely independent of the sample size m. The fraction of
SVs and the fraction of errors approach 0 2 from above and below, respectively, as the
number of training examples m increases (cf. Proposition 9.2).

m 10 50 100 200 500 1000 1500 2000
0.27 0.22 0.23 0.25 0.26 0.26 0.26 0.26

fraction of errors 0.00 0.10 0.14 0.18 0.19 0.20 0.20 0.20
fraction of SVs 0.40 0.28 0.24 0.23 0.21 0.21 0.20 0.20

0 1

0

1

0 1

0

1

Figure 9.6 -SV regression with 0 2 (left) and 0 8 (right). The larger allows more
points to lie outside the tube (see Section 9.3). The algorithm automatically adjusts to 0.22
(left) and 0.04 (right). Shown are the sinc function (dotted), the regression f and the tube
f .

function (9.31) by 2 and 2(1 ) respectively, with [0 1], we can estimate
generalized quantiles. The argument proceeds as follows. Asymptotically, all pat-Quantile
terns have multipliers at bound (cf. Proposition 9.2). The parameter , however,
changes the upper bounds in the box constraints applying to the two different
types of slack variables to 2C m and 2C(1 ) m, respectively. The equality con-
straint (9.38) then implies that (1 ) and give the fractions of points (of those
which are outside the tube) which lie on the top and bottom of the tube, respec-
tively.

Let us now look at some experiments. We start with a toy example, which in-Experiments
volves estimating the regression of a noisy sinc function, given m examples (xi yi),
with xi drawn uniformly from [ 3 3], and yi sin( xi) ( xi) i. The i were
drawn from a Gaussian with zero mean and variance 2, and we used the RBF
kernel k(x x ) exp( x x 2), m 50 C 100 0 2, and 0 2. Standard
deviation error bars were computed from 100 trials. Finally, the risk (or test error)
of a regression estimate f was computed with respect to the sinc function without
noise, as 1

6
3

3 f (x) sin( x) ( x) dx. Results are given in Table 9.2 and Figures
9.6–9.12.
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Figure 9.7 -SV regression on data with noise 0 (left) and 1 (right). In both cases,
0 2. The tube width automatically adjusts to the noise (top: 0, bottom: 1 19).
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Figure 9.8 -SV regression (Section 9.2) on data with noise 0 (left) and 1 (right).
In both cases, 0 2 — this choice, which has to be specified a priori, is ideal for neither
case: in the upper figure, the regression estimate is biased; in the lower figure, does not
match the external noise [510].

9.4 Convex Combinations and 1-Norms

All the algorithms presented so far involve convex, and at best, quadratic pro-
gramming. Yet we might think of reducing the problem to a case where linear
programming techniques can be applied. This can be done in a straightforward
fashion [591, 517] for both SV pattern recognition and regression. The key is to
replace the original objective function by

Rreg[ f ] :
1
m 1 C Remp[ f ] (9.46)
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Figure 9.9 -SVR for different values of the error constant . Notice how decreases when
more errors are allowed (large ), and that over a large range of , the test error (risk) is
insensitive to changes in .
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Figure 9.10 -SVR for different values of the noise . The tube radius increases linearly
with (largely due to the fact that both and the ( )

i enter the loss function linearly). Due
to the automatic adaptation of , the number of SVs and of points outside the tube (errors)
is largely independent of , except for the noise-free case 0.

where 1 ∑m
i 1 i denotes the 1 norm in coefficient space. Using the SV

kernel expansion (9.18),

f (x)
m

∑
i 1

ik(xi x) b (9.47)

this translates to the objective function

Rreg[ f ]
1
m

m

∑
i 1

i
C
m

m

∑
i 1

c(xi yi f (xi)) (9.48)
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Figure 9.11 -SVR for different values of the constant C. The left graph shows that
decreases when the regularization is decreased (large C). Only very little, if any, overfitting
occurs. In the right graph, note that upper bounds the fraction of errors, and lower
bounds the fraction of SVs (cf. Proposition 9.2). The bound gets looser as C increases —
this corresponds to a smaller number of examples m relative to C (cf. Table 9.2).

For the -insensitive loss function, this leads to a linear programming problem.-LP Regression
Objective
Function

For other loss functions, the problem remains a quadratic or general convex one.
Therefore we limit ourselves to the derivation of the linear programming problem
in the case of the loss function. Reformulating (9.48) yields

minimize
( ) ( ) m b

1
m

m
∑

i 1
( i i ) C

m

m
∑

i 1
( i i )

subject to

m
∑
j 1

( j j )k(x j xi) b yi i

yi

m
∑
j 1

( j j )k(x j xi) b i

i i i i 0

(9.49)

Unlike the SV case, the transformation into its dual does not give any improve-
ment in the structure of the optimization problem. Hence it is best to minimize
Rreg[ f ] directly, which can be achieved using a linear optimizer (see [130, 336, 555]).

Weston et al. [591] use a similar LP approach to estimate densities on a line.
We may even obtain bounds on the generalization error [505] which exhibit better
rates than in the SV case [606]; cf. Chapter 12.

We conclude this section by noting that we can combine these ideas with those
presented in the previous section, and construct a -LP regression algorithm [517].-LP Regression
It differs from the previous -SV algorithm in that we now minimize

Rreg C
1
m

m

∑
i 1

i CRemp[ f ] C (9.50)
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Figure 9.12 -SVR for different values of the Gaussian kernel width 2s2, using k(x x )
exp( x x 2 (2s2)). Using a kernel that is too wide results in underfitting; moreover, since
the tube becomes too rigid as 2s2 gets larger than 1, the which is needed to accomodate a
fraction (1 ) of points increases significantly. In the plot on the right, it can again be seen
that the speed of the uniform convergence responsible for the asymptotic statement given
in Proposition 9.2 depends on the capacity of the underlying model. Increasing the kernel
width leads to smaller covering numbers (Chapter 12) and therefore faster convergence.

The goal here is not only to achieve a small training error (with respect to ), but
also to obtain a solution with a small . Rewriting (9.50) as a linear program yields

minimize
( ) ( ) m b

1
m

m
∑

i 1
( i i ) C

m

m
∑

i 1
( i i ) C

subject to

m
∑
j 1

( j j )k(x j xi) b yi i

yi

m
∑
j 1

( j j )k(x j xi) b i

i i i i 0

(9.51)

The difference between (9.50) and (9.49) lies in the objective function, and the fact
that has now become a variable of the optimization problem.

The -property (Proposition 9.2) also holds for -LP regression. The proof is
analogous to the -SV case, and can be found in [517].

9.5 Parametric Insensitivity Models

In Section 9.3, we generalized -SVR by estimating the width of the tube rather
than taking it as given a priori. What we retained, however, is the assumption
that the -insensitive zone has a tube shape. We now go one step further and use
parametric models of arbitrary shape [469]. This can be useful in situations where
the noise depends on x (this is called heteroscedastic noise).
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Let ( )
q (here and below, q 1 p is understood) be a set of 2p positive

functions on the input space . Consider the following quadratic program: for
given ( )

1
( )
p 0,

minimize
w ( ) m ( ) p b

(w ( ) ( )) w 2 2

C
p

∑
q 1

( q q q q)
1
m

m

∑
i 1

( i i ) (9.52)

subject to ( w Φ(xi) b) yi

p

∑
q 1

q q(xi) i (9.53)

yi ( w Φ(xi) b)
p

∑
q 1

q q (xi) i (9.54)

( )
i 0 ( )

q 0 (9.55)

A calculation analogous to that in Section 9.3 shows that the Wolfe dual consists
of maximizing (9.41) subject to (9.42), (9.43), and, instead of (9.44), the modified
constraints,
m

∑
i 1

( )
i

( )
q (xi) C ( )

q (9.56)

which are still linear in ( ). In the toy experiment shown in Figure 9.13, we use
a simplified version of this optimization problem, where we drop the term q q

from the objective function (9.52), and use q and q in (9.54). By this, we render
the problem symmetric with respect to the two edges of the tube. In addition, we
use p 1. This leads to the same Wolfe dual, except for the last constraint, which
becomes (cf. (9.44))
m

∑
i 1

( i i ) (xi) C (9.57)

Note that the optimization problem of Section 9.3 can be recovered using the
constant function 1.5

The advantage of this setting is that since the same is used for both sides of
the tube, the computation of and b is straightforward: for instance, by solving
a linear system, using two conditions such as those described following (9.45).
Otherwise, general statements become cumbersome: the linear system can have
a zero determinant, depending on whether the functions ( )

p , evaluated on the
xi with 0 ( )

i C m, are linearly dependent. The latter occurs, for instance, if
we use constant functions ( ) 1. In this case, it is pointless to use two different

5. Observe the similarity to semiparametric SV models (Section 4.8) where a modification
of the expansion of f leads to similar additional constraints. The important difference in the
present setting is that the Lagrange multipliers i and i are treated equally, and not with
different signs as in semiparametric modelling.
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Figure 9.13 Toy example, using prior knowledge about an x-dependence of the noise.
Additive noise ( 1) was multiplied by the function sin2((2 3)x). Left: the same function
was used as in the context of a parametric insensitivity tube (Section 9.5). Right: -SVR
with standard tube.

values , since the constraint (9.42) then implies that both sums ∑m
i 1

( )
i are

bounded by C min . We conclude this section by giving, without proof,
a generalization of Proposition 9.2 to the optimization problem with constraint
(9.57):

Proposition 9.5 Suppose we run the above algorithm on a data set with the result that
0. Then

(i) m
∑i (xi)

is an upper bound on the fraction of errors.

(ii) m
∑i (xi)

is an upper bound on the fraction of SVs.

(iii) Suppose the data (9.3) were generated iid from a distribution P(x y) P(x)P(y x),
with P(y x) continuous and the expectation of its modulus of continuity satisfying
lim 0 E ( ) 0. With probability 1, asymptotically, the fractions of SVs and errors equal

( (x) dP̃(x)) 1, where P̃ is the asymptotic distribution of SVs over x.

Figure 9.13 gives an illustration of how we can make use of parametric in-
sensitivity models. Using the proper model, the estimate gets much better. In
the parametric case, we used 0 1 and (x) sin2((2 3)x), which, due to

(x) dP(x) 1 2, corresponds to our standard choice 0 2 in -SVR (cf. Propo-
sition 9.5). Although this relies on the assumption that the SVs are uniformly dis-
tributed, the experimental findings are consistent with the asymptotes predicted
theoretically: for m 200, we got 0 24 and 0 19 for the fraction of SVs and errors,
respectively.
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Table 9.3 Results for the Boston housing benchmark; top: -SVR, bottom: -SVR. Abbrevi-
ation key: MSE: Mean squared errors, STD: standard deviation thereof (100 trials), Errors:
fraction of training points outside the tube, SVs: fraction of training points which are SVs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

automatic 2.6 1.7 1.2 0.8 0.6 0.3 0.0 0.0 0.0 0.0
MSE 9.4 8.7 9.3 9.5 10.0 10.6 11.3 11.3 11.3 11.3
STD 6.4 6.8 7.6 7.9 8.4 9.0 9.6 9.5 9.5 9.5
Errors 0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.5 0.5
SVs 0.3 0.4 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0

0 1 2 3 4 5 6 7 8 9 10

MSE 11.3 9.5 8.8 9.7 11.2 13.1 15.6 18.2 22.1 27.0 34.3
STD 9.5 7.7 6.8 6.2 6.3 6.0 6.1 6.2 6.6 7.3 8.4
Errors 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SVs 1.0 0.6 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1

9.6 Applications

Empirical studies using -SVR have shown excellent performance on the widely
used Boston housing regression benchmark set [529]. Due to Proposition 9.3, theBoston Housing

Benchmark only difference between -SVR and standard -SVR lies in the fact that different
parameters, vs. , have to be specified a priori. We now describe how the
results obtained on this benchmark set change with the adjustment of parameters

and nu. In our experiments, we kept all remaining parameters fixed, with C
and the width 2s2 in k(x x ) exp( x x 2 (2s2)) chosen as in [482]: we used
2s2 0 3 N, where N 13 is the input dimension, and C m 10 50 (the original
value of 10 was corrected since in the present case, the maximal y-value is 50 rather
than 1). We performed 100 runs, where each time the overall set of 506 examples
was randomly split into a training set of m 481 examples and a test set of 25
examples (cf. [529]). Table 9.3 shows that over a wide range of (recall that only
0 1 makes sense), we obtained performances which are close to the best
performances that can be achieved using a value of selected a priori by looking
at the test set.6 Finally, note that although we did not use validation techniques
to select the optimal values for C and 2s2, the performances are state of the art:
Stitson et al. [529] report an MSE of 7 6 for -SVR using ANOVA kernels (cf. (13.13)
in Section 13.6), and 11 7 for Bagging regression trees. Table 9.3 also shows that in
this real-world application, can be used to control the fractions of SVs and errors.

Time series prediction is a field that often uses regression techniques. The stan-Time Series
Prediction

6. For a theoretical analysis of how to select the asymptotically optimal for a given noise
model, cf. Section 3.4.4.
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dard method for writing a time series prediction problem in a regression esti-
mation framework is to consider the time series as a dynamical system and to
try to learn an attractor. For many time series z(t), it is the case that if N
and 0 are chosen appropriately, then z(t) can be predicted rather well from
(z(t ) z(t N )) N . We can thus consider a regression problem where
the training set consists of the inputs (z(t ) z(t N )) and outputs z(t), for
a number of different values of t. Several characteristics of time series prediction
make the problem hard for this naive regression approach. First, time series are
often nonstationary — the regularity underlying the data changes over time. As a
consequence, training examples that are generated as described above become less
useful if they are taken from the distant past. Second, the different training exam-
ples are not iid, which is one of the assumptions on which the statistical learning
model underlying SV regression is based.

Nevertheless, excellent results have been obtained using SVR in time series
problems [376, 351]. In [376], a record result was reported for a widely studied
benchmark dataset from the Santa Fe Institute. The study combined an -SVR with
a method for segmenting the data, which stem from a time series that switches be-
tween different dynamics. SVR using -insensitive loss or Huber loss was found to
significantly outperform all other results on that benchmark. Another benchmark
record, on a different problem, has recently been achieved by [97]. To conclude,
we note that SV regression has also successfully been applied in black-box system
identification [216].

9.7 Summary

In this chapter, we showed how to generalize the SV algorithm to regression
estimation. The generalization retains the sparsity of the solution through use
of a SV expansion, exploits the kernel trick, and uses the same regularizer as its
pattern recognition and single-class counterparts. We demonstrated how to derive
the dual problems for a variety of loss functions, and we described variants of
the algorithm. The LP-variant uses a different regularizer, which leads to sparse
expansions in terms of patterns which no longer need to lie on the edge of the -
tube; the -variant uses the same regularizer, but makes the loss function adaptive.
The latter method has the advantage that the number of outliers and SVs can
be controlled by a parameter of the algorithm, and, serendipitously, that the -
parameter, which can be hard to set, is abolished.

Several interesting topics were omitted from this chapter, such as Density Esti-
mation with SVMs [591, 563]. In this case, we make use of the fact that distribution
functions are monotonically increasing, and that their values can be predicted with
variable confidence which is adjusted by selecting different values of in the loss
function. We also omitted the topic of Dictionaries, as introduced in the context of
wavelets by [104] to allow a large class of basis functions to be considered simul-
taneously, for instance kernels with different widths. In the standard SV case, this
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can only be achieved by defining new kernels as linear combinations of differently
scaled kernels. This is due to the fact that once a regularization operator is cho-
sen, the solution minimizing the regularized risk function has to expanded into
the corresponding Green’s functions of P P (Chapter 4). In these cases, a possible
way out is to resort to the LP version (Section 9.4). A final area of research left out
of this chapter is the problem of estimating the values of functions at given test
points, sometimes referred to as transduction [103].

9.8 Problems

9.1 (Product of SVR Lagrange Multipliers [561] ) Show that for 0, the solution
of the SVR dual problem satisfies

i i 0 (9.58)

for all i 1 m. Prove it either directly from (9.17), or from the KKT conditions.
Show that for 0, we can always find a solution which satisfies (9.58) and which is

optimal, by subtracting min i i from both multipliers.
Give a mechanical interpretation of this result, in terms of forces on the SVs (cf.

Chapter 7).

9.2 (SV Regression with Fewer Slack Variables ) Prove geometrically that in SV
regression, we always have i i 0. Argue that it is therefore sufficient to just introduce
slacks i and use them in both (9.9) and (9.10). Derive the dual problem and show that it
is identical to (9.17) except for a modified constraint 0 i i C. Using the result of
Problem 9.1, prove that this problem is equivalent to(9.10).

Hint: although the number of slacks is half of the original quantity, you still need both
i and i to deal with the constraints.

9.3 ( -Property from the Primal Objective Function ) Try to understand the -
property from the primal objective function (9.31). Assume that at the point of the solution,

0, and set ( ) (w ) equal to 0.

9.4 (One-Sided Regression ) Consider a situation where you are seeking a flat func-
tion that lies above all of the data points; that is, a regression that only measures errors
in one direction. Formulate an SV algorithm by starting with the linear case and later
introducing kernels. Generalize to the soft margin case, using the -trick. Discuss the ap-
plicability of such an algorithm. Also discuss how this algorithm is related to -SVR using
different values of for the two sides of the tube.

9.5 (Basis Pursuit ) Formulate a basis pursuit variant of SV regression, where, start-
ing from zero, SVs are added iteratively in a greedy way (cf. [577]).

9.6 (SV Regression with Hard Constraints ) Derive dual programming problems for
variants of -SVR and -SVR where all points are required to lie inside the -tubes (in
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other words, without slack variables i). Discuss how they relate to the problems that can
be obtained from the usual duals by letting the error penalization C tend to infinity.

9.7 (Modulus of Continuity vs. Margin ) Discuss how the -margin (Definition 9.1)
is related (albeit not identical) to the modulus of continuity of a function: given 0,
the latter measures the largest difference in function values which can be obtained using
points within a distance in E.

9.8 (Margin of Continuous Functions [481] ) Give an example of a continuous func-
tion f for which m ( f ) is zero.7

9.9 (Margin of Uniformly Continuous Functions [481] ) Prove that m ( f ) (Defini-
tion 9.1) is positive for all 0 if and only if f is uniformly continuous.8

9.10 (Margin of Lipschitz-Continuous Functions [481] ) Prove that if f is Lipschitz-
continuous, meaning that if there exists some L 0 such that for all x x E,

f (x) f (x ) G L x x E, then m 2
L

9.11 (SVR as Margin Maximization [481] ) Suppose that E (Definition 9.1) is en-
dowed with a dot product (generating the norm E). Prove that for linear functions
(9.2), the margin takes the form m ( f ) 2

w Argue that for fixed 0, maximizing the
margin thus amounts to minimizing w , as done in SV regression with hard constraints.

9.12 ( -Margin and Canonical Hyperplanes [481] ) Specialize the setting of Prob-
lem 9.11 to the case where x1 xm , and show that m1( f ) 2

w is equal to
(twice) the margin defined for Vapnik’s canonical hyperplane (Definition 7.1). Argue
that the parameter is superfluous in pattern recognition.

9.13 (SVR for Vector-Valued Functions [481] ) Assume E N . Consider linear
functions f (x) Wx b with W being an N N matrix, and b N . Give a lower
bound on m ( f ) in terms of a matrix norm compatible [247] with E, using the solution
of Problem 9.10.

Consider the case where the matrix norm is induced by E, which is to say there exists
a unit vector z E such that Wz E W . Give an exact expression for m ( f ).

Show that for the Hilbert-Schmidt norm W 2 ∑N
i j 1 W2

i j, which is compatible with
the vector norm 2, the problem of minimizing W subject to separate constraints for
each output dimension separates into N regression problems.

7. A function f : E G is called continuous if for every 0 and x E, there exists an 0
such that for all x E satisfying x x E , we have f (x) f (x ) G .
8. A function f : E G is called uniformly continuous if for every 0 there exists an 0
such that for all x x E satisfying x x E , we have f (x) f (x ) G .
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Try to conceive more interesting cases where the regression problems are coupled.9

9.14 (Multi-Class Problems ) Try to generalize m ( f ) to multi-class classification
problems, and use it to conceive useful margin maximization algorithms for this case.

9.15 (SV Regression With Overall -Insensitive Loss ) Instead of (9.5), consider
the objective function

1
2

w 2 C
1
m

m

∑
i 1

yi f (xi) (9.59)

Note that this allows for an overall 1 error of which is “for free.” Therefore, poor
performance on some of the points can, to some extent, be compensated for by high
accuracies on other points (Figure 9.14). Show that this leads to the kernelized dual
problem of maximizing

W( ( ) )
m

∑
i 1

( i i)yi
1
2

m

∑
i j 1

( i i)( j j)k(xi x j) (9.60)

subject to
m

∑
i 1

( i i ) 0 0 ( )
i m

0 C (9.61)

Hint: Introduce slacks ( )
i 0 which measure the deviation at each point, and put an -

insensitive constraint on their sum. Introduce another slack 0 for allowing violations
of that constraint, and penalize C in the primal objective function.10

9.16 (Computation of and b in -SVR ) Suppose i and j are the indices of two
points such that 0 i C m and 0 j C m (“in-bound SVs”). Compute and
b by exploiting that the KKT conditions imply (9.32) and (9.33) become equalities with

i 0 and j 0.

9.17 (Parametric -SVR Dual ) Derive the dual optimization problem of -SVR with
parametric loss models (Section 9.5).

9.18 (Parametric -Property ) Prove Proposition 9.5.

9.19 (Heteroscedastic Noise ) Combine -SVR using parametric tubes with a vari-
ance (e.g., [488]) or quantile estimator (Section 9.3) to construct a SVR algorithm that can
deal with heteroscedastic noise.

9. Cf. also Chapter 4, where it is shown that under certain invariance conditions, the
regularizer has to act on the output dimensions separately and identically (that is, in a scalar
fashion). In particular it turns out that under the assumption of quadratic homogeneity and
permutation symmetry, the Hilbert-Schmidt norm is the only admissible norm.
10. This problem builds on joint work with Bob Williamson.
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Figure 9.14 Solid line: SVR with overall -insensitive loss, dashed lines: standard -SVR,
with tube. m 25 data points were generated as follows: x-values drawn from uniform
distribution over [ 3 3], y-values computed from y sin( x) ( x); to create two outliers,
the y values of two random points were changed by 1. The SV machine parameters were

0 1 C 10000. For this value of C, which is essentially the hard margin case, the original
SVM does a poor job as it tries to follow the outliers. The alternative approach, with a value
of adjusted such that the overall 1 error is the same as before, does better, as it is willing
to “spend” a large part of its on the outliers.

9.20 (SV Regression using and ) Try to come up with a formulation of SV re-
gression which uses and rather than C and ( -SVR) or C and ( -SVR).

9.21 ( -SV Regression with Huber’s Loss Function ) Try to generalize -SV re-
gression to use loss functions other than the -insensitive one, such as the Huber loss,
which is quadratic inside the -tube and linear outside (cf. Chapter 3).

Study the relationship between and the breakdown point of the estimator [251].

9.22 (Relationship to “Almost Exact Interpolation” ) Discuss the relationship
between SVR and Powell’s algorithm for interpolation with thin plate spline kernels [422].
Devise a variant of Powell’s algorithm that uses the -insensitive loss.



 

10 Implementation

This chapter gives an overview of methods for solving the optimization problems
specific to Support Vector Machines. Algorithms specific to other settings, such
as Kernel PCA and Kernel Feature Analysis (Chapter 14), Regularized Principal
Manifolds (Chapter 17), estimation of the support of a distribution (Chapter 8),
Kernel Discriminant Analysis (Chapter 15), or Relevance Vector Machines (Chap-
ter 16) can be found in the corresponding chapters. The large amount of code and
number of publications available, and the importance of the topic, warrants this
separate chapter on Support Vector implementations. Moreover, many of the tech-
niques presented here are prototypical of the solutions of optimization problems
in other chapters of this book and can be easily adapted to particular settings.

Due to the sheer size of the optimization problems arising in the SV setting weOverview
must pay special attention to how these problems can be solved efficiently. In Sec-
tion 10.1 we begin with a description of strategies which can benefit almost all cur-
rently available optimization methods, such as universal stopping criteria, caching
strategies and restarting rules. Section 10.2 details low rank approximations of the
kernel matrix, K m m . These methods allow the replacement of K by the outer
product ZZ of a “tall and skinny” matrix Z m n where n m. The latter can
be used directly in algorithms whose speed improves with linear Support Vector
Machines (SMO, Interior Point codes, Lagrangian SVM, and Newton’s method).

Subsequently we present four classes of algorithms; interior point codes, sub-
set selection, sequential minimization, and iterative methods. Interior Point meth-
ods are explained in Section 10.3. They are some of the most reliable methods for
moderate problem sizes, yet their implementation is not trivial. Subset selection
methods, as in Section 10.4, act as meta-algorithms on top of a basic optimiza-
tion algorithm by carving out sets of variables on which the actual optimization
takes place. Sequential Minimal Optimization, presented in Section 10.5, is a spe-
cial case thereof. Due to the choice of only two variables at a time the restricted
optimization problem can be solved analytically which obviating the need for an
underlying base optimizer. Finally, iterative methods such as online learning, gra-
dient descent, and Lagrangian Support Vector Machines are described in Section
10.6. Figure 10.1 gives a rough overview describing under which conditions which
optimization algorithm is recommended.

This chapter is intended for readers interested in implementing an SVM them-Prerequisites
selves. Consequently we assume that the reader is familiar with the basic concepts
of both optimization (Chapter 6) and SV estimation (Chapters 1, 7, and 9).
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SVM
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Figure 10.1 A decision tree for selecting suitable optimization algorithms. Most kernel
learning problems will be batch ones (for the online setting see Section 10.6.3). For small
and medium sized problems, that is as long as the kernel matrix fits into main memory,
an interior point code is recommended, since it produces optima of very high quality. For
larger problems approximations are required which leads to sparse greedy approximation
schemes or other reduced set methods. An alternative strategy, which is particularly attrac-
tive if the size of the final kernel expansion is not important, can be found in subset selection
methods such as chunking and SMO.
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Knowledge of Lagrangians, duality, and optimality conditions (Section 6.3.1) is
required to understand both the stopping rules in more detail and the section on
interior point methods. Essentially, this chapter builds on the general exposition
of Section 6.4. In addition, some of the methods from subset approximation rely
on the randomized optimization concepts of Section 6.5. A basic understanding of
fundamental concepts in numerical analysis, for example the notion of a Cholesky
decomposition, will also prove useful, yet it is not an essential requirement. See
textbooks [530, 247, 207, 46] for more on this topic.

Note that in this chapter we will alternate between the and the C-formulationNotation Issues
(see Section 7.5), for different algorithms. This is due to the fact that some algo-
rithms are not capable of treating the -formulation efficiently. Furthermore, the
C-formulation differs from the one of minimizing the regularized risk functional
insofar as we minimize

C
m

∑
i 1

c(xi yi f (xi)) Ω[ f ] (10.1)

rather than

1
m

m

∑
i 1

c(xi yi f (xi)) Ω[ f ] (10.2)

We can transform one setting into the other via C 1
m . The C notation is used in

order to be consistent with the published literature on SV optimization algorithms.

10.1 Tricks of the Trade

We start with an overview of useful “tricks,”; modifications from which almost any
algorithm will benefit. For instance, techniques which are useful for speeding up
training significantly or which determine when the algorithm should be stopped.

This section is intended both for the practitioner who would like to improve an
existing SV algorithm and also for readers new to SV optimization, since most of
the tools developed prove useful in the optimization equations later. We present
three tricks; a practical stopping criterion, a restart method, and an overview of
caching strategies.

10.1.1 Stopping Criterion

It would be ideal if we always were able to obtain the solution by optimization
methods (e.g., from Section 6.4). Unfortunately, due to the size of the problem, this
is often not possible and we must limit ourselves to approximating the solution by
an iterative strategy.

Several stopping criteria have been suggested regarding when to stop training
a Support Vector Machine. Some of these focus mainly on the precision of the
Lagrange multipliers i [266, 409, 494], whereas others [514, 459] use the proximity
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of the values of the primal and dual objective functions. Yet others stop simply
when no further improvement is made [398].

Before we develop a stopping criterion recall that ultimately we want to find a
solution f (x) w Φ(x) b that minimizes one of the regularized risk functionals
described below. In the case of classification,

minimize
w

C
m

∑
i 1

c( i)
1
2

w 2
m

∑
i 1

c( i)
1
2

w 2

subject to yi f (xi) 1 i or yi f (xi) i

i 0 i 0

(10.3)

(the right half of the equations describes the analogous setting with the -
parameter), similarly, for regression,

minimize
w

C
m

∑
i 1

c( i) c( i )
1
2

w 2 C
m

∑
i 1

c( i) c( i )
1
2

w 2

subject to f (xi) yi i or f (xi) yi i

f (xi) yi i f (xi) yi i

i i 0 i i 0

(10.4)

This means that ultimately not the Lagrange multipliers i but rather w, or only
the value of the primal objective function, matters. Thus, algorithms [266, 290,
291, 398] which rely on the assumption that proximity to the optimal parametersProximity in

Parameters
Proximity in
Solution

will ensure a good solution may not be using an optimal stopping criterion. In
particular, such a criterion may sometimes be overly conservative, especially if the
influence of individual parameters on the final estimate is negligible. For instance,
assume that we have a linear dependency in the dual objective function. Then
there exists a linear subspace of parameters which would all be suitable solutions,
leading to identical vectors w. Therefore, convergence within this subspace may
not occur and, even if it does, it would not be relevant to the quality of the solution.

What we would prefer to have is a way of bounding the distance between the
objective function at the current solution f and at fopt. Since (10.3) and (10.4) are
both constrained optimization problems we may make use of Theorem 6.27 and
lower bound the values of (10.3) and (10.4) via the KKT Gap. The advantage is
that we do not have to know the optimal value in order to assess the quality of the
approximate solution. The following Proposition formalizes this connection.

Proposition 10.1 (KKT-Gap for Support Vector Machines) Denote by f the (possi-
bly not optimal) estimate obtained during a minimizing procedure of the optimization
problem (10.3) or (10.4) derived from the regularized risk functional Rreg[ f ]. Further, de-
note by fopt the minimizer of Rreg[ f ]. Then under the condition of dual feasible variables
(namely that the equality and box constraints are satisfied), the following inequality holds:

Rreg[ f ] Rreg[ f ] Rreg[ f ]
1

Cm
Gap[ f ] (10.5)

where Gap[ f ] is defined as follows:
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1. In the case of classification with C-parametrization

Gap[ f ]
m

∑
j 1

max(0 1 y j f (x j))C j
c̃(max(0 1 y j f (x j))) j(y j f (x j) 1)

m

∑
j 1

C max(0 1 y j f (x j)) j(y j f (x j) 1) (10.6)

2. For classification in the -formulation

Gap[ f ]
m

∑
j 1

max(0 y j f (x j)) j(y j f (x j) ) (10.7)

3. For -regression, where j max(0 yi f (xi) ) and j max(0 f (xi) yi ),

Gap[ f ]
m

∑
j 1

jC j
c̃( j) j C

j
c̃( j ) j( f (x j) y j) j ( f (x j) y j)

m

∑
j 1

C j C j j( f (x j) y j) j ( f (x j) y j) (10.8)

4. In the -formulation the gap is identical to (10.8), with the only difference being that
C 1 and that is a variable of the optimization problem.

Here 1 is a constant in the C-formulation and C 1 is one in the -formulation.
For regression we denote by c̃( ) the nonzero branch of c(xi yi f (xi)) which for the -
insensitive regression setting becomes c̃( ) . Finally, note that in the -regression
formulation, is a variable.

Stopping
Criterion and
Significant
Number of
Figures

Such a lower bound on the minimum of the objective function has the added
benefit that it can be used to devise a stopping criterion. We simply use the same
strategy as in interior point codes (Section 6.4.4) and stop when the relative size of
the gap is below some threshold , that is, if

Gap[ f ]
Rreg[ f ] Rreg[ f ] Gap

2
(10.9)

Proof All we must do is apply Theorem 6.27 by rewriting (6.60) in terms of the
currently used expressions and subsequently find good values for the variables
that have not been specified explicitly. This will show that the size of the KKT-gap
is given by (10.6), (10.7), and (10.8).

The first thing to note is that free variables do not contribute directly to the
size of the KKT gap provided the corresponding equality constraints in the dual
optimization problem are satisfied. Therefore it is sufficient to give the proof only
for the C-parametrization — the -parametrization simply uses an additional
equality constraint due to an extra free variable.

Rewriting (6.60) in terms of the SV optimization problem means that now w and
are the variables of the optimization problem and xi yi are merely constants. We

review the constraints,

0 i yi f (xi) and 0 i (classification) (10.10)
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0 f (xi) yi i and 0 i (regression)

0 f (xi) yi i and 0 i

(10.11)

Since the optimizations take place in dual space (the space of the corresponding
Lagrange multipliers i i), we can use the latter directly in our bound. What
remains to be done is to find i, since f is determined by i. The constraint imposed
on i is that f and the corresponding i satisfy the dual feasibility constraints
(6.53). We obtain

j
L( f )

j
C

m

∑
i 1

c̃( i)
1
2

w 2
m

∑
i 1

i 1 i yi f (xi) i i

C
j
c̃( j) j j 0 (10.12)

for classification. Now we have to choose j j such that C
j
c̃( j) j j is

satisfied. At the same time we would like to obtain good lower bounds. Hence we
must choose the parameters in such a way that the KKT gap (6.53) is minimal, that
is, all the terms

KKT j : j j j y j f (x j) 1 j (10.13)

C
j
c̃ j j j j y j f (x j) 1 j (10.14)

jC j
c̃( j) j y j f (x j) 1 (10.15)

are minimized. The second term is independent of j and the first term is mono-
tonically increasing with j (since c̃ is convex). The smallest value for j is given
by (10.10). Combining of these two constraints gives

j max(0 1 y j f (x j)) (10.16)

Together (10.16), (10.13), and (6.53) prove the bound for classification. Finally,
substituting c̃( j) j (the soft-margin loss function [40, 111]) yields (10.6). For
regression we proceed analogously. The optimality criteria for j j and j j are

C
j
c̃( j) j j 0 and C

j
c̃( j ) j j 0 (10.17)

In addition, from (6.53), we obtainExplicit
Optimization of
Dual Variables KKT j : j j j j j j f (x j) y j j j f (x j) y j (10.18)

jC j
c( j) j C

j
c( j) j( f (x j) y j) j( y j f (x j)) (10.19)

By similar reasoning as before we can see that the optimal j is given by

j max(0 yi f (xi) ) and j max(0 f (xi) yi ) (10.20)

which completes the proof.

The advantage of (10.6) and (10.8) is that they can be computed in O(m) time pro-
vided that the function values f (xi) are already known. This means that conver-
gence checking can be done for almost no additional cost with respect to the over-
all cost of the training algorithm.
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An important thing to remember is that for algorithms which minimize only theNon-monotonic
Gap Size dual or only the primal objective function the size of the gap may grow between

optimization steps. This is since an improvement in the primal objective does
not necessarily imply an improvement in the dual and vice versa. One way to
overcome this problem (besides a redesign of the optimization algorithm which
may be out of question in most cases) is to note that it immediately follows from
(10.5) that

min
i

Rreg[ fi] Rreg[ fopt] max
i

Rreg[ fi] Gap[ fi] (10.21)

where fi is the estimate at iteration i. In many algorithms such as SMO, where
the dual gap can fluctuate considerably, this leads to much improved bounds
on Rreg[ fopt] compared to (10.5). In experiments a gap-optimal choice of b led to
decreased, but still existing, fluctuations. See also [291, 494] for details how such
an optimal value of b can be found.

10.1.2 Restarting with Different Parameters

Quite often we must train a Support Vector Machine for more than one specific pa-
rameter setting. In such cases it is beneficial to re-use the solution obtained for one
specific parameter setting in finding the remaining ones. In particular, situations
involving different choices of regularization parameter or different kernel widths
benefit significantly from this parameter re-use as opposed to starting from f 0.
Let us analyze the situation in more detail.

Restarting for C: Denote by fC the minimizer of the regularized risk functional
(slightly modified to account for C rather than for )

Rreg[ f C] : C
m

∑
i 1

c(xi yi f (xi)) Ω[ f ] (10.22)

By construction

Rreg fC C Rreg fC C Rreg fC C Rreg[ fC C] for all C C (10.23)

The first inequality follows from the fact that fC is the minimizer of Rreg f C .
The second inequality is a direct consequence of C C, and, finally, the third
inequality is due to the optimality of fC. Additionally, we conclude from (10.22)
that

Rreg fC C Rreg fC C (C C)mRemp fC
C
C

Rreg fC C (10.24)

and thus
C
C

Rreg fC C Rreg fC C Rreg fC C (10.25)

In other words, changes in the regularized risk functional Rreg[ f C] are bounded
by the changes in C. This has two implications; first, it does not make sense to use
an overly fine grid in C when looking for minima of Rreg[ f ]. Second, (10.23) shows
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that for changes of C into C which are not too large it is beneficial to re-use fC

rather than to restart from f 0.
In practice it is often advantageous to start with a solution for large C and keep
on increasing the regularization (decrease C). This has the effect that initially mostDecreasing C
of the i i will be unconstrained. Subsequently, all the variables that have been
found to be constrained will typically tend to stay that way. This can dramatically
speed up the training phase by up to a factor of 20, since the algorithm can focus
on unconstrained variables only. See [502], among others, for experimental details.
In order to satisfy the dual constraints it is convenient to rescale the Lagrange mul-
tipliers in accordance with the change in C. This means we rescale each coefficient
by i

C
C i, where i are the start values when training with C instead of C. Such

a modification leaves the summation constraints intact. See also [288] for further
details on how to adjust parameters for changed values of C.

Restarting for : Gaussian RBF kernels (2.68) are popular choices for Support
Vector Machines. Here one problem is to adapt the width of the kernel suitably.
In [123] it is shown that for the soft-margin loss function the minimizer (and its
RKHS norm) of the regularized risk is a smooth function of .
More generally, if the regularization operator only changes smoothly, we can
employ similar reasoning to that above. Note that in the current case not only
the regularizer but also f itself changes (since we only have a representation of
f via i). Yet, unless the change in is too large, the value of the regularized risk
functional will be smaller than for the default guess f 0, hence it is advantageous
to re-use the old parameters i b.

10.1.3 Caching

A simple and useful trick is to store parts of the kernel matrix Ki j, or also f (xi), for
future use when storage of the whole kernel matrix K is impossible due to memory
constraints. We have to distinguish between different techniques.

Row Cache: This is one of the easiest techniques to implement. Usually we allo-
cate as much space for an mc m matrix as memory is available. Simple caching
strategies as LRU (least recently used — keep only the most recently used rows of
K in the cache and update the oldest rows first) can provide an 80% 90% hit rate
(= fraction of elements found in the cache) with a cache size of 10% of the originalHit Rate
matrix. See, for example, [266, 309, 494, 134] for details. Row cache strategies work
best for sequential update and subset selection methods such as SMO (see Section
10.5). Moreover, we can expect significant improvement via row cache strategies if
the number of non-bound Lagrange multipliers i (0 C) is small, since these are
the parameters revisited many times.

Element Cache: A more fine-grained caching strategy would store individual ele-
ments of K rather than entire rows or columns. This has the additional advantage
that for sparse solutions, where many i 0, possibly all relevant entries Ki j can be
cached [172]. The downside is that the organization of the cache, as, for example,
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a list, is considerably more complex and that this overhead1 may easily outweigh
the improvement in the hit rate in terms of kernel entries.

Function Cache: If only very few Lagrange Multipliers i change per iteration
step, we may update f (x j) (which is useful for the KKT stopping criteria described
in Section 10.1.1) cheaply.
Assume that a set 1 n of Lagrange multipliers is changed (without loss of
generality we pick the first n). Then f (xj) can be rewritten as

f new(x j)
m

∑
i 1

new
i k(xi x j) b f old(x j)

n

∑
i 1

( new
i

old
i )k(xi x j) (10.26)

Note that in order to prevent numerical instabilities building up too quickly, it isNumerical
Precision advisable to update (10.26) in the way displayed rather than computing

f old(x j)
n

∑
i 1

new
i k(xi x j)

n

∑
i 1

old
i k(xi x j)

After several updates, depending on the machine precision, it is best to recalculate
f (x j) from scratch.

10.1.4 Shrinking the Training Set

While it may not always be possible to carry out optimization on a subset of
patterns right from the beginning, we may, as the optimization progresses, drop
the patterns for which the corresponding Lagrange multipliers will end up being
constrained to their upper or lower limits.

If we discard those patterns xi with i 0 this amounts to effectively reduc-
ing the training set (see also Section 10.4.2 for details and equations). This is in
agreement with the idea that only the Support Vectors will influence the decision
functions. There exist several implementations which use such subset selection
heuristics to improve training time [559, 111, 561, 463, 409, 172].

We describe another example of subset methods in Section 10.3 where we ap-
ply subset selection to interior point methods. In a nutshell the idea is that with
decreasing KKT terms (10.13) either the constraint must be satisfied and the corre-
sponding Lagrange multiplier vanishes or the constraint must be met exactly.

Finally, assigning sticky-flags (cf. [85]) to variables at the boundaries also im-Sticky Patterns
proves optimization. This means that once a variable is determined to be bound
constrained it will remain fixed for the next few iterations. This heuristic avoids
oscillatory behavior during the solution process.

1. Modern microprocessor architectures are largely limited by their memory bandwidth
which means that an increased hardware cache miss rate due to non-contiguous storage
of the matrix elements may affect performance quite dramatically. Furthermore such a
strategy will also lead to paging operations of the operating system.
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10.2 Sparse Greedy Matrix Approximation

In the following we describe what can be thought of as another useful trick. The
practical significance warrants a more detailed description however. The reader
only interested in the basic optimization algorithms may skip this section.

Sparse greedy approximation techniques are based on the observation that typ-Low
Dimensional
Approximation is
Sufficient

ically the matrix K has many small eigenvalues which could easily be removed
without sacrificing too much precision.2 This suggests that we could possibly find
a subset of basis functions k(xi x) which would minimize the regularized risk func-
tional Rreg[ f ] almost as well as the full expansion required by the Representer The-
orem (Th. 4.2). This topic will be discussed in more detail in Chapter 18.

10.2.1 Sparse Approximations

In one way or another, most kernel algorithms have to deal with the kernel matrix
K which is of size m m. Unfortunately the cost of computing or of storing the
latter increases with O(m2) and the cost of evaluating the solution (sometimes
referred to as the prediction) increases with O(m). Hence, one idea is to pick some
functions k(x1 ) k(xn ) (for notational convenience we chose the first n, but
this assumption will be dropped at a later stage) with n m such that we can
approximate every single k(xi ) by a linear combination of k(x1 ) k(xn ).
Without loss of generality we assume that x1 xn are the first n patterns of the
set x1 xm . We approximate3

k(xi ) k̃i( ) :
n

∑
j 1

i jk(x j ) (10.27)

Approximation
in Feature Space As an approximation criterion we choose proximity in the Reproducing Kernel

Hilbert Space , hence we choose i j such that the approximation error

k(xi)
n

∑
j 1

i jk(x j )
2

k(xi xi) 2
n

∑
j 1

i jk(xi x j)
n

∑
j l 1

i j ilk(x j xl)

is minimized. An alternative would be to approximate the values of k(xi ) on
X directly. The computational cost of doing the latter is much higher however
(see Problem 10.4 and [514] for details). Since we wish to optimize the overall
approximation quality we have to minimize the total approximation error for all i,

2. This can be seen from the results in Table 14.1.
3. Likewise we could formalize the problem as one of approximating patterns mapped into

feature space; we approximate Φ(xi) by Φ̃(xi) :
m

∑
i 1

i jΦ(xj) and measure the goodness-of-

fit via Φ(xi) Φ̃(xi) 2. For a streamlined notation and to emphasize to fact that we are
approximating a function space we will, however, use the RKHS notation.
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giving

Err( ) :
m

∑
i 1

k(xi ) k̃i
2

m

∑
i 1

Kii 2
n

∑
j 1

i jKi j

n

∑
j j 1

i j i j Kj j (10.28)

Here we use (as before) Ki j : k(xi x j). Since Err( ) is a convex quadratic function
in , all we must do is set the first derivative of Err( ) to zero in order to find
the minimizer of Err( ). Note that in the present case m n is a matrix and
therefore, with some abuse of notation, we will use to denote the derivative
with respect to all matrix elements. The minimizer of (10.28) satisfies

Err( ) 2Kmn 2 Knn 0 (10.29)

Here Kmn is an m n matrix with Kmn
i j Ki j, so Kmn is the left sub-matrix of K.

Likewise Knn n n is the upper left sub-matrix of K. This leads to

opt Kmn(Knn) 1 (10.30)

We can exploit this property in order to determine the minimal approximation
error Err( opt) and properties of the matrix K̃ where K̃i j k̃i k̃ j . The following
theorem holds.

Theorem 10.2 (Properties of k̃ and K̃) With the above definitions and (10.30), the ma-
trices K K̃, and K K̃ are positive definite and

Err( opt) tr K tr K̃ (10.31)

where K̃ Kmn(Knn) 1(Kmn) (Kmn) Knn .

This means that we have an approximation of K in such a way that K̃ is strictly
smaller than K (since K K̃ is positive definite as well) and, furthermore, that the
approximation error in terms of can be computed cheaply by finding tr K tr K̃,
that is by looking at only m elements of the m m matrix K and K̃.

Finally, we obtain a bound on the operator norm of K K̃ by computing the
trace of the difference, since the trace is the sum of all eigenvalues, and the latterBounding Norms
are nonnegative for positive matrices. In particular, for positive definite matrices
K (and their eigenvalues i) we have

K max
i

i K Frob tr KK
m

∑
i 1

2
i

1
2

tr K
m

∑
i 1

i (10.32)

Note that the Frobenius norm K Frob is simply the 2-norm of all coefficients of K.
(For symmetric matrices we may decompose K into its eigensystem via K U ΛU
where U is an orthogonal matrix and Λ is a diagonal matrix. This allows us to write
tr KK tr U ΛUU ΛU tr Λ2.)

Proof We prove the functional form of K̃ first. By construction we have

K̃i j k̃i k̃ j

n

∑
l l 1

il jl k(xl ) k(xl )
n

∑
l l 1

il jl Kll (10.33)
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and, therefore, by construction of

K̃ Knn Kmn(Knn) 1Knn(Knn) 1(Kmn) Kmn(Knn) 1(Kmn)

Next note that for optimal we have (with ki as a shorthand for the vector
(Ki1 Kin))

k(xi ) k̃i
2 Kii 2ki (Knn) 1ki ki (Knn) 1Knn(Knn) 1ki (10.34)

Kii ki (Knn) 1ki Kii K̃ii (10.35)

Summation over i proves the first part of (10.31). What remains is to prove positive
definiteness of K K̃, and K K̃. As Gram matrices both K and K̃ are positive
definite. To prove that K K̃ is also positive definite we show that

K K̃ K̄ where K̄i j : k(xi ) k̃i( ) k(x j ) k̃ j( ) (10.36)

All we have to do is substitute the optimal value of , i.e., Kmn (Knn) 1 into the
definition of K̄ to obtain

K̄ K 2Kmn Knn K Kmn (Knn) 1 Kmn K K̃ (10.37)

Note that (10.36) also means that k(xi ) k̃i( ) k(x j ) k̃ j( ) k(xi ) k(x j )
k̃i( ) k̃ j( ) .

10.2.2 Iterative Methods and Random Sets

While (10.31) can tell us how well we are able to approximate a set of m kernel
functions k(xi ) by a subset of size n, it cannot be used to predict how large
n should be. Let us first assume that we choose to pick the subset of kernel
functions k(xi ) at random to approximate the full set, as suggested in the context
of Gaussian Processes [603]. We will present a more efficient method of choosing
the kernel functions in the next section but, for the moment, assume that the
selection process is completely random.

Given that, for some n, we have already computed the values of (Knn) 1 and
opt (Knn) 1Kmn. For an additional kernel function, say k(xn 1 ) we need to

find a way to compute the values of opt and (Kn 1 n 1) 1 efficiently (since the
difference between Knn and Kn 1 n 1 is only of rank 1 such a change is commonly
referred to as a rank-1 update). We may either do this directly or use a CholeskyRank-1 Update
decomposition for increased numerical stability. For details on the latter strategy
see [423, 530, 247] and Problem 10.5.

Denote by k n the upper right vector Kn 1 1 Kn 1 n of the matrix
Kn 1 n 1 (n 1) (n 1) to be inverted, and : Kn 1 n 1. Then we have

Kn 1 n 1 1 Knn k

k

1
(Knn) 1 1vv 1v

1v 1
(10.38)
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where ( k (Knn) 1k) and v ((Knn) 1k). This means that computing
(Kn 1 n 1) 1 costs O(n2) operations once (Knn) 1 is known. Next we must update

. Splitting Km n 1 into Kmn and k̄ (K1 n 1 Km n 1) yields

Km n 1 Kn 1 n 1 1
(10.39)

Kmn(Knn) 1 1 Kmnv k̄ v 1 Kmnv k̄ (10.40)

Computing (10.39) involves O(mn) operations since Kmn(Knn) 1 is the old value of
for the case of n basis functions and the most expensive part of the procedure.

Computing Kmnv requires only O(mn) operations and the approximation error
Err( ) can be computed efficiently. It is given by

Err( ) tr K tr (Km n 1) tr K
m

∑
i 1

n

∑
j 1

i jKi j (10.41)

Since K̃ Km n 1 we only have to account for the changes in and the addi-
tional row due to Km n 1. Without going into further details one can check that
(10.41) can be computed in O(m) time, provided the previous value of n is already
known.

Overall, successive applications of a rank-1 update method to compute a sparse
approximation using n kernel functions to approximate a set of m incurs a com-
putational cost of O (∑n

n 1 mn ) O(mn2). One can see that this is only a constant
factor worse than a direct calculation. Besides that, the memory footprint of theComputational

Cost algorithm is also only O(mn) which can be significantly smaller than storage of
the matrix K, namely O(m2).

Note the similarity in computational cost between this iterative method and
Conjugate Gradient Descent methods (Section 6.2.4) where the inverse of K was
effectively constructed by building up a n-dimensional subspace of conjugate
directions. The difference is that we never actually need to compute the full matrix
K.4

10.2.3 Optimal and Greedy Selections

We showed that the problem of finding good coefficients can be solved effi-
ciently once a set of basis functions k(x1 ) k(xn ) is available. The problem
of selecting a good subset is the more difficult issue. One can show that even rel-
atively simple problems such as one-target optimal approximation are NP-hard
[381]; we cannot expect to find a solution in polynomial time.

We can take a greedy approach in the spirit of [381, 474] (see Section 6.5.3),
with the difference being that we are not approximating one single target function
but a set of m basis functions. This means that, rather than picking the functions

4. Strictly speaking, it is also the case that conjugate gradient descent does not require
computation of K but only of K for m .
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Figure 10.2 Size of the
residuals log10 tr(K K̃) for
the dataset from the
UCI repository [56]. From
top to bottom: subsets of size
1, 2, 5, 10, 20, 50, 59, 100, 200.
Note that, for subsets of size
50 or more, no noticeable dif-
ference in performance can
be observed. After rescaling
each input individually to
zero mean and unit variance
we used a Gaussian kernel
(2.68) with 2 2 N 13
where N is the dimension
of the data. The size of the
overall matrix was m 3000.

at random, we choose one function at a time depending on which of them will
decrease Err( ) most and add this function to the set of kernels I chosen so far.
Next we recompute the residual Err( ) and continue iterating.

It would be wasteful to compute a full update for and (Kn 1 n 1) 1 for every
possible candidate since all we are interested in is the change in Err( ). Simple
(but tedious) algebra yields that, with the definitions k v, and k̄ of Section 10.2.2,

Err( m n 1) tr K tr m n 1(Km n 1)

tr K tr
Kmn(Knn) 1 1 Kmnv k̄ v

1 Kmnv k̄

Kmn

k̄

Err( mn) 1 Kmnv k̄ 2 (10.42)

Hence, our selection criterion is to find that function k(xı̂ ) for which the decrease
in the approximation error 1 Kmnv k̄ 2 is largest. This method still has a
downside — at every step we would have to test for the m n different remainingProblems with

Naive Greedy
Methods

kernel functions k(xi ) to find which would yield the largest improvement. With
this the cost per iteration would be O(mn(m n)) which is clearly infeasible.

The key trick is not to analyze the complete set of m n functions but to pick a
random subset instead. Section 6.5.1 and in particular Theorem 6.33 tell us that a
random subset of size N 59 is sufficiently large to yield a function k(xı̂ ) whichRandom Subsets
is, with 95% confidence, better than 95% of all other kernel functions.

Figure 10.2 shows that, in practice, subsets of 59 yield results almost as good as
when a much larger set or even the complete dataset is used to find the next basis
function. Note the rapid decay in ln Err( ) ln tr (K K̃).

We conclude this section with the pseudocode (Algorithm 10.1) needed to find
a sparse greedy approximation of K and k(xi ) in the Reproducing Kernel Hilbert
Space . Note that the cost of the algorithm is now O(Nmn2), hence it is of the
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Algorithm 10.1 Sparse Greedy Matrix Approximation (SGMA)

input basis functions ki, bound on residuals
n 0 I [] Kmn 0
repeat

n++
Draw random subset M of size N from [m] I

Select best basis function
for all j M do

v (Knn) 1k
v k

Err( mn) Err( m n 1) 1 Kmnv k̄ 2

end for
Select best ı̂ M and update I I ı̂ .
Update (Kn 1 n 1 ) 1 and m n 1 from (10.38) and (10.39).
Update Err( m n 1)

until Err( m n 1)
output n I Err( m n 1 )

same order as an algorithm choosing kernel functions at random.5

10.2.4 Experiments

To illustrate the performance of Sparse Greedy Matrix Approximation (SGMA) we
compare it with a conventional low-rank approximation method, namely PCA.
The latter is optimal in terms of finite dimensional approximations (see Prob-
lem 10.7), however, it comes at the expense of requiring the full set of basis func-
tions. We show in experiments that the approximation rates when SGMA is used
are not much worse than those obtained with PCA. Experimental evidence also
shows that the generalization performance of the two methods is very similar (see
[513] for more details). Figure 10.3 shows that under various different choices of a
Hilbert space (we varied the kernel width ) the approximation quality obtained
from SGMA closely resembles that of PCA.

Since SGMA picks individual basis functions k(xi ) with corresponding obser-
vations xi we may ask whether the so-chosen xi are special in some way. Figure
10.4 shows the first observations for the USPS dataset of handwritten digits (Gaus-
sian RBF kernels with width 2 2 0 5 N where N 16 16 pixels). Note that
among the first 15 observations (and corresponding basis functions) chosen on the
USPS database, all 10 digits appear at least once. The pair of ones is due to a hori-
zontal shift of the two images with respect to each other. This makes them almost

5. If the speed of prediction is not of utmost importance, random subset selection instead
of the ‘59-trick’ may just be good enough, since it is N 59 times less expensive per basis
function but will typically use only four times as many basis functions. With a run-time
which is quadratic in the number n of basis functions this may lead to an effective speed
up, at the expense of a larger memory footprint.
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Figure 10.3 Size of
the residuals for the

dataset. Top:
size of the residual trace
(log10 tr(K K̃)) for pro-
jection on basis functions
given by the greedy ap-
proximation scheme. Bot-
tom: size of the residuals
(log10 ∑m

j i j) for projection
on subspaces given by
principal component anal-
ysis. In both graphs, from
top to bottom: 2 2 d
0 05 0 1 0 2 0 5 1 2 5 10.

orthogonal to each other in feature space — their bitmaps hardly overlap at all.
It is still an open question how and whether the good approximation qualitiesOpen Problem:

Performance
Guarantee

shown in Figures 10.3 can be guaranteed theoretically (3 orders of magnitude
approximation with fewer than 10% of the basis functions). This need not be of
any concern for the practitioner since he or she can always easily observe when
the algorithm works (yet a theoretical guarantee would be nice to have).

In practice, generalization performance is more important than the question
of whether the initial class of functions can be approximated well enough. As
experimental evidence shows [514] the size of tr (K K̃), that is, the residual
error, is conservative in determining the performance of a reduced rank estimator.
For modest values of approximation, such as 2 orders of magnitude reduction in
tr (K K̃), the performance is as good as the one of the estimator obtained without
approximations. In some cases, such a sparse approximation may provide better
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Figure 10.4 Left to Right, Top to Bottom. Patterns corre-
sponding to the first basis functions. Note that 9 out of 10 dig-
its are chosen among the first 10 patterns and that all patterns
are sufficiently different (or shifted).

performance.
A practical use of SGMA lies in the fact that it allows us to find increasingly

accurate, yet sparse approximations K̃ which can subsequently be used in opti-
mization algorithms as replacements for K. It is also worth noting that the ap-
proximation and training algorithms can be coupled to obtain fast methods that
do not require computation of K. Many methods find a dense expansion first and
only subsequently employ a reduced set algorithm (Chapter 18) to find a more
compact representation.

10.3 Interior Point Algorithms

Interior point algorithms are some of the most reliable and accurate optimization
techniques and are the method of choice for small and moderately sized problems.
We will discuss approximations applicable to large-scale problems in Sections
10.4, 10.5 and 10.6. We assume that the reader is familiar with the basic notions
of interior point algorithms. Details can be found in Section 6.4 and references
therein. In this section we focus on Support Vector specific details.

In order to deal with optimization problems which have both equality con-
straints and box constrained variables, we need to extend the notation of (6.72)
slightly. The following optimization problem is general enough to cover classifica-
tion, regression, and novelty detection:

minimize
t

1
2 Q c

subject to A d

0 u or t u and t 0

(10.43)

Here Q is a square matrix, typically of size m m or (2m) (2m), c t u are
vectors of the same dimension, and A is a corresponding rectangular matrix. The
dual can be found to be

minimize
s z y

1
2 Q d h u s

subject to Q c A h s z 0

s z 0 and h free

(10.44)

Furthermore, we have the Karush-Kuhn-Tucker (KKT) conditions

izi 0 and siti 0 for all i [m] (10.45)
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which are satisfied at optimality.
Note that besides the primal variables and t of the optimization problem

(10.43), also the dual variables, such as s z, and h carry information. Recall the
reasoning of Section 6.3.3, where we showed that the dual-dual of a linear program
is the original linear program. One may exploit this connection in the context of
(10.43) and (10.44), since the latter is similar to the initial problem of minimizing
regularized risks. In particular, the A d stems from the free variables (such as bDual-Dual Trick
or the semiparametric coefficients i). Consequently the dual variables h of (10.44)
agree with b (or the semiparametric coefficients i). In practice this means that
we need not perform any additional calculation in order to obtain b if we use an
interior point code.

10.3.1 Solving the Equations

As in Section 6.4.2 we solve the optimization problem by simultaneously satisfying
primal and dual feasibility conditions and a relaxed version of (10.45). Lineariza-
tion by analogy with (6.82) leads toLinearization

AΔ d A p1

Δ Δt u t p2

QΔ A Δh Δs Δz Q c A h s z d

1
i ziΔ i Δzi

1
i zi

1
i Δ iΔzi : KKT1

t 1
i siΔti Δsi t 1

i si t 1
i ΔtiΔsi : KKT2

(10.46)

Solving for Δt Δz Δs yields

Δt p2 Δ
Δzi KKT1

1
i ziΔ i

Δsi KKT2 t 1
i siΔ i

(10.47)

and the reduced KKT system (see (6.83))

Q diag(t 1s 1z) A

A 0

Δ
Δh

d KKT1 KKT2

p1
(10.48)

Eq. (10.48) is best solved by a standard Cholesky decomposition of the upper
left submatrix and explicit solution for the remaining parts of the linear system.6

For details of the predictor and corrector iteration strategies, the updates of ,Predictor
Corrector
Strategy

6. Pseudocode for a Cholesky decomposition can be found in most numerical analysis
textbooks such as [423]. If Q diag(t 1s 1z) should happen to be ill-conditioned, as
may occur in rare cases during the iterations then it is recommended to use the pseudo-
inverse or the Bunch-Kaufman decomposition [83] as a fall-back option. Linear algebra
libraries such as LAPACK typically contain optimized versions of these algorithms.
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convergence monitoring via the KKT gap and regarding initial conditions we refer
the reader to Section 6.4.

10.3.2 Special Considerations for Classification

We now consider the particular case of SV classification and assign values to
Q c A, and u. For standard SV classification we obtain

Qi j yi y jk(xi x j) where Q m m

c (1 1) where c m

u (C C) ( 1
m

1
m ) where u m

A (y1 ym) where A m

d 0 where b

(10.49)

For -classification (see Section 7.2), the parameters A and d are changed to

A
y1 ym

1 1

d
0

C

(10.50)

In addition, we now can give meaning to the variables t z, and s. For each i there
exists a dual variable zi for which izi 0 as the iteration advances, due to the
KKT conditions. This means that either zi 0 or i 0. The practical consequence
of this is that we can eliminate i before the algorithm converges completely.
All we need do is look at the size of the entries 1

i zi. If they exceed a certain
threshold, say c, we eliminate the corresponding set of variables (ti zi si i) from
the optimization process, since the point will not be a Support Vector (see also
Section 10.4 for details on how the optimization problem changes).Removing

Patterns The advantage is twofold; first, this reduces computational requirements since
the size of the matrix to be inverted decreases. Second, the condition of the re-
maining reduced KKT system improves (large entries on the main diagonal can
worsen the condition significantly) which allows for faster convergence. A similar
reasoning can be applied to ti and si. Again, if t 1

i si this indicates that the
corresponding patterns will be a Support Vector with, however, the coefficient i

hitting the upper boundary ui. Elimination of this variable is slightly more compli-
cated since we have to account for it in the equality constraints A d and update
d accordingly.

As far as computational efficiency is concerned, plain interior point codes with-
out any further modifications, are a good choice for data sets of size up to 103 104

since they are simple to implement, reliable in convergence, and very precise (the
size of the KKT gap is several orders of magnitude smaller than what could be
achieved by SMO or other chunking algorithms). Fast numerical mathematics
packages such as BLAS [316, 145] and LAPACK [11] are crucial in this case though.
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Beyond that, the memory footprint and the computational cost of performing a
Cholesky decomposition of Q is too expensive. We will show in Section 10.3.4
how to overcome this restriction.

10.3.3 Special Considerations for SV Regression

In the generic case we have

Q
K K

K K
where K m m

c (y1 ym y1 ym ) where c 2m

u (C C) ( 1
m

1
m ) where u 2m

A (1 1 1 1) where A 2m

d 0

(10.51)

The constraint matrix A changes analogously to (10.49) if we use regression, that
is, we have two constraints rather than one. Another minor modification allows
us to also deal with Huber’s robust regression. All we need do is define Q as

Q
K D K

K K D
, where D is a positive definite diagonal matrix. Since the

reduced KKT system only modifies Q by adding diagonal terms, we can solve
both Huber’s robust regression and the generic case using identical code.

The key trick in inverting Q and the matrices derived from Q by addition to
the main diagonal is to exploit the redundancy of its off-diagonal elements. By an
orthogonal transformSpeedup via

Orthogonal
Transform O :

1

2

1 1

1 1
(10.52)

one obtains

O QO
2K D D

2
D D

2
D D

2
D D

2

(10.53)

Therefore, the O QO system can be inverted essentially by inverting an m m
matrix instead of a 2m 2m system. “Essentially,” since in addition to the inversion
of 2K D D

2 we must solve for the diagonal matrices D D . The latter is simply
an operation of computational cost O(m). Furthermore, Q 1 O(O QO) 1O .

All other considerations are identical to those for classification. Hence we can
use the slightly more efficient matrix inversion with (10.53) as a drop-in replace-
ment of a more pedestrian approach. This is the additional advantage we can gain
from a direct implementation instead of using an off the shelf optimizer such as
LOQO [556] or CPLEX [117]; in general the latter will not be able to exploit the
special structure of Q.

Finally, note that by solving the primal and dual optimization problem simulta-Obtaining b,
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neously we also compute parameters corresponding to the initial SV optimization
problem. This observation is useful as it allows us to obtain the constant term b
directly, namely by setting b h. See Problem 6.13 for details.

10.3.4 Large Scale Problems

The key stumbling block encountered in scaling interior point codes up to larger
problems is that Q is of the size of m. Therefore, the cost of storing or of inverting Q
(or any matrices derived from it) is prohibitively high. A possible solution to large
problems is to use an efficient storage method for Q by low rank approximations.

Linear Systems Assume for a moment that we are using a linear SV kernel only,Using Low Rank
namely k(x x ) x x . In this case K XX where X m n is (with slight abuse
of notation) the matrix of all the training patterns, that is Xi j (xi) j. Ferris and
Munson [168] use this idea to find a more efficient solution for a linear SVM. They
employ the Sherman-Woodbury-Morrison formula [207] (see also Section 16.4.1
for further applications) which gives

(V RHR ) 1 V 1 V 1R(H 1 R V 1R) 1 R V 1 (10.54)
Swapping Data
to Disk to invert Q diag(t 1s 1z) efficiently (see Problem 10.10). In particular they

use out-of-core storage of the data (i.e. storage on the hard disk) in order to be able
to deal with up to 108 samples.

Nonlinear Systems For nonlinear SVMs, unfortunately, an application of the
same technique is not directly feasible since storage requirements for K are enor-
mous. But we can rely on the matrix approximation techniques of Section 10.2Approximation

by Low Rank
Matrix

and approximate K by K̃ Kmn(Knn) 1(Kmn) . We only give the equations for SV
classification where Q K. The extension to regression is straightforward — all
we must do is apply the orthogonal transform (10.53) beforehand. The problem is
then solved in O(mn2) time since

Kmn(Knn) 1(Kmn) D
1

(10.55)

D 1 D 1Kmn Knn (Kmn) DKmn
1

(Kmn) D 1

The expensive part is the matrix multiplications with Kmn and the storage of Kmn.
As before, in the linear case, we resort to out-of-core storage (we write the matrix
Kmn to disk once it has been computed). By this we obtain a preliminary solution
using a subset consisting of only n basis functions.

Iterative Improvement If further precision is required we need to decrease the
size of the problem by eliminating patterns for which the corresponding value
of can be reliably predicted. We can do this by dropping those patterns which
have the largest distance from the boundary (either with i 0 or i at the upper
constraint). These patterns are equivalent to those with the largest corresponding
dual Lagrange multipliers, since these are least likely to change their value when
we increase the precision of our method (see Section 10.3.2). The reduced size m of
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the training set then allows us to store matrices with larger n and to continue the
optimization on the smaller dataset. This is done until no further minimizationDimension vs.

Patterns Tradeoff of the regularized risk functional Rreg[ f ] is observed, or until the computational
restrictions of the user are met (the maximum number of basis functions we are
willing to use for the solution of the optimization problem is attained).

Parallelization Note that this formulation lends itself to a parallel implementation
of a SV training algorithm since the matrix multiplications can readily be imple-
mented on a cluster of workstations by using matrix manipulation libraries such
as SCALAPACK [144] or BLACS [146].

Stopping Rule Finally, if desired, we could also use the value of the primal ob-
jective function (10.43), namely 1

2 Q c , with K rather than K̃ as an upper
bound for the minimum of (10.43). This is due to Theorem 10.2 which states that

K̃ K . We may not always want to use this bound, since it requires com-
putation of K which may be too costly (but given that it is provided only as a
performance guarantee this may not be a major concern).

10.4 Subset Selection Methods

In many applications the precision of the solution (in terms of the Lagrange
multipliers i) is not a prime objective. In other situations we can reasonably
assume that a large number of patterns will either become SVs with i constrained
to the boundary, or will not become SVs at all. In any of these cases we may
break the optimization problem up into small manageable subproblems and solve
these iteratively. This technique is commonly referred to as chunking, or subset
selection.

10.4.1 Chunking

The simplest chunking idea, introduced in [559], relies on the observation that
only the SVs contribute to the final form of the hypothesis. In other words — if we
were given only the SVs, we would obtain exactly the same final hypothesis as if
we had the full training set at our disposal (see Section 7.3). Hence, knowing the
SV set beforehand and, further, being able to fit it (and the dot product matrix)
into memory, one could directly solve the reduced problem and thereby deal with
significantly larger datasets.

The catch is, that we do not know the SV set before solving the problem. The
heuristic is to start with an arbitrary subset; a first chunk that fits into memory. WeTraining on SVs
then train the SV algorithm on it, keep the SVs, while discarding the non-SV data
in the chunk, and replace it with data on which the current estimator would make
errors (for instance, data lying outside the -tube of the current regression). The
system is then retrained and we keep on iterating until the KKT-conditions are
satisfied for all samples.
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10.4.2 Working Set Algorithms

The problem with chunking is that the strategy will break down on datasets where
the dot-product matrix built from SVs cannot be suitably kept in memory. A
possible solution to this dilemma was given in [398]. The idea is to have only a
subset of the variables as a working set, and optimize the problem with respect
to them while freezing the other variables. In other words, to perform coordinate
descent on subsets of variables. This method is described in detail in [398, 266]
for the case of pattern recognition. Further information can be found in [459], for
example.

In the following we describe the concept behind optimization problems of type
(10.43). Subsequently we will adapt it to regression and classification. Let us
assume that there exists a subset Sw [m], also referred to as the working set, which
is an index set determining the variables i we will be using for optimization
purposes. Next denote by S f [m] Sw the fixed set of variables which will not
be modified in the current iteration. Finally, we split up Q c A and u accordingly
intoSplitting up Q

Q
Qww Q f w

Qw f Q f f
(10.56)

and c (cw c f ), A Aw A f , u (uw u f ). In this case (10.43) reads as

minimize
w

1
2 w Qww w cw Qw f f

1
2 f Q f f f c f f

subject to Aw w d A f f

0 w uw or w tw uw and w tw 0

(10.57)

This means that we recover a standard convex program in a subset of variables,
with the only difference being that the linear constraints and the linear contribu-
tion have to be changed due to their dependency on f . For the sake of complete-
ness we keep the constant offset produced by f but it need not be taken into
account during the actual optimization process.

Minimizing (10.57) with respect to w will also decrease (10.43). In particular,
the amount of progress on the subset is identical to the progress on the whole7.Progress on

Subset
Progress on Full
Set

For these subsets we may use any optimization algorithm we prefer; interior point
codes for example. Algorithm 10.2 contains the details. The main difficulty in
implementing subset selection strategies is how to choose Sw and S f . We will
address this issue in the next section.

Under certain technical assumptions (see [289, 96]) Algorithm 10.2 can be shown
to converge to a global minimum. Several variants of such working set algorithms

7. Such a decrease will always occur when the optimality conditions in (10.57) are not
satisfied and, of course, we choose working-sets with this property.
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Algorithm 10.2 Subset Selection

input kernel k, data X, precision
Initialize i i 0
repeat

Compute coupling terms Qwf f and Af f for Sw.
Solve reduced optimization problem on Sw.
Choose new Sw from variables i i not satisfying the KKT conditions.
Compute bound on the Error in computing the minimum (e.g. by the KKT Gap)

until Error or Sw

have been proposed [284, 266, 398, 459, 108], most of them with slightly different
selection strategies. In the following we focus on the common features among
them and explain the basic ideas. For practical implementations we recommend
the reader look for the most recent information since seemingly minor details in
the selection strategy appear to have a significant impact on the performance. It is
important to also be aware that the performance of these heuristics often depends
on the dataset.

10.4.3 Selection Strategies

Recall Proposition 10.1, and in particular (10.6) and (10.8). For classification, the
terms

j
c(max(0 1 y j f (x j))) and j(y j f (x j) 1) give an upper bound on the

deviation between the current solution and the optimal one. A similar relation
applies for regression.

The central idea behind most selection strategies is to pick those patterns whose
contribution to the size of the KKT Gap (10.13), (10.18) is largest. This is a reason-Contribution to

KKT Gap able strategy since, after optimization over the working set Sw, the correspond-
ing terms of the KKT Gap will have vanished (see Problem 10.11). Unfortunately
though this does not guarantee that the overall size of the KKT gap will diminish
by the same amount, since the other terms KKTi for i S f may increase. Still, we
will have picked the set of variables for which the KKT gap size for the restricted
optimization problem on Sw is largest. Note that in this context we also have to
take the constraint A d into account. This means that we have to select the
working set Sw such that

Ωw : w Aw w d A f f w 0 w C (10.58)
Lower
Dimensional
Subspace

is sufficiently large or, at least, does not only contain one element (see Figure 10.5
for the case of standard SV classification).

As before we focus on classification (the regression case is completely analo-
gous), and in particular on soft margin loss functions (10.6).

KKT Selection Criterion Since max( 0) max(0 ) we can rewrite KKT i

as

KKTi (C i) max(0 1 yi f (xi)) i max(0 yi f (xi) 1) (10.59)
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α1

α2

α1

α2

α1

α2
Figure 10.5 Constraints on the working set Sw in the case of classification. In all cases the
box constraints 0 i C apply. Left: two patterns of different classes result in ( 1) 1

( 1) 2 c. Middle: the same case with c C, thus the only feasible point is (C 0). Right:
two patterns of the same class with 1 2 C.

The size of KKTi is used to select which variables to use for optimization purposes
in the RHUL SV package [459].

Dual Constraint Satisfaction Other algorithms, such as SVMLight [266] or SVM-
Torch [108], see also [502], choose those patterns i in the working set for which

KKTi H(C i) max(0 1 yi f (xi)) H( i) max(0 yi f (xi) 1) (10.60)

is maximal8, where H denotes the Heaviside function;

H( )
1 if 0

0 otherwise
(10.61)

Heaviside
Function As one can see, CKKTi is clearly an upper bound on KKTi, and thus, if in the

process of the optimization ∑i KKTi vanishes, we can automatically ensure that
the KKT gap will also decrease. The only problem with (10.60) is that it may be
overly conservative in the stopping criterion and overestimate the influence of the
constraint on f (xi), when the corresponding constraint on i is almost met.
A quite similar (albeit less popular) selection rule to (10.60) can be obtained from
considering the gradient of the objective function of the optimization problem
(10.43), namely Q c. In this case we want to search in a direction d where
d (Q c) is large.

Primal Constraint Satisfaction Equations (10.59) and (10.60) suggest a third se-
lection criterion, this time based only on the behavior of the Lagrange multipliers

i. Rather than applying the Heaviside function to them we could also apply it to

8. This may not be immediately obvious from the derivations in [266] and [108], since their
reasoning is based on the idea of [618] that we should select (feasible) directions where
the gradient of the objective function is maximal. An explicit calculation of the gradient,
however, reveals that both strategies lead to the same choice of a working set.
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Table 10.1 Subset selection criteria for classification.

KKT gap (C i) max(0 1 yi f (xi)) i max(0 yi f (xi) 1)
Gradient H(C i) max(0 1 yi f (xi)) H( i) max(0 yi f (xi) 1)
Lagrange Multiplier (C i)H(1 yi f (xi)) iH(yi f (xi) 1)

the factors depending on f (xi) directly. Since H(max(0 )) H( ) we obtain

KKTi (C i)H(1 yi f (xi)) iH(yi f (xi) 1) (10.62)

In other words, only those patterns where the KKT conditions are violated and
the Lagrange multipliers i differ from their optimal values by a large amount are
chosen.

Summarizing, we may either select patterns (i) based on their contribution to theSelection
Strategies size of the KKT gap, (ii) based on the size of the gradient of the objective function

at the particular location, or (iii) depending on the mismatch of the Lagrange
multipliers. Table 10.1 summarizes the three strategies. Overall, strategy (i) is
preferred, since it uses the tightest of all three bounds on the minimum of the
objective function.

Feasible Directions In all cases we need to select a subset such that both the
constraints A d and the box constraints on are enforced. A direction e with
Ae 0 and 0 e C for some 0, that is a direction taking only points into
account where the KKT conditions are violated, will surely do. In order to keep
memory requirements low we will only choose a small subset Sw 1 m of
size typically less than 100.

Balanced Sample To obtain a relatively large search space while satisfying A
d, we keep only coordinates di (and corresponding i) at which the gradient pointsBalancing

Samples away from the (possibly active) boundary constraints. Since A, in general, has a
rather simple form (only entries 1 and 1) this requirement can be met by selecting
a direction e where the signs of the corresponding entries in A alternate.
This can mean, for example for classification, that an equal number of positive and
negative samples need be selected. For -SVM we additionally have to balance be-
tween points on either side of the margin within each class. The case of regression
is analogous, with the only difference being that we have two “margins” rather
than one.

Summing up, a simple (and very much recommended) heuristic for subset selec-
tion is to pick directions where the gradient Q c is largest, the KKT conditions
for the corresponding variables are violated, and where the number of samples of
either class and relation to the margin is balanced. This is what is done in [266, 108].
A proof of convergence can be found in [330]. One can show that the patterns se-
lected by the gradient rule are identical to that chosen by (10.60) according to KKTi

(see Problem 10.13).
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10.5 Sequential Minimal Optimization

One algorithm, Sequential Minimal Optimization (SMO), introduced by Platt
[409], puts chunking to the extreme by iteratively selecting subsets of size 2 and
optimizing the target function with respect to them. It has been reported to be sev-
eral orders of magnitude faster on certain data sets (up to a factor of 1000) and
to exhibit better scaling properties (typically up to one order better) than classicalSMO as Special

Case of Subset
Selection

chunking (Section 10.4.1). The key point is that for a working set of 2 the optimiza-
tion subproblem can be solved analytically without explicitly invoking a quadratic
optimizer9.

SMO is one of the most easily implementable algorithms and it has a very be-
nign memory footprint, essentially only of the size of the number of samples. In
Section 8.4, we considered the special case of single-class problems; we now de-
velop the classification and regression cases. This development includes a treat-
ment of pattern dependent regularization and details how the algorithm can be
extended to more general convex loss functions.

The exposition proceeds as follows; first we solve the generic optimization
problem in two variables (Section 10.5.1) and subsequently we determine the value
of the placeholders of the generic problem in the special cases of classification and
regression. Finally we discuss how to adjust b properly and we determine how
patterns should be selected to ensure speedy convergence (Section 10.5.5).

10.5.1 Analytic Solutions

We begin with a generic convex constrained optimization problem in two vari-
ables (for regression we actually have to consider four variables — i i j j ,
however, only two of them may be nonzero simultaneously). By analogy to (10.43)
and (10.57) we haveQuadratic

Program in Two
Variables minimize

i j

1
2

2
i Qii

2
j Qj j 2 i jQi j ci i c j j

subject to s i j

0 i Ci and 0 j Cj

(10.63)

Here ci c j , s 1 , and Q 2 2 are chosen suitably to take the effect
of the m 2 variables that are kept fixed into account. The constants Ci represent

9. Note that in the following we will only consider standard SV classification and regres-
sion, since most other settings (an exception being the single-class algorithm described in
Section 8.4) have more than one equality constraint and would require at least (the number
of equality constraints + 1) variables per iteration in order to make any progress. In such a
case (a) the difficulty of selecting a suitable set of directions would increase significantly and
(b) the computational cost incurred by performing an update in a one-dimensional space
would increase linearly with the number of constraints rendering SMO less attractive. See
also Problem 10.14.
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pattern dependent regularization parameters (as proposed in [331], among others,
for unbalanced observations). Recall that we consider only optimization problems
with one equality constraint. The following auxiliary lemma states the solution of
(10.63).

Lemma 10.3 (Analytic Solution of Constrained Optimization) Assume we have an
optimization problem of type (10.63). Further, denote by

: sc j ci sQj j Qi j (10.64)

: Qii Qj j 2sQi j (10.65)

two auxiliary variables derived from (10.63). Then, for 0 we have

i
L if 0

H otherwise
(10.66)

and for 0 we obtain i min(max(L 1 ) H). The case of 0 never occurs.
Furthermore j s i and L H are defined as

L
max(0 s 1( Cj)) if s 0

max(0 s 1 ) otherwise
(10.67)

H
min(Ci s 1 ) if s 0

max(Ci s 1( Cj)) otherwise
(10.68)

Proof The idea is to remove j and the corresponding constraint from the op-
timization problem and to solve for i. We begin with constraints on i and the
connection between i and j. Due to the equality constraint in (10.63) we have

j s i (10.69)

and additionally, due to the constraints on j,

s i j and thus s i Cj (10.70)

Since Ci i 0 we may combine the two constraints into the constraint H i

L where H and L are given by (10.67) and (10.68). Now that we have determined
the constraints we look for the minimum. Elimination of j s i yieldsReduction to

Optimization
Problem in One
Variable

minimize
i

1
2

2
i (Qii Qj j 2sQi j) i(ci sc j Qi j sQj j)

subject to L i H
(10.71)

We have ignored constant terms independent of i since they do not influence the
location of the minimum. The unconstrained objective function, which can also
be written as 2

2
i i, has its minimum at 1 . In order to ensure that the

solution is also optimal for the constraint i [L H] we only have to “clip” the
unconstrained solution 1 to the interval, i.e. i min(max( 1 L) H). This
concludes the proof.
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During the optimization process it may happen, due to numerical instabilities, that
the numerical value of is negative. In this situation we simply reset 0 and use
(10.66). All that now remains is to find explicit values in the cases of classification
and regression.

10.5.2 Classification

Proposition 10.4 (Optimal Values for Classification) In classification the optimal
values of i and j are given as follows. Denote by Kii Kj j 2yiy jKi j, s yiy j,
and let L H be defined as in

yi y j yi y j

i
L max(0 old

i
old
j Cj)

H min(Ci
old
i

old
j )

L max(0 old
i

old
j )

H min(Ci Cj
old
i

old
j )

We have i min(max( ¯ L H)) and j s( old
i i) old

j . With the auxiliary
definition : yi(( f (x j) y j) ( f (xi) yi)), ¯ is given by

¯

old
i

1 if 0

if 0 and 0

if 0 and 0

(10.72)

This means that the change in i and j depends on the difference between the
approximation errors in i and j. Moreover, in the case that the unconstrained solu-
tion of the problem is identical to the constrained one ( i ¯ ) the improvement in
the objective function is given by 1(( f (x j) y j) ( f (xi) yi))2. Hence we should
attempt to find pairs of patterns (i j) where the difference in the classification er-
rors is largest (and the constraints will still allow improvements in terms of the
Lagrange multipliers).

Proof We begin with . In classification we have ∑m
i 1 yi i 0 and thus yi i

y j j yi
old
i y j

old
j , or equivalently

yiy j i j yi y j
old
i

old
j : and s yi y j (10.73)

Now we turn our attention to Q. From (10.56) we conclude that Qii Kii Qj j Kj j,
and Qi j Qji sKi j. This leads to

Kii Kj j 2Ki j (10.74)

Next we compute ci and c j. Eq. (10.57) leads to

ci 1 yi

m

∑
l i j

lk(xi xl) yi( f (xi) b yi) i Kii jsKi j (10.75)

and similarly for c j. Using yi y js we compute as

yi( f (xi) b yi) iKii jsKi j yi( f (x j) b yj) (10.76)
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jsKj j i Ki j ( i s j)(Ki j Kj j)

yi(( f (x j) y j) ( f (xi) yi)) i (10.77)

Substituting the values of , and into Lemma 10.3 concludes the proof.

10.5.3 Regression

We proceed as in classification. We have the additional difficulty, however, that for
each pair of patterns xi and x j we have four Lagrange multipliers i i j, and

j . Hence we must possibly consider up to three different pairs of solutions10. Let
us rewrite the restricted optimization problem in regression as follows

minimize
i i j j

1
2

i i

j j

Kii Ki j

Ki j Kj j

i i

j j

ci

c j

i i

j j

( i i j j )

subject to 0 l Cl and 0 l Cl for all l i j

( i i ) ( j j ) ( old
i i

old) ( old
j j

old) :

(10.78)

Here ci c j are suitably chosen constants depending solely on the differences i

i and j j . One can check that

ci yi ( f (xi) b Kii( i i ) Ki j( j j )) (10.79)

and c j likewise. We deliberately keep the contribution due to separate since this
is the only part where sums i i rather than differences enter the equations.

As in the classification case we begin with the constraints on i and i . Due
to the summation constraint in the optimization problem we obtain ( i i )

( j j ). Using the additional box constraints on i i of (10.78) leads toEliminating
j j L : max( Cj Ci ) i i min( Cj Ci) : H (10.80)

This allows us to eliminate j j and rewrite (10.78) in terms of : i i ,

minimize 1
2

2(Kii Kj j 2Ki j) ( (Ki j Kj j) ci c j)

( )
1
2

2 (( f (xi) yi) ( f (x j) y j) ( old
i i

old))

( )

subject to L H

(10.81)

10. The number of solutions is restricted to four due to the restriction that i and i (or
analogously j and j ) may never both be nonzero at the same time. In addition, the
constraint that i i j j rules out one of these remaining four combinations.
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Convex, piecewise quadratic function on [−2, 1.5]

Figure 10.6 The minimum of this function occurs at 0 due to the change in .

Here we used the Kii Kj j 2yiy jKi j, as in classification. The objective func-
tion is convex and piecewise quadratic on the three intervals

I : [L min(0 )] I0 : [min(0 ) max(0 )] I : [max(0 ) H] (10.82)

(for 0 the interval I2 vanishes). An example of such a function is given in Figure
10.6. One can check that the unconstrained minimum of the quadratic objective
function (10.81), as defined on the intervals I I0 I , would be given byEffect of

Piecewise
Convex Function

0 ( old
i i

old)
1

(( f (x j) y j) ( f (xi) yi))
2 if I

0 if I0

2 if I

(10.83)

For 0 the same considerations as in classification apply; the optimum is found
on one of the interval boundaries. Furthermore, since (10.78) is convex all we now
have to do is match up the solutions i with the corresponding intervals Ii.

For convenience we start with 0 and I0. If 0 I0 we have found the optimum.
Otherwise we must continue our search in the direction in which 0 exceeds I0.
Without loss of generality assume that this is I . Again, if I we may stop.
Otherwise we simply “clip” to the interval boundaries of I . Now we have to
reconstruct from . Due to the box constraints and the fact that ∑i( i i ) 0
we obtainUpdate is

Independent of b
i max(0 ) j max(0 )

i max(0 ) j max(0 )
(10.84)

In order to arrive at a complete SV regression or classification algorithm, we still
need a way of selecting the patterns xi x j and a method specifying how to update
the constant offset b efficiently. Since most pattern selection methods use b as
additional information to select patterns we will start with b.



310 Implementation

10.5.4 Computing the Offset b and Optimality Criteria

We can compute b by exploiting the KKT conditions (see Theorem 6.21). For
instance in classification; at the solution, the margin must be exactly 1 for Lagrange
multipliers for which the box constraints are inactive. We obtain

yi f (xi) yi( w Φ(x) b) 1 for i (0 Ci) (10.85)

and likewise for regressionComputing b via
KKT Conditions

f (xi) w Φ(x) b yi for i (0 Ci) (10.86)

f (xi) w Φ(x) b yi for i (0 Ci ) (10.87)

Hence, if all the Lagrange multipliers i were optimal, we could easily find b by
picking any of the unconstrained i or i and solving (10.85), (10.86), or (10.87).

Unfortunately, during training, not all Lagrange multipliers will be optimal,
since, if they were, we would already have obtained the solution. Hence, obtaining
b by the aforementioned procedure is not accurate. We resort to a technique
suggested by Keerthi et al. [291, 289] in order to overcome this problem.

For the sake of simplicity we start with the classification setting; we first split
the patterns X into the following five sets:Sets of KKT

Violation and
Satisfaction I0 i i (0 Ci) I 0 i i 0 yi 1 I C i i Ci yi 1

I 0 i i 0 yi 1 I C i i Ci yi 1

Moreover we define

ehi : min
i I0 I 0 I C

f (xi) yi

elo : max
i I0 I 0 I C

f (xi) yi
(10.88)

Since the KKT conditions have to hold for a solution we can check that this
corresponds to ehi 0 elo. For I0 we have already exploited this fact in (10.85).
Formally we can always satisfy the conditions for ehi and elo by introducing two
thresholds: bhi b ehi and blo b elo. Optimality in this case corresponds to
bhi blo. Additionally, we may use 1

2 (bup blo) as an improved estimate of b.
The real benefit, however, comes from the fact that we may use ehi and elo to

choose patterns to focus on. The largest contribution to the discrepancy between
ehi and elo stems from that pair of patterns (i j) for whichChoose Large

Discrepancy with
Large Possible
Updates

discrepancy(i j) : ( f (xi) yi) ( f (x j) y j) where
i I0 I 0 I C

j I0 I 0 I C
(10.89)

is largest. This is a reasonable strategy for the following reason: from Proposi-
tion 10.4 we conclude that the potential change in the variables i j is largest if
the discrepancy ( f (xi) yi) ( f (x j) y j) is largest. The only modification is that i
and j are not chosen arbitrarily any more.
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Finally, we obtain another stopping criterion. Instead of requiring that the vi-
olation of the KKT condition is smaller than some tolerance Tol we may require
that elo ehi holds with some tolerance; elo ehi 2 Tol. In addition, we will not
consider patterns where discrepancy(i j) 2 Tol. See [290] for more details and
pseudocode of their implementation.

To adapt these ideas to regression we have to modify the sets I slightly. The
change is needed since we have to add or subtract in a way that is very similar
to our treatment of the classification case, where yi 1 .

1. If i 0 at optimality we must have f (xi) (yi ) 0.

2. For i (0 Ci) we must have f (xi) (yi ) 0.

3. For i Ci we get f (xi) (yi ) 0.

Analogous inequalities hold for i . As before we split the patterns X into several
sets according to

I0 i i (0 Ci) I 0 i i 0 I C i i Ci

I0 i i (0 Ci ) I 0 i i 0 I C i i Ci

and introduce ehi elo byComputing b for
Regression

ehi : min min
i I0 I 0

f (xi) (yi ) min
i I0 I C

f (xi) (yi ) (10.90)

elo : max max
i I0 I C

f (xi) (yi ) max
i I0 I 0

f (xi) (yi ) (10.91)

The equations for computing a more robust estimate of b are identical to the ones
in the classification case. Note that (10.90) and (10.91) are equivalent to the ansatz
in [494], the only difference being that we sacrifice a small amount of numerical
efficiency for a somewhat simpler definition of the sets I (some of them are slightly
larger than in [494]) and the rules regarding which ehi and elo are obtained (the
cases i 0 i Ci and i 0 i Ci are counted twice).

Without going into further details, we may use a definition of a discrepancy like
(10.89) and then choose patterns (i j) for optimization where this discrepancy is
largest. See the original work [494] for more details. Below we give a simpler (and
slightly less powerful) reasoning.

10.5.5 Selection Rules

The previous section already indicated some ways to pick the indices (i j) such
that the decrease in the objective function is maximized. We largely follow the
reasoning of Platt [409, Section 12.2.2]. See also the pseudocode (Algorithms 10.3
and 10.4).

We choose a two loop approach to maximizing the objective function. The outer
loop iterates over all patterns violating the KKT conditions, or possibly over those
where the threshold condition of the previous section (using ehi and elo) is violated.
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Usually we first loop only over those with Lagrange multipliers neither on the
upper nor lower boundary. Once all of these are satisfied we loop over all patterns
violating the KKT conditions, to ensure self consistency on the complete dataset.
This solves the problem of choosing the index i.

It is sometimes useful, especially when dealing with noisy data, to iterate over
the complete KKT violating dataset before complete self consistency on the subsetFull Sweep for

Noisy Data has been achieved. Otherwise considerable computational resources are spent
making subsets self consistent that are not globally self consistent. The trick is
to perform a full sweep through the data once only less than, say, 10% of the non
bound variables change11.

Now to select j: To make a large step towards the minimum, one looks for large
steps in i. Since it is computationally expensive to compute for all possible pairs
(i j) one chooses a heuristic to maximize the change in the Lagrange multipliers

i and thus to maximize the absolute value of the numerator in the expressions
(10.72) and (10.83). This means that we are looking for patterns with large differ-
ences in their relative errors f (xi) yi and f (x j) y j. The index j corresponding to
the maximum absolute value is chosen for this purpose.

If this heuristic happens to fail, in other words if little progress is made by
this choice, all other indices j are looked at (this is what is called “second choiceSecond Choice

Hierarchy hierarchy” in [409]) in the following way.

1. All indices j corresponding to non-bound examples are looked at, searching for
an example to make progress on.

2. In the case that the first heuristic was unsuccessful, all other samples are ana-
lyzed until an example is found where progress can be made.

3. If both previous steps fail, SMO proceeds to the next index i.

For a more detailed discussion and further modifications of these heuristics see
[409] and [494, 291].

10.6 Iterative Methods

Many training algorithms for SVMs or similar estimators can be understood as it-
erative methods. Their main advantage lies in the simplicity with which they can
be implemented. While not all of them provide the best performance (plain gradi-
ent descent in Section 10.6.1) and some may come with restrictions on the scope
of applications (Lagrangian SVM in Section 10.6.2 can be used only for quadratic
soft-margin loss), the algorithms presented in this section will allow practition-
ers to obtain first results in a very short time. Finally, Section 10.6.3 indicates how
Support Vector algorithms can be extended to online learning problems.

11. This modification is not contained in the pseudocodes, however, its implementation
should not pose any further problems. See also [494, 291] for further pseudocodes.
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Algorithm 10.3 Pseudocode for SMO Classification
function TakeStep(i j)

if i j then return 0
s yi yj
if s 1 then

L max(0 i j Cj)
H min(Ci i j)

else
L max(0 i j)
H min(Ci Cj i j)

end if
if L H then return 0

Kii Kjj 2Kij
if 0 then

¯ i
1 yi(( f (xj) yj) ( f (xi) yi))

¯ min(max( ¯ L) H)
else if yi(( f (xj) yj) ( f (xi) yi)) 0 then

¯ H
else

¯ L
end if
if i ¯ ( ¯ i) then return 0

j += s( i ¯ ) and i ¯ (note: x += y means x x y)
Update b
Update f (x1) f (xm)
return 1

end function

function ExamineExample(i)
KKTi H( i) max(0 yi f (xi) 1) H(1 i) max(0 1 yi f (xi))
if KKTi Tol then

if Number of nonzero and non bound i 1 then
Find j with second choice heuristic
if TakeStep(i j) = 1 then return 1

end if
for all j 0 and j Cj (start at random point) do

if TakeStep(i j) = 1 then return 1
end for
for all remaining j do

if TakeStep(i j) = 1 then return 1
end for

end if
return 0

end function

main SMO Classification(k X Y )
Initialize i i 0 and b 0, make X Y global variables
ExamineAll 1
while NumChanged 0 or ExamineAll 1 do

NumChanged 0
if ExamineAll 1 then

for all i do NumChanged += ExamineExample(i)
else

for all i 0 and i Ci do NumChanged += ExamineExample(i)
end if
if ExamineAll 1 then

ExamineAll 0
else if NumChanged 0 then

ExamineAll 1
end if

end while

end main

.
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Algorithm 10.4 Pseudocode for SMO Regression
function TakeStep(i j)

if i j then return 0
( i i ) ( j j )

L max( Cj Ci ) and H min( Cj Ci)
if L H then return 0
l min( 0) and h max( 0)

Kii Kjj 2Kij
if 0 then

0 ( i i ) 1(( f (xi) yi) ( f (xj) yj))
0 2 and 0 2 .

max(min( 0 h) l) (clip 0 to I0)
if h then max(min( H) h)
if l then max(min( l) L)

else if ( f (xi) yi) ( f (xj) yj) 0 then
h

if ( f (xi) yi) ( f (xj) yj) 2 0 then H
else

l
if ( f (xi) yi) ( f (xj) yj) 2 0 then L

end if
if ( i i ) ( i i ) then return 0

i max( 0), i max( 0), and j max(0 ), max(0 )
Update b
Update f (x1) f (xm)
return 1

end function

function ExamineExample(i)
KKTi H( i) max(0 f (xi) (yi )) H( i ) max(0 (yi ) f (xi))

H(Ci i) max(0 (yi ) f (xi)) H(Ci i ) max(0 f (xi) (yi ))
if KKTi Tol then

if Number of nonzero and non bound i 1 then
Find j with second choice heuristic
if TakeStep(i j) = 1 then return 1

end if
for all j 0 and j Cj (start at random point) do

if TakeStep(i j) = 1 then return 1
end for
for all remaining j do

if TakeStep(i j) = 1 then return 1
end for

end if
return 0

end function

main SMO Regression(k X Y )
Initialize i i 0 and b 0
ExamineAll 1
while NumChanged 0 or ExamineAll 1 do

NumChanged 0
if ExamineAll 1 then

for all i do NumChanged += ExamineExample(i)
else

for all i 0 and i Ci do NumChanged += ExamineExample(i)
end if
if ExamineAll 1 then

ExamineAll 0
else if NumChanged 0 then

ExamineAll 1
end if

end while

end main

.
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10.6.1 Gradient Descent

Most of the methods in this chapter are concerned with the dual optimization prob-
lem of the regularized risk functional. It is, however, perfectly legitimate to ask
whether or not a primal optimization approach would also lead to good solutions.
The maximum margin perceptron of Kowalczyk [309] for instance follows such an
approach. Another method which can be understood as gradient descent is Boost-
ing (see [349, 179]).

It is important to keep in mind that the choice of parametrization will have
a significant impact on the performance of the algorithm (see [9] for a discus-
sion of these issues in the context of Neural Networks). We could either choose
to compute the gradient in the function space (thus the Reproducing Kernel
Hilbert Space ) of f , namely f Rreg[ f ], or choose a particular parametrization
f (x) ∑i ik(xi x) and compute the gradient with respect to the parameters i.
Depending on the formulation we obtain different (and variably efficient) algo-
rithms. We also briefly mention how the kernel AdaTron [183] fits into this context.
For convenience of notation we choose the formulation of the regularized risk
functional.

Let us start with gradients in function space. We use the standard RKHS
regularization ([349] and, later, [221] use gradients in the space m

2 induced byGradient in
Function Space the values of f on the training set) terms Ω[ f ] 1

2 f 2 . With the definitions of
(4.1) this yields:

Rreg[ f ]
1
m

m

∑
i 1

c(xi yi f (xi)) 2
f 2 (10.92)

f Rreg[ f ]
1
m

m

∑
i 1

c (xi yi f (xi))k(xi ) f (10.93)

Consequently, we obtain the following update rules for f , given a learning rate Λ,

f f Λ f Rreg[ f ] (1 Λ ) f Λ
m

∑
i 1

c (xi yi f (xi))k(xi ) (10.94)

Here the symbol ‘ ’ means ‘is updated to’. For computational reasons we have
to represent f as a linear combination of functions in a finite dimensional space
(the Representer Theorem of Section 4.2 tells us that m basis functions k(xi x) are
sufficient for this). With the usual expansion f ( ) ∑i ik(xi ) the update rule for
the coefficients becomes

(1 Λ ) Λ Λ( ) where i c (xi yi f (xi)) (10.95)

Distinguishing between the different cases of regression, classification, and classi-
fication with a Boosting cost function [498, 221] we obtain the derivatives as de-
scribed in Table 10.2.

Note that we can obtain update rules similar to the Kernel AdaTron [183] if we
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Table 10.2 Cost functions and their derivatives for -Regression, Soft-Margin Classifica-
tion, and Boosting with an exponential cost function.

c(x y f (x)) c (x y f (x))
Regression

c
f (x) y if f (x) y
y f (x) if y f (x)
0 otherwise

c
1 if f (x) y
1 if y f (x)
0 otherwise

Classification

c
1 y f (x) if y f (x) 1
0 otherwise

c
y if y f (x) 1
0 otherwise

Boosting
c exp( y f (x)) c y exp( y f (x))

modify the loss function c to become

c(x y f (x))
1
2 (1 y f (x))2 if y f (x) 1

0 otherwise.
(10.96)

On a per-pattern basis, this leads to update rules identical to the ones of theAdaTron
AdaTron. In particular, if we combine (10.96) with the online extensions of Section
10.6.3, we fully recover the update rule of the Kernel AdaTron. This means that the
AdaTron uses squared soft margin loss functions as opposed to the standard soft
margin loss of SVMs.12

Rather than a parametrization in function space we may also choose to
start immediately with a parametrization in coefficient space [577, 221]. It is
straightforward to see that, in the case of RKHS regularization as above (hereGradient in

Coefficient Space f 2 K ), we obtain, with the definitions of as in (10.94),

Rreg[ f ]
1
m

K K (10.97)

Λ K ΛK ΛK( ) (10.98)

In other words the updates from (10.95) are multiplied by the kernel matrix K to
obtain the update rules in the coefficient space. This means that we are performing
gradient descent in a space with respect to the metric given by K rather than the
Euclidean metric. The other difference to (10.93) is that it allows us to deal with
regularization operators other than those based on the RKHS norm of f ; Ω[ f ]
∑i i for example, (see Section 4.9.2 and [498]). Table 10.3 gives an overview of
different regularization operators and their gradients.

12. The strategy for computing b is different though. Since b Rreg[ f ]
1
m ∑m

i 1 yic (xi yi f (xi)) we may also update b iteratively if desired, whereas in the
AdaTron we must add a constant offset to the kernel function in order to obtain an update
rule.
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Table 10.3 Gradients of the regularization term.

Ω[ f ] Regularization Gradient wrt.
1
2 f 2 standard SV regularizer K
1
2 f renormalized SV regularizer ( K )

1
2 K

∑m
i 1 i sparsity regularizer (sgn ( 1) sgn( m))

∑m
i 1 f (xi) 2

2 norm on data K K

Since a unit step in the direction of the negative gradient of Rreg[ f ] does not
necessarily guarantee that Rreg[ f ] will decrease, it is advantageous in many casesLine Search
to perform a line-search in the direction of Rreg[ f ], specifically, to seek such
that Rreg f Rreg[ f ] is minimized. Details of how this can be achieved are
in Section 6.2.1, and Algorithm 6.5. Moreover, Section 10.6.3 describes how the
gradient descent approach may be adapted to online learning, that is, stochastic
gradient descent.

We conclude the discussion of gradient descent algorithms by stating a lower
bound on the minimum value of the regularized risk functional [221], which
depends on the size of the gradient in function space.

Theorem 10.5 (Lower Bound on Primal Objective Function) Denote by R emp[ f ] a
convex and differentiable functional on a Hilbert space and consider the regularized risk
functional

Rreg[ f ] Remp[ f ] f 2 where 0 (10.99)

Then, for any f Δ f

Rreg[ f ] Rreg[ f Δ f ]
1
2

Rreg[ f ] 2 (10.100)

Proof We assume that f Δ f is the minimizer of Rreg[ f ], since proving the
inequality for the minimizer is sufficient. Since Remp is convex and differentiable
we know that

Remp[ f ] Remp[ f Δ f ] Δ f Remp[ f ] (10.101)

Therefore we may bound ( f Δ f ) : Rreg[ f ] Rreg[ f Δ f ] by

( f Δ f ) Δ f Remp[ f ] ( f ) ( f Δ f ) (10.102)

It is easy to check that if ( f ) 1
2 f 2, (10.102) is minimized by

Δ f Remp[ f ] f Rreg[ f ] (10.103)

Substituting this back into ( f Δ f ) proves (10.100).

Eq. (10.100) shows that a stopping criterion based on the size of the gradient is a
feasible strategy when minimizing regularized risk functionals.

Gradient descent algorithms are relatively simple to implement but we should



318 Implementation

keep in mind that they often do not enjoy the convergence guarantees of more
sophisticated algorithms. They are useful tools for a first implementation if no
other optimization code is available, however.

10.6.2 Lagrangian Support Vector Machines

Mangasarian and Musicant [348] present a particularly fast and simple algorithm
which deals with classification problems involving squared slacks (this is the same
problem that the AdaTron algorithm also attempts to minimize). Below we show a
version thereof extended to the nonlinear case. We begin with the basic definitions

c(x y f (x))
0 if y f (x) 1

(1 y f (x))2 otherwise
(10.104)

The second modification needed for the algorithm is that we also regularize the
constant offset b in the function expansion, i.e. Ω[ f ] w 2 b2 where f (x)
w (x) b. This reduces the number of constraints in the optimization problem

at the expense of losing translation invariance in feature space. It is still an open
question whether this modification is detrimental to generalization performance.
In short, we have the following optimization problem;

Primal
Optimization
Problem

minimize
w b

1
m

m

∑
i 1

2
i 2

w 2 b2

subject to yi( w (xi) b) 1 i where i 0
(10.105)

By using the tools from Chapter 6 (see also [345, 348]) one can show that the dual
optimization problem of (10.105) is given by

minimize
1
2

m

∑
i j 1

i j yi y j(Ki j 1 m i j)
m

∑
i 1

i

subject to i 0 for all i [m]
(10.106)

Dual
Optimization
Problem

where w ∑m
i 1 yi iΦ(xi), b ∑m

i 1 i, and i m i.
In the following we develop a recursion relation to determine a solution of

(10.105). For convenience we use a slightly more compact representation of the
quadratic matrix in (10.106). We define

Q : diag(y)(K m1 1 1)diag(y) (10.107)

where diag(y) denotes the matrix with diagonal entries yi and 1 is the unit matrix.
Since i are Lagrange multipliers, it follows from the KKT conditions (see Theorem
6.21) that only if the constraints yi( w (xi) b) 1 i of (10.105) are active may
the Lagrange multipliers i be nonzero. With the definition of Q we can write these
conditions as i 0 only if (Q )i 1. Summing over all indices i we have

(Q 1) 0 (10.108)
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Now, if we can find some which are both feasible (they satisfy the constraints
imposed on them) and which also satisfy (Q 1) 0, then we have found a
solution. The key optimization algorithm trick lies in the following lemma [348].

Lemma 10.6 (Orthogonality and Clipping) Denote by a b m two arbitrary vec-
tors. Then the following two conditions are equivalent

a b 0 and a b 0 a (a b) for all 0 (10.109)

See Problem 10.15 for a proof.

Consequently it is a condition on that, for all 0,Rewriting the
KKT Conditions

Q 1 ((Q 1) ) (10.110)

must hold. As previously mentioned [348] a solution satisfying (10.108) is
the minimizer of the constrained optimization problem (10.106). Furthermore,
Lemma 10.6 implies that (10.108) is equivalent to (10.110) for all 0. This sug-
gests an iteration scheme for obtaining whereby

i 1 Q 1(((Q i 1) i) 1) (10.111)

The theorem below shows that (10.111) is indeed a convergent algorithm and that
it converges linearly.

Theorem 10.7 (Global Convergence of Lagrangian SVM [348]) For any symmetric
positive matrix K and Q given by (10.107) under the condition that 0 2 m, the
iteration scheme (10.111) will converge at a linear rate to the solution ¯ and

Q i 1 Q ¯ 1 Q 1 Q i Q ¯ (10.112)

Proof By construction ¯ is a fixed point of (10.111). Therefore we have

Q i 1 Q ¯ (Q i 1 i) (Q ¯ 1 ¯ ) (10.113)

(Q 1)( i ¯ ) (10.114)

1 Q 1 Q i Q ¯ (10.115)

Next we bound the norm of 1 Q 1 and, in particular, we show under which
conditions it is less than 1. By construction we know that the smallest eigenvalue
of Q is at least m and, moreover, Q is a positive matrix. Hence Q 1 is also positive
and its largest eigenvalue is bounded from above by 1

m . Therefore the largest
eigenvalue of 1 Q 1 is bounded from above by 1 1

m and, consequently,
for all 0 2 m the algorithm will converge.

To make practical use of (10.111) on large amounts of data we need to find a way
to invert Q cheaply. Recall Section 10.3.4 where we dealt with a similar problemSherman

Morrison
Woodbury

in the context of interior point optimization codes. Assuming that we can find
a low rank approximation of K, by K̃ Kmn(Knn) 1(Kmn) for example, we may
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replace K by K̃ throughout the algorithm, apply the Sherman-Woodbury-Morrison
formula (10.54) and invert Q approximately.

The additional benefit is that we get a compact representation of the solution
of the classification problem in a small number of basis functions, n. Thus the
evaluation of the solution is much faster than if the full matrix K had been used.
The approximation in this setting ignores the smallest eigenvalues of K, which
will be dominated by the addition of the regularization term m1 in the definition
(10.110) of Q anyway. In analogy to (10.55) we obtain

K̃ m1 1 1
1

(10.116)

Kmn(Knn) 1(Kmn) m1 1 1
1

(10.117)

( m) 11 ( m) 2 Kmn 1 Q 1
red Kmn 1 (10.118)

whereSpeedup for Low
Rank
Approximations Qred

Knn 0

0 1
m Kmn 1 Kmn 1 (10.119)

Likewise, the matrix multiplications by Q can be sped up by the low rank decom-
position of K. Overall, the cost of one update step is O(n2m); significantly less than
O(m3), which would be incurred if we had to invert Q exactly. The same methods
that can be used to implement any interior point method (out-of-core storage of
the matrix Kmn for example) can also be applied to Lagrangian SVM.

For the special case that we have only linear kernels k(x x ) x x , the update
rule becomes particularly simple. Here we can represent K as K X X where X
denotes the matrix of all patterns xi. The MATLAB code (courtesy of MangasarianLinear Kernels
and Musicant) is given in Algorithm 10.5 (in the nonlinear case, we can adapt the
algorithm easily by replacing X with Kmn(Knn)

1
2 , where Kmn and Knn are defined

as in Section 10.2.1).

10.6.3 Online Extensions

Online learning differs from the settings in the other chapters of this book, which
study batch learning, insofar as it assumes that we have a (possibly infinite) stream
of incoming data (xi yi) . The goal is to predict yi and incur as little loss as
possible during the iterations. This goal is quite different from that of minimizing
the expected risk since the distribution from which the data (xi yi) is drawn may
change over time and thus no single estimate f : may be optimal over the
total time (see [32, 54, 378]).

At every step t we could attempt to perform an optimal prediction based on the
minimizer of the regularized risk functional Rreg[ f ] where our training set consists
of (x1 y1) (xt 1 yt 1). Unfortunately this task is completely computationallyIncreasing

Number of
Kernels

infeasible since it would require that we solve an ever-increasing optimization
problem in t variables at every instance. Hence the time required to perform the
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Algorithm 10.5 Linear Lagrangian Support Vector Machines

[ ]

prediction would increase polynomially over time due to the increasing sample
size. This is clearly not desirable.

Another problem arises from the Representer Theorem (Th. 4.2). It states that
the solution is a linear combination of kernel functions k(xi ) centered at the
training points. Assuming that the probability of whether a point will become
a kernel function does not depend on t this shows that, at best, the selection of
basis functions will change while, typically, the number of basis functions selected
will grow without bound (see Problem 10.18). This means that prediction will
also become increasingly expensive and the computational effort is likely to grow
polynomially.

From these two problems we conclude that if we want to use an online setting
we should perform some sort of approximation rather than trying to solve the
learning problem exactly.

One possibility is to project every new basis function k(xt ) onto a set of ex-
isting basis functions, say k(xn1 ) k(xnN ) and find a solution in the so-chosenFixed

Dimensional
Setting

subspace. This is very similar to online learning with a neural network with fixed
architecture. We thus perform learning with respect to the functional

Rreg[ f ] :
1
m

m

∑
i 1

c xi yi

N

∑
j 1

jk(xnj xi) 2

N

∑
j j 1

k(xnj xnj
) j j (10.120)

where f ∑N
i 1 jk(xnj ). Unfortunately the computational cost is at least O(N2)

per iteration since computing the gradient of (10.120) with respect to alreadyComputational
Cost requires a matrix-vector multiplication, no matter how simple we manage to keep
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the sample dependent term 1
m ∑m

i 1 c xi yi f (xi) 13. This shows that any gradient
descent algorithm in a lower dimensional fixed space will exhibit this problem.
Hence, projection algorithms do not appear to be a promising strategy.

Likewise, incremental update algorithms [93] claim to overcome this problem
but cannot guarantee a bound on the number of operations required per iteration.
Hence, we must resort to different methods.

Recently proposed algorithms [194, 242, 214, 329] perform perceptron-like up-
dates for classification at each step. Some algorithms work only in the noise free
case, others do not work for moving targets, and still others assume an upper
bound on the complexity of the estimators. Below we present a simple method
which allows the use of kernel estimators for classification, regression, and nov-
elty detection and which copes with a large number of kernel functions efficiently.

Stochastic Approximation The following method [299] addresses the problem by
formulating it in the Reproducing Kernel Hilbert Space directly and then by
carrying out approximations during the update process. We will minimize theDirect Online

Algorithm ordinary regularized risk functional (4.2); Rreg[ f ] Remp[ f ] 2 f 2 . Since we
want to perform stochastic gradient descent, the empirical error term Remp[ f ] is
replaced by the empirical error estimate at instance (xt yt), namely c(xt yt f (xt)).
This means that at time t we have to compute the gradient of

Rstoch[ f t] : c(xt yt f (xt)) 2
f 2 (10.121)

and then perform gradient descent with respect to Rstoch[ f t]. Here t is either
randomly chosen from 1 m or it is the new training instance observed at
time t. Consequently the gradient of Rstoch[ f t] with respect to f is

f Rstoch[ f t] c (xt yt f (xt))k(xt ) f (10.122)

The update equations are thus straightforward,

f f Λ f Rstoch[ f t] (10.123)

where Λ is the learning rate controlling the size of updates undertaken at
each iteration. We will return to the issue of adjusting ( Λ) at a later stage.

Descent Algorithm Substituting the definition of Rstoch[ f t] into (10.123) we ob-
tain

f f Λ c (xt yt f (xt))k(xt ) f (10.124)

(1 Λ) f Λc (xt yt f (xt))k(xt ) (10.125)

While (10.124) is convenient in a theoretical analysis, it is not directly amenable to

13. If we decide to use the gradient in function space instead then the gradient itself will be
cheap to compute, but projection of the gradient onto the N dimensional subspace will cost
us O(N2) operations.
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computation. For this purpose we have to express f as a kernel expansion

f (x) ∑
i

ik(xi x) (10.126)

where the xi are (previously seen) training patterns. Then (10.126) becomes

t (1 Λ) t Λc (xt yt f (xt)) (10.127)

Λc (xt yt f (xt)) for t 0 (10.128)

i (1 Λ) i for i t (10.129)

Eq. (10.127) means that, at each iteration, the kernel expansion may grow by one
term. Further, the cost of training at each step is not larger than the prediction cost.
Once we have computed f (xt), t is obtained by the value of the derivative of c at
(xt yt f (xt)).
Instead of updating all coefficients i we may simply cache the power series
1 (1 Λ) (1 Λ)2 (1 Λ)3 and pick suitable terms as needed. This is
particularly useful if the derivatives of the loss function c only assume discrete
values, say 1 0 1 as is the case when using the soft-margin type loss functions.

Truncation The problem with (10.127) and (10.129) is that, without any further
measures, the number of basis functions n will grow without bound. This is not
desirable since n determines the amount of computation needed for prediction.
The regularization term helps us here. At each iteration the coefficients i with
i t are shrunk by (1 Λ). Thus, after iterations, the coefficient i will be
reduced to (1 Λ) i.

Proposition 10.8 (Truncation Error) For a loss function c(x y f (x)) with its first
derivative bounded by C and a kernel k with bounded norm k(x ) X, the trunca-
tion error in f incurred by dropping terms i from the kernel expansion of f after
update steps is bounded by Λ(1 Λ) CX. In addition, the total truncation error due to
dropping all terms which are at least steps old is bounded by

f ftrunc

t

∑
i 1

Λ(1 Λ)t iCX 1(1 Λ) CX (10.130)

Here ftrunc ∑t
i t 1 ik(xi ). Obviously the approximation quality increases

exponentially with the number of terms retained.
The regularization parameter can thus be used to control the storage require-
ments for the expansion. Moreover, it naturally allows for distributions P(x y)
that change over time in which case it is desirable to forget instances (xi yi) that
are much older than the average time scale of the distribution change [298].

We now proceed to applications of (10.127) and (10.129) in specific learning sit-
uations. We utilize the standard addition of the constant offset b to the function
expansion, g(x) f (x) b where f and b . Hence we also update b into
b Λ bRstoch[g].

Classification We begin with the soft margin loss (3.3), given by c(x y g(x))
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max(0 1 yg(x)). In this situation the update equations become

( i t b)
((1 Λ ) i yiΛ b Λyi) if yg(xt) 1

((1 Λ ) i 0 b) otherwise.
(10.131)

For classification with the -trick, as defined in (7.40), we also have to take care of
the margin , since there c(x y g(x)) max(0 yg(x)) . On the other hand,
one can show [481] (see also Problem 7.16) that the specific choice of has no
influence on the estimate in -SV classification. Therefore, we may set 1 and
obtain

( i t b )
((1 Λ) i yiΛ b Λyi Λ(1 )) if yg(xt)

((1 Λ) i 0 b Λ ) otherwise.
(10.132)

By analogy to Propositions 8.3 and 7.5, only a fraction of points will be used for
updates. Finally, if we choose the hinge-loss, c(x y g(x)) max(0 yg(x))

( i t b)
((1 Λ ) i yiΛ b Λyi) if yg(xt) 0

((1 Λ ) i 0 b) otherwise.
(10.133)

Setting 0 recovers the kernel-perceptron algorithm. For nonzero we obtain
the kernel-perceptron with regularization.

Novelty Detection Results for novelty detection (see Chapter 8 and [475]) are
similar in spirit. The -setting is most useful here, particularly where the estimator
acts as a warning device (network intrusion detection for example) or when we
would like to specify an upper limit on the frequency of alerts f (x) . The
relevant loss function, as introduced in (8.6), is c(x y f (x)) max(0 f (x))
and usually [475] one uses f rather than f b, where b , in order to avoid
trivial solutions. The update equations are

( i t )
((1 Λ) i Λ Λ(1 )) if f (x)

((1 Λ) i 0 Λ ) otherwise.
(10.134)

Considering the update of we can see that, on average, only a fraction of
observations will be considered for updates. Thus we only have to store a small
fraction of the xi. We can see that the learning rate Λ provides us with a handle
to trade off the cost of the expansion (in terms of the number of basis functionsAdjusting Λ
needed) with the time horizon of the prediction; the smaller Λ, the more patterns
are included since the coefficients i will decay only very slowly. Beyond this
point, further research needs to be done to show how Λ is best adjusted (a rule
of thumb is to let it decay as 1

m ). Figure 10.7 contains initial results of the online
novelty detection algorithm.
Algorithm 10.6 describes the learning procedure for novelty detection in detail.

Regression We consider the following four settings: squared loss, the -insensitive
loss using the -trick, Huber’s robust loss function, and trimmed mean estimators.
For convenience we only use estimates f rather than g f b where b .
The extension to the latter case is straightforward.
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Figure 10.7 Online novelty detection on the USPS dataset (dimension N 256). We use
Gaussian RBF kernels with width 2 2 0 5N 128. The learning rate was adjusted to 1

m
where m is the number of iterations. The left column contains results after one pass through
the database, the right column results after 10 random passes. From top to bottom: (top) the
first 50 patterns which incurred a margin error, (middle) the 50 worst patterns according to
f (x) on the training set, (bottom) the 50 worst patterns on an unseen test set.

We begin with squared loss (3.8) where c is given by c(x y f (x)) 1
2 (y f (x))2

Consequently the update equation is

( i t) ((1 Λ) i Λ(yt f (xt))) (10.135)

This means that we have to store every observation we make or, more precisely, the
prediction error we make on every observation.

The -insensitive loss (see (3.9)) c(x y f (x)) max(0 y f (x) ) avoids this
problem but introduces a new parameter — the width of the insensitivity zone .
By making a variable of the optimization problem, as shown in Section 9.3, we
have

c(x y f (x)) max(0 y f (x) ) (10.136)
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Algorithm 10.6 Online SV Learning

input kernel k, input stream of data X, Λ . time horizon T
Initialize “time” t 0,
repeat

t t 1
Draw new pattern xt and compute f (xt)

Update
i (1 Λ) i

t ΛH( f (x))
Λ( H( f (x)))

Truncate the expansion to T terms.
until no more data arrives

The update equations now have to be stated in terms of i t, and , which is
allowed to change during the optimization process. This leads to

( i t )

((1 Λ) i Λ sgn (yt f (xt)) (1 )Λ) if yt f (xt)

((1 Λ) i 0 Λ ) otherwise.

(10.137)

Meaning that every time the prediction error exceeds we increase the insensitiv-
ity zone by Λ . Likewise, if it is smaller than , the insensitive zone is decreased
by Λ(1 ).

Finally, we analyze the case of regression with Huber’s robust loss. The loss (see
Table 3.1) is given by

c(x y f (x))
y f (x) 1

2 if y f (x)
1

2 (y f (x))2 otherwise.
(10.138)

As before, we obtain update equations by computing the derivative of c with
respect to f (x).

( i t)
((1 Λ) i Λ sgn (yt f (xt))) if yt f (xt)

((1 Λ) i
1(yt f (xt))) otherwise.

(10.139)

Comparing (10.139) and (10.137) leads to the question of whether might not
also be adjusted adaptively. This is a desirable goal since we may not know the
amount of noise present in the data. While the -setting allows us to form such
adaptive estimators for batch learning with the -insensitive loss, this goal has
proven elusive for other estimators in the standard batch setting. In the online
situation, however, such an extension is quite natural (see also [180]). All we need
do is make a variable of the optimization problem and set

( i t )

((1 Λ) i Λ sgn(yt f (xt)) Λ(1 )) if yt f (xt)

((1 Λ) i
1(yt f (xt)) Λ ) otherwise.

(10.140)
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The theoretical analysis of such online algorithms is still an area of ongoing re-
search and we expect significant new results within the next couple of years. For
first results see [175, 242, 299, 298, 194, 329]. For instance, one may show [298] that
the estimate obtained by an online algorithm converges to the minimizer of the
batch setting. Likewise, [242] gives performance guarantees under the assumption
of bounded RKHS norms.

For practitioners, however, currently online algorithms offer an alternative to
(sometimes rather tricky) batch settings and extend the domain of application
available to kernel machines. It will be interesting to see whether the integration
of Bayesian techniques [546, 128] leads to other novel online methods.

10.7 Summary

10.7.1 Topics We Did Not Cover

While it is impossible to cover all algorithms currently used for Kernel Machines
we give an (incomplete) list of some other important methods.

Kernel Billiard This algorithm was initially proposed in [450] and subsequently
modified to accommodate kernel functions in [451]. It works by simulating an
ergodic dynamical system of a billiard ball bouncing off the boundaries of the
version space (the version space is the set of all w for which the training data is
classified correctly). The estimate is then obtained by averaging over the trajecto-
ries.

Bayes Point Machine The algorithm [239, 453] is somewhat similar in spirit to the
Kernel Billiard. The main idea is that, by sampling from the posterior distribution
of possible estimates (see Chapter 16 for a definition of these quantities), we obtain
a solution close to the mean of the posterior.

Iterative Re-weighted Least Squares SVM The main idea is to use clever work-
ing set selection strategies to identify the subset of SVs that are likely to sit exactly
on the margin. For those SVs, the separation inequality constraints become equal-
ities, and, for these, the reduced QP for the working set can be solved via a linear
system (by quadratically penalizing deviations from the exact equality constraints)
[407]. This approach can handle additional equality constraints without significant
extra effort. Accordingly, it has been generalized to situations with further equality
constraints, such as the -SVM [408].

Maximum Margin Perceptron This algorithm works in primal space and relies
on the idea that the weight vector w is a linear combination between vectors
contained in the convex hull of patterns with yi 1 and the convex hull of patterns
with yi 1. That convergence requires a finite number of steps can be proven.
Moreover, the constant threshold b can be determined rather elegantly. See [309]
for a variety of versions of the MMP algorithm.



328 Implementation

AdaTron Originally introduced in [12], the kernel version of the AdaTron ap-
peared in [183]. It is, essentially, an extension of the perceptron algorithm to the
maximum margin case. As we saw in Section 10.6, similar update rules can be
derived with a quadratic soft-margin loss function.

More Mathematical Programming Methods Once one is willing to go beyond the
standard setting of regularization in a Reproducing Kernel Hilbert Space, one is
offered a host of further Support-Vector like methods derived from optimization
theory. The papers of Mangasarian and coworkers [324, 325, 188, 189] present such
techniques.

10.7.2 Topics We Covered

Several algorithms can be used to solve the quadratic programming problem
arising in SV regression. Most of them can be shown to share a common strategy
that can be understood well through duality theory. In particular, this viewpoint
leads to useful optimization and stopping criteria for many different classes of
algorithm, since the Lagrange multipliers i are less interesting quantities than
the value of the objective function itself.

Interior Point Codes A class of algorithms to exploit these properties explicitly
are interior point primal-dual path following algorithms (see Section 10.3). They
are relatively fast and achieve high solution precision in the case of moderately
sized problems (up to approximately 3000 samples). Moreover, these algorithms
can be modified easily for general convex loss functions without additional com-
putational cost. They require computation and inversion of the kernel matrix K
however, and are thus overly expensive for large problems.

Greedy Approximation We presented a way to extend this method to large scale
problems which makes use of sparse greedy approximation techniques. The latter
are particularly well suited to this type of algorithm since they find a low rank
approximation of the dense and excessively large kernel matrix K directly, without
ever requiring full computation of the latter. Moreover, we obtain sparse (however
approximate) solutions, independent of the number of Support Vectors.

Chunking in its different variants is another modification to make large scale
problems solvable by classical optimization methods. It requires the breaking up
of the initial problem into subproblems which are then, in turn, solved separately.
This is guaranteed to decrease the objective function, thus approaching the global
optimum. Selection rules, in view of duality theory, are given in section 10.4.3.

Sequential Minimal Optimization (SMO) is probably one of the easiest algo-
rithms to implement for SV optimization. It might thus be the method of choice for
a first attempt to implement an SVM. It exhibits good performance, and proofs of
convergence have been obtained. Recent research has pointed out several ways of
improving the basic algorithm. We briefly sketched one technique which improves
the estimation of the constant threshold b and thus also helps select good subsets
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more easily. Pseudocode for regression and classification conclude this section.

Iterative Methods Finally, another class of algorithms can be summarized as it-
erative methods, such as gradient descent, Lagrangian SVM which are extremely
simple but which are only applicable for a specific choice of cost function, and on-
line support vector methods. These have the potential to make the area of large
scale problems accessible to kernel methods and we expect good progress in the
future. While it is far from clear what the optimal strategy might be, it is our hope
that the reasoning of Section 10.6.3 will help to propel research in this area.

10.7.3 Future Developments and Code

We anticipate that future research will focus on efficient approximate and sparse so-
lutions. This means that, quite often, it is not necessary to find a kernel expansion
f ∑m

i 1 ik(xi ), where the i are the Lagrange multipliers of the corresponding
optimization problem and, instead, a much more compact function representation
can be used.

Second, we expect that both lightweight optimizers, which can be deployed
on small consumer hardware, and large-scale optimizers, which take advantage
of large clusters of workstations, will become available. It is our hope that, in a
few years, kernel methods will be readily accessible as plug-ins and toolboxes for
many statistical analysis packages.

Finally, the choice of parameters is still a problem which requires further at-
tention. While there exist several promising approaches (see [288, 102, 268]) for
assessing the generalization performance, mainly involving leave-one-out esti-
mates or their approximation, the problem is far from solved. In particular, every
new bound on the generalization performance of kernel machines will inevitably
prompt the need for an improved training algorithm which can take advantage of
the bound.

Some readers will miss pointers to readily available code for SVM in this book.
We deliberately decided not to include such information since such information is
likely to become obsolete rather quickly. Instead, we refer the reader to the kernel-
machines website (http://www.kernel-machines.org) for up-to-date information
on the topic.

10.8 Problems

10.1 (KKT Gap for Linear Programming Regularizers )
Compute the explicit functional form of the KKT gap for Linear Programming Regulariz-
ers. Why can’t you simply use the expansion coefficients i as in Proposition 10.1?

10.2 (KKT Gap for Sub-Optimal Offsets )
Compute the functional form of the KKT gap for non-optimal parametric parts in the
expansion of f , e.g., if f (x) Φ(x) w b where b is not optimal. Hint: consider
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Theorem 6.22 and prove a variant of Theorem 6.27.

10.3 (Restarting for )
Prove an analogous inequality for Rreg[ f ] as (10.22) for rather than C, i.e. prove

Rreg[ f ] Rreg[ f ] Rreg[ f ] for all (10.141)

10.4 (Sparse Approximation in the Function Values )
State the optimal expansion for approximations of k(xi ) by k̃i( ) in the space of function
values on X x1 xm . How many operations does it cost to compute the expansion?

10.5 (Rank-1 Updates for Cholesky Decompositions )
Given a positive definite matrix K n n , its Cholesky decomposition TT K into
triangular matrices T n n , a vector k n , and a real number such that the matrix

K k

k
is positive definite, show that the Cholesky decomposition of the larger matrix

is given by

K k

k

T 0

t

T t

0
(10.142)

where

t T 1k and t t
1
2

(10.143)

Why would we replace the equation for by max 0 t t
1
2 for numerical

stability? How can you compute (10.143) in O(n2) time?

10.6 (Smaller Memory Footprint for SGMA )
Show that rather than caching Kmn, (Knn) 1 and (Knn) 1Kmn (and updating the
three matrices accordingly) we can reformulate the sparse greedy matrix approximation
algorithm to use only Tn and T 1

n Kmn where Tn is the Cholesky decomposition (see Problem
10.5) of Knn into a product of triangular matrices, that is TnTn Knn.

In particular, show that the update for T 1
n Kmn is given by

T 1
n 1Km n 1 T 1

n Kmn

1 k̄ t T 1
n Kmn

(10.144)

where t and are defined as in (10.143).

10.7 (Optimality of PCA )
Show that for the problem of approximating a positive definite matrix K by a matrix
K̃ of rank n such that both K̃ and K K̃ are positive definite the solution is given by
projecting onto the largest n principal components of K, i.e., by PCA. Here we consider an
approximation to be optimal if the residual trace of K K̃ is minimized. Show that PCA is
also optimal if we consider the largest eigenvalue of K K̃ as the quantity to be minimized.
Hint: recall that K is a Gram matrix for some xi, i.e., Ki j xi x j .
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10.8 (General Convex Cost Functions [516] )
Show that for a convex optimization problem

minimize 1
2 q( ) c

subject to A d

l u

(10.145)

with c l u m , A n m, and d n , the inequalities between vectors holding
component-wise, and q( ) being a convex function of , the dual optimization problem
is given by

maximize 1
2 q( ) q( ) d h l z u s

subject to 1
2 q( ) c (Ay) s z

s z 0 h free

(10.146)

Moreover, the KKT conditions read

gizi siti 0 for all i [m] (10.147)

10.9 (Interior Point Algorithm for (10.145) [516] )
Derive an interior point algorithm for the optimization problem given in (10.145). Hint:
use a quadratic approximation of q( ) for each iteration and apply an interior point code
to this modification. Which cost functions does this allow you to use in an SVM?

10.10 (Sherman-Woodbury-Morrison for Linear SVM [168] )
Show that for linear SVMs the cost per interior point iteration is O(mn2). Hint: use
(10.54) to solve (10.48).

10.11 (KKT Gap and Optimality on Subsets )
Prove that after optimization over a subset Sw (and adjusting b in accordance to the subset)
the corresponding contributions to the KKT gap, i.e. the terms KKTi for i Sw will vanish.

10.12 (SVMTorch Selection Criteria [502, 108] )
Derive the SVMTorch optimality criteria for SV regression; derive the equations analogous
to (10.60) for the regression setting.

10.13 (Gradient Selection and KKT Conditions )
Show that for regression and classification the patterns selected according to (10.60) are
identical to those chosen by the gradient selection rule, i.e. according to Q c. Hint:
show that gradient and KKTi differ only in the constant offset b, hence taking the maxima
of both sets yields identical results.

10.14 (SMO and Number of Constraints )
Show that for SMO to make any progress we need at least n 1 variables where n is
the number of equality constraints in A d. What does this mean in terms of speed of
optimization?
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Find a reformulation of the optimization problem which can do without any equality
constraints. Hint: drop the constant offset b from the expansion. State the explicit solution
to the constrained optimization problem in one variable.

Which selection criteria would you use in this case to find good patterns? Can you adapt
KKTi KKTi, and KKTi accordingly? Can you bound the improvement explicitly?

10.15 (Orthogonality and Clipping )
Prove Lemma 10.6. Hint: first prove that for a b (10.109) holds. The lemma then
follows by summation over the coordinates.

10.16 (Lagrangian Support Vector Machines for Regression ) Derive a variant
of the Lagrangian Support Vector Algorithm for regression. Hint: begin with a regular-
ized risk functional where b is regularized and the squared -insensitive loss function
c(x y f (x)) max( f (x) y 0)2. Next derive an equation analogous to (10.110).

For the iteration scheme you may want to take advantage of orthogonal transformations
such as the one given in (10.52). What is the condition on in this case?

10.17 (Laplace Approximation )
Use Newton’s method as described in (6.12) to find an iterative minimization scheme for
the regularized risk functional. See also Section 16.4.1 for details. For which cost functions
is it suitable (Hint: Newton’s method is a second order approach)? Can you apply the
Sherman-Morrison-Woodbury formula to find quick approximate minimizers? Compare
the algorithm to the Lagrangian Support Vector Machines.

10.18 (Online Learning and Number of Support Vectors )
Show that for a classification problem with nonzero minimal risk the number of Support
Vectors increases linearly with the number of patterns, provided one chooses a regulariza-
tion parameter that avoids overfitting. Hint: first show that all misclassified patterns on
the training set will become Support Vectors, then show that the fraction of misclassified
patterns is non-vanishing.

10.19 (Online Learning with -SVM )
Derive an online version of the -SVM classification algorithm. For this purpose begin
with the modified regularized risk functional as given by

Rreg[ f ]
1
m

m

∑
i 1

c (xi yi f (xi))
1
2

f 2 (10.148)

Next replace 1
m ∑m

i 1 c (xi yi f (xi)) by the stochastic estimate c (xt yt f (xt)). Note that
you have to perform updates not only in f but also in the margin .

What happens if you change rather than letting i decay in the cases where no margin
error occurs? Why don’t you need any more? Hint: consider the analogous case of
Chapter 9.



 

11 Incorporating Invariances

Practical experience has shown that in order to obtain the best possible perfor-
mance, prior knowledge about a problem at hand ought to be incorporated into
the training procedure. We describe and review methods for incorporating prior
knowledge on invariances in Support Vector Machines, provide experimental re-
sults, and discuss their respective merits, gathering material from various sources
[471, 467, 478, 134, 562].

The chapter is organized as follows. The first section introduces the conceptOverview
of prior knowledge, and discusses what types of prior knowledge are used in
pattern recognition. Following this, we will deal specifically with transformation
invariances (Section 11.2), discussing two rather different approaches to make
SVMs invariant: by generating virtual examples from the SVs (Section 11.3) or by
modifying the kernel function (Section 11.4). Finally, in Section 11.5, we combine
ideas from both approaches by effectively making the virtual examples part of the
kernel definition.

The prerequisites for the chapter are largely limited to basics of the SV classifi-Prerequisites
cation algorithm (Chapter 7) and some knowledge of linear algebra (Appendix B).
Section 11.4.2 uses Kernel PCA, as described in Section 1.7 and Chapter 14.

11.1 Prior Knowledge

In 1995, LeCun et al. [320] published a pattern recognition performance compari-
son noting the following:

“The optimal margin classifier has excellent accuracy, which is most remarkable,
because unlike the other high performance classifiers, it does not include a priori
knowledge about the problem. In fact, this classifier would do just as well if the
image pixels were permuted by a fixed mapping. [...] However, improvements are
expected as the technique is relatively new.”

Two things have changed in the five years since this statement was made. First,
optimal margin classifiers, or Support Vector Machines, as they are now known,
have become a mainstream method which is part of the standard machine learning
toolkit. Second, methods for incorporating prior knowledge into optimal margin
classifiers are now part of the standard SV methodology.
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11.4 Invariance Kernels

11.2 Transformation
Invariance

11.3 Virtual SV method

11.5 Jittered SV method
11.1 Prior
Knowledge

These two developments are actually closely related. Initially, SVMs had been
considered a theoretically elegant spin-off of the general, but apparently largely
useless, VC-theory of statistical learning. In 1995, using the first methods for
incorporating prior knowledge, SVMs became competitive with the state of the
art, in the handwritten digit classification benchmarks that were popularized by
AT&T Bell Labs [471]. At that point, application engineers who were not interested
in theory, but in results, could no longer ignore SVMs. In this sense, the methods
described below actually helped pave the way to make the SVM a widely used
machine learning tool.

By prior knowledge we refer to all information about the learning task which isPrior Knowledge
available in addition to the training examples. In this most general form, only prior
knowledge makes it possible to generalize from the training examples to novel test
examples.

For instance, many classifiers incorporate general smoothness assumptions about
the problem. A test pattern which is similar to one of the training examples
thus tends to be assigned to the same class. For SVMs, using a kernel function
k amounts to enforcing smoothness with a regularizer ϒ f 2, where f is the
estimated function, and k is a Green’s function of the regularization operator ϒ
(Chapter 4). In a Bayesian maximum-a-posteriori setting, this corresponds to a
smoothness prior of exp( ϒ f 2) ([295], see Section 16.2.3).

A second method for incorporating prior knowledge, which is somewhat more
specific, consists of selecting features which are thought to be particularly informa-
tive or reliable for the task at hand. For instance, in handwritten character recog-
nition, correlations between image pixels that are nearby tend to be more reliable
than those between distant pixels. The intuitive reason for this is that variations
in writing style tends to leave the local structure of a handwritten digit fairly un-
changed, while the global structure is usually quite variable. In the case of SVMs,
this type of prior knowledge is readily incorporated by designing polynomial ker-
nels which mainly compute products of nearby pixels (Section 13.3).

One way to look at feature selection is that it changes the representation of
the data, in which respect it resembles another method for incorporating prior
knowledge in SVMs that has recently attracted attention. In the latter case, it is
assumed that we have knowledge about probabilistic models generating the data.
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representationtangentsvirtual examples

Figure 11.1 Different ways of incorporating invariances in a decision function. The dashed
line marks the “true” boundary, disks and circles are the training examples. We assume that
prior information tells us that the classification function only depends on the norm of the
input vector (the origin being in the center of each picture). Lines through the examples
indicate the type of information conveyed by the different methods for incorporating prior
information. Left: virtual examples are generated in a localized region around each training
example; middle: a regularizer is incorporated to learn tangent values (cf. [497]); right:
the representation of the data is changed by first mapping each example to its norm. If
feasible, the latter method yields the most information. However, if the necessary nonlinear
transformation cannot be found, or if the desired invariances are of a localized nature, we
have to resort to one of the former techniques. Finally, note that examples close to the
boundary allow us to exploit prior knowledge very effectively: given a method to get a first
approximation of the true boundary, the examples closest to the approximate boundary
allow good estimation of the true boundary. A similar two-step approach is pursued in
Section 11.3. (From [471].)

Specifically, let p(x Θ) be a generative model that characterizes the probability of
a pattern x, given the underlying parameter Θ. It is possible to construct a class
of kernels which are invariant with respect to reparametrizations of Θ, and which,
loosely speaking, have the property that k(x x ) is the similarity of x and x , subject
to the assumption that they both stem from the generative model. These kernels
are called Fisher kernels ([258], cf. Chapter 13). A different approach to designing
kernels based on probabilistic models is presented in [585, 333].

Finally, we get to the type of prior knowledge that we shall start with: prior
knowledge about invariances.

11.2 Transformation Invariance

In many applications of learning procedures, certain transformations of the input
are known to leave function values unchanged. At least three different ways of
exploiting this knowledge have been used (illustrated in Figure 11.1):

1. In the first case, the knowledge is used to generate artificial training examples,
termed “virtual examples,” [18, 413, 2] by transforming the training examples
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accordingly. It is then hoped that given sufficient time, the learning machine will
automatically learn the invariances from the artificially enlarged training data.

2. In the second case, the learning algorithm itself is modified. This is typically
done by using a modified error function which forces a learning machine to
construct a function with the desired invariances [497].

3. Finally, in the third case, the invariance is achieved by changing the represen-
tation of the data by first mapping them into a more suitable space; this approach
was pursued for instance in [487] and [575]. The data representation can also be
changed by using a modified distance metric, rather than actually changing the
patterns [496].

Simard et al. [497] compare the first two techniques and find that for the prob-
lem considered — learning a function with three plateaus, where function values
are locally invariant — training on the artificially enlarged data set is significantly
slower, due both to correlations in the artificial data, and the increase in training
set size. Moving to real-world applications, the latter factor becomes even more
important. If the size of a training set is multiplied by a number of desired in-
variances (by generating a corresponding number of artificial examples for each
training pattern), the resulting training sets can get rather large, such as those used
in [148]. However, the method of generating virtual examples has the advantage
of being readily implemented for all kinds of learning machines and symmetries.
If instead of continuous groups of symmetry transformations we are dealing with
discrete symmetries, such as the bilateral symmetries of [576], derivative-based
methods such as those of [497] are not applicable. It is thus desirable to have an
intermediate method which has the advantages of the virtual examples approach
without its computational cost.

The methods described in this chapter try to combine merits of all the ap-
proaches mentioned above. The Virtual SV method (Section 11.3) retains the flex-
ibility and simplicity of virtual examples approaches, while cutting down on their
computational cost significantly. The Invariant Hyperplane method (Section 11.4),
on the other hand, is comparable to the method of [497] in that it is applicable
to all differentiable local 1-parameter groups of local invariance transformations,
comprising a fairly general class of invariances. In addition, it has an equivalent
interpretation as a preprocessing operation applied to the data before learning. In
this sense, it can also be viewed as changing the representation of the data to be
more invariant, in a task-dependent way. Another way to interpret this method
is as a way to construct kernels that respect local image structures; this will be
discussed further in a later chapter (Section 13.3). The latter interpretation gives
rise to a resemblance to the last technique that we discuss, the Jittered SV method
(Section 11.5), which combines the flexibility of the VSV method with the elegance
of an approach that directly modifies the kernel and does not need to enlarge the
training set.
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11.3 The Virtual SV Method

In Section 7.8.2, it has been argued that the SV set contains all information nec-
essary to solve a given classification task. It particular, it is possible to train any
one of three different types of SVMs solely on the Support Vector set extracted
by another machine, with a test performance no worse than after training on the
full database. Using this finding as a starting point, we now investigate whether
it might be sufficient to generate virtual examples from the Support Vectors only.
After all, we might hope that it does not add much information to generate virtual
examples from patterns which are not close to the boundary. In high-dimensional
cases, however, care has to be exercised regarding the validity of this intuitive
picture. Thus, an experimental test on a high-dimensional real-world problem is
imperative. In our experiments, we proceeded as follows (cf. Figure 11.2):

1. Train a Support Vector Machine to extract the Support Vector set.

2. Generate artificial examples by applying the desired invariance transforma-
tions to the Support Vectors. In the following, we will refer to these examples as
Virtual Support Vectors (VSVs).

3. Train another Support Vector Machine on the examples generated.

Clearly, the scheme can be iterated; care must be exercised, however, since the
iteration of local invariances can lead to global invariances which are not always
desirable — consider the example of a ’6’ rotating into a ’9’ [496].

If the desired invariances are incorporated, the curves obtained by applying
Lie group transformations to points on the decision surface should have tangents
parallel to the latter (cf. [497]).1 If we use small Lie group transformations (e.g.,
translations) to generate the virtual examples, this implies that the Virtual Support
Vectors should be approximately as close to the decision surface as the original
Support Vectors. Hence, they are fairly likely to become Support Vectors after the
second training run. Vice versa, if a substantial fraction of the Virtual Support
Vectors turn out to become Support Vectors in the second run, we have reason to
expect that the decision surface does have the desired shape.

Let us now look at some experiments validating the above intuition. The firstUSPS Digit
Recognition set of experiments was conducted on the USPS database of handwritten digits

(Section A.1). This database has been used extensively in the literature, with a
LeNet1 Convolutional Network achieving a test error rate of 5.0% [318]. As in

1. The reader who is not familiar with the concept of a Lie group may think of it as a
group of transformations where each element is labelled by a set of continuously variable
parameters. Such a group may be considered also to be a manifold, where the parameters
are the coordinates. For Lie groups, it is required that all group operations are smooth maps.
It follows that we can, for instance, compute derivatives with respect to the parameters.
Examples of Lie groups are the translation group, the rotation group, and the Lorentz
group; further details can be found in textbooks on differential geometry, e.g., [120].
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Figure 11.2 Suppose we have prior knowledge indicating that the decision function
should be invariant with respect to horizontal translations. The true decision boundary
is drawn as a horizontal line (top left); as we are just given a limited training sample, how-
ever, different separating hyperplanes are conceivable (top right). The SV algorithm finds
the unique separating hyperplane with maximal margin (bottom left), which in this case is
quite different from the true boundary. For instance, it leads to incorrect classification of the
ambiguous point indicated by the question mark. Making use of the prior knowledge by
generating Virtual Support Vectors from the Support Vectors found in a first training run,
and retraining on these, yields a more accurate decision boundary (bottom right). Further-
more, note that for the example considered, it is sufficient to train the SVM only on virtual
examples generated from the Support Vectors.

Section 7.8.1, we used C 10.
Table 11.1 shows that incorporating only translational invariance already im-

proves performance significantly, from an error rate of 4.0% to 3.2%.2 For other
types of invariances (Figure 11.3), we also found improvements, albeit smaller
ones: generating Virtual Support Vectors by rotations or by line thickness trans-
formations,3 we constructed polynomial classifiers with a 3.7% error rate (in both

2. For a number of reference results, cf. Table 7.4.
3. Briefly, the idea of the line thickness transformation of an image is to add some multiple
of its gradient. As the original outline of the image is the area of highest gradient, this
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Figure 11.3 Different invariance transformations in the case of handwritten digit recogni-
tion (MNIST database). In all three cases, the central pattern is the original which is trans-
formed into “virtual examples” (marked by gray frames) with the same class membership,
by applying small transformations.

cases). For details, see [467].
Note, moreover, that generating Virtual examples from the full database rather

than just from the SV sets did not improve the accuracy, nor did it substantially
enlarge the SV set of the final classifier. This finding was reproduced for a Virtual
SV system with a Gaussian RBF kernel [482]: in that case, as in Table 11.1, generat-
ing Virtual examples from the full database led to identical performance, and only
slightly increased the SV set size (861 instead of 806). We conclude that for this
recognition task, it is sufficient to generate Virtual examples only from the SVs
— Virtual examples generated from the other patterns do not add much useful
information.

The larger a database, the more information about invariances of the decisionMNIST Digit
Recognition function is already contained in the differences between patterns of the same class.

To show that it is nonetheless possible to improve classification accuracy using
our technique, we applied the method to the MNIST database (Section A.1) of
60000 handwritten digits. This database has become the standard for performance
comparisons at AT&T Bell Labs; the error rate record of 0.7% was held until
recently by a boosted LeNet4 [64, 321], which represents an ensemble of learning
machines; the best single machine performance was achieved at this time by a
LeNet5 convolutional neural network (0.9%). Other high performance systems
include a Tangent Distance nearest neighbor classifier (1.1%).

procedure tends to make lines thicker [148].
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Table 11.1 Comparison of Support Vector sets and performance for training on the original
database and training on the generated Virtual Support Vectors, for the USPS database
of handwritten digits. In both training runs, we used a polynomial classifier of degree 3.
Virtual Support Vectors were generated by simply shifting the images by one pixel in the
four principal directions. Adding the unchanged Support Vectors, this leads to a training set
for the second classifier which has five times the size of the first classifier’s overall Support
Vector set (i.e., the union of the 10 Support Vector sets from the binary classifiers, of size 1677
— note that due to some overlap, this is smaller than the sum of the ten Support Vector set
sizes). Note that training on virtual patterns generated from all training examples does not
lead to better results than in the Virtual SV case; moreover, although the training set in this
case is much larger, it barely leads to more SVs.

classifier trained on size av. no. of SVs test error
full training set 7291 274 4.0%
overall SV set 1677 268 4.1%
Virtual SV set 8385 686 3.2%

Virtual patterns from full DB 36455 719 3.4%

Using Virtual Support Vectors generated by 1-pixel translations into the four
principal directions, we improved a degree 5 polynomial SV classifier from an
error rate of 1.4% to 1.0% on the 10000 element test set. We applied our technique
separately for all ten Support Vector sets of the binary classifiers (rather than
for their union) in order to avoid having to deal with large training sets in the
retraining stage. In addition, note that for the MNIST database, we did not attempt
to generate Virtual examples from the whole database, as this would have required
training on a very large training set.4

After retraining, the number of SVs more than doubles [467] Thus, although the
training sets for the second set of binary classifiers are substantially smaller than
the original database (for four Virtual SVs per SV, four times the size of the original
SV sets, in our case amounting to around 104), we conclude that the amount of
data in the region of interest, close to the decision boundary, more than doubles.
Therefore, it should be possible to use a more complex decision function in the
second stage (note that the typical risk bounds (Chapter 5) depend on the ratio of
VC-dimension and training set size). Indeed, using a degree 9 polynomial leads to
an error rate of 0.8%, very close to the boosted LeNet4 (0.7%).

Recently, several systems have been designed which are on par with or better
than the boosted LeNet4 [536, 134, 30]. The new record is now held by a virtual
SV classifier which used more virtual examples, leading to results which are

4. We did, however, compute such a solution for the small MNIST database (Section A.1).
In this case, a degree 5 polynomial classifier was improved from an error of 3 8% to 2 5%
using the Virtual SV method, with an increase of the average SV set sizes from 324 to 823. By
generating Virtual examples from the full training set, and retraining on these, we obtained
a system which had slightly more SVs (939), but an unchanged error rate.
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Table 11.2 Summary of error rates on the MNIST handwritten digit set, using the 10 000
element test set (cf. Section A.1). At 0 6% (0 56% before rounding), the VSV system using 12
translated virtual examples per SV (described in the text) performs best.

Classifier test error reference
linear classifier 8.4% [319]
3-nearest-neighbor 2.4% [319]
LeNet1 1.7% [319]
Neural Net with one hidden layer 1.6% [319]
SVM 1.4% [87]
SVM, deslanted data 1.2% [134]
Local learning Approach 1.1% [65]
Tangent distance 1.1% [496]
LeNet4 1.1% [319]
Virtual SVM with 4 VSVs per SV 0.8% present chapter, [467]
LeNet5 0.8% [319]
Boosted LeNet4 0.7% [64, 319]
Virtual SVM with 8 VSVs per SV 0.7% present chapter, [134]
Virtual SVM with 12 VSVs per SV 0.6% present chapter, [134]

actually superior to the boosted LeNet4. Since this dataset is considered the “gold
standard” of classifier benchmarks, it is worth reporting some details of this study.
Table 11.3 summarizes the results, giving the lowest published test error for this
data set (0.56%, [134]). Figure 11.4 shows the 56 misclassified test examples. For
reference purposes, Table 11.2 gives a summary of error rates on the MNIST set.

As above, a polynomial kernel of degree 9 was used. Patterns were deslanted
and normalized so that dot-products giving values within [0 1] yielded kernel
values within [0 1]; specifically,

k(x x )
1

512
( x x 1)9 (11.1)

This ensures that the kernel value 1 has the same meaning that holds for other
kernels, such as radial-basis function (RBF) kernels. Namely, a kernel value of 1
corresponds to the minimum distance (between identical examples) in the feature
space. It was ensured that any dot-product was within [0,1] by normalizing each
example by its 2-norm scalar value (such that the dot product of each example
with itself gave a value of 1).

The value of the regularization constant C (the upper bound on the i) was
determined as follows. By trying a large value when training a binary recognizer
for digit “8”, it was determined that no training example reached an i value above
7, and only a handful of examples in each of the 10 digit classes had alpha values
above 2. Under the assumption that only a few training examples in each class
are particularly noisy and that digit “8” is one of the harder digits to recognize,
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Figure 11.4 The 56 test errors of the record VSV system for MNIST. The number in the
lower left corner of each image box indicates the test example number (1 through 10000).
The first number in the upper right corner represents the predicted digit label, and the
second denotes the true label (from [134]).

we chose C 2. This simplistic choice is likely suboptimal, and could possibly be
improved by (time-consuming) experiments on validation sets.

The experiments employed new SMO-based methods (see Chapter 10 for a
description of SMO), as described in [134], including a technique called digestion,
which switches SMO from “full” to “inbounds” iteration every time the working
set of SVs grows by a large amount. The resulting faster training times can be put
to good use by trying the VSV method with more invariance than was practical in
previous experiments. In our case, it was possible to generate VSVs by translation
of each SV by a distance of one pixel in any of the 8 directions (horizontal, vertical,
or both), plus two-pixel translations horizontally and vertically. Total training
time, for obtaining 10 binary recognizers for each of the base SV and the VSV
stages, was about 2 days (50 hours) on a Sun Ultra60 workstation with a 450MHz
processor and 2 Gigabytes of RAM (allowing an 800Mb kernel cache). The VSV
stage was more expensive that the base SV stage (averaging about 4 hours versus
1 hour) — a majority of examples used in VSV training typically ended up being
Support Vectors.
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Table 11.3 Results for the MNIST benchmark (10000 test examples), using an inhomoge-
neous polynomial kernel of degree 9 and deslanted data. The VSV system was trained using
12 virtual examples per SV. First table: test error rates of the multi-class systems; second table:
error rates of the individual binary recognizers that were trained for each digit class, third
table: numbers of SVs (from [134]).

Misclassifications
digit misclassifications 10-class

digit 0 1 2 3 4 5 6 7 8 9 test error rate

SV 5 5 14 12 13 10 13 13 12 25 1.22%
VSV 3 3 5 3 6 7 7 6 5 11 0.56%

Errors for each binary recognizer
SVM for digit 0 1 2 3 4 5 6 7 8 9

SV

false negatives 9 11 21 22 15 21 22 24 21 47
false positives 7 6 7 5 8 6 9 9 10 8

VSV

false negatives 5 5 12 11 4 9 13 12 11 18
false positives 4 5 9 4 9 4 11 9 3 7

Number of Support Vectors for each binary recognizer
digit 0 1 2 3 4 5 6 7 8 9

SV 1859 1057 3186 3315 2989 3311 2039 2674 3614 3565
0 i C 1758 927 3023 3090 2830 3124 1934 2475 3301 3202

i C 101 130 163 225 159 187 105 199 313 363

VSV 11305 6298 18549 18680 16800 18550 11910 16489 21826 23003
0 i C 10650 5117 17539 17141 15329 17294 11084 14645 19382 19898

i C 655 1181 1010 1539 1471 1256 826 1844 2444 3105

We conclude this section by noting that the same technique has also been ap-
plied in the domains of face classification and object recognition. In these areas,
where we are dealing with bilaterally symmetric objects, useful virtual SVs can
also be generated by reflection with respect to a vertical axis. This kind of discrete
transformation does not arise from a continuous group of transformations, but this
does not present a problem with the VSV approach [467].

11.4 Constructing Invariance Kernels

In this section, we describe a self-consistency argument for obtaining invariant
SVMs. Interestingly, it will turn out that the criterion we end up with can be
viewed as a meaningful modification of the kernel function.
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11.4.1 Invariance in Input Space

We need a self-consistency argument because we face the following problem: to
express the condition of invariance of the decision function, we already need to
know its coefficients i, which are found only during the optimization; this in
turn should already take into account the desired invariances. As a way out of
this circle, we use the following ansatz: consider the linear decision functions
f sgn g,5 where g is defined as

g(x j) :
m

∑
i 1

i yi Bx j Bxi b (11.2)

with a matrix B to be determined below. This follows a suggestion of [561], using
the conjecture that we could incorporate invariances by modifying the dot product
used. Any nonsingular B defines a dot product, which can equivalently be written
in the form xj Axi , with a positive definite matrix A B B.

Clearly, if g is invariant under a class of transformations of the x j, then the same
holds true for f sgn g, which is what we are aiming for. Strictly speaking,
however, invariance of g is not necessary at points which are not Support Vectors,
since these lie in a region where (sgn g) is constant.

The above notion of invariance refers to invariance when evaluating the deci-
sion function. A different notion could relate to whether the separating hyper-
plane, including its margin, changes if the training examples are transformed. It
turns out that when discussing the invariance of g rather than f , these two con-
cepts are closely related. In the following argument, we restrict ourselves to the
separable case ( i 0 for all i 1 m). As the separating hyperplane and its
margin are expressed in terms of Support Vectors, locally transforming a Support
Vector xi changes the hyperplane or the margin if g(xi) changes: if g gets smaller
than 1, the transformed pattern lies in the margin, and the recomputed margin
is smaller; if g gets larger than 1, the margin might become larger, depending
on whether the pattern can be expressed in terms of the other SVs (cf. the remarks
preceding Proposition 7.4). In terms of the mechanical analogy of Section 7.3: mov-
ing Support Vectors changes the mechanical equilibrium for the sheet separating
the classes. Conversely, a local transformation of a non-Support Vector xi never
changes f , even if the value g(xi) changes, as the solution of the problem is ex-
pressed in terms of the Support Vectors only.

In this sense, invariance of f under local transformations of the given data
corresponds to invariance of (11.2) for the Support Vectors. Note, however, that
this criterion is not readily applicable: before finding the Support Vectors in the
optimization, we already need to know how to enforce invariance. Thus the above
observation cannot be used directly, however it could serve as a starting point for

5. As usual, sgn g denotes composition of the functions sgn and g; in other words, the
application of sgn to the result of g.
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constructing heuristics or iterative solutions. In the Virtual SV method described
in Section 11.3, a first run of the standard SV algorithm is carried out to obtain an
initial SV set; similar heuristics could be applied in the present case.

Local invariance of g for each pattern x j under transformations of a differen-
tiable local 1-parameter Lie group of local transformations t,

t t 0
g( tx j) 0 (11.3)

can be approximately enforced by minimizing the regularizer

1
m

m

∑
j 1 t t 0

g( tx j)
2

(11.4)

Note that the sum may run over labelled as well as unlabelled data, so in principle
we could also require the decision function to be invariant with respect to trans-
formations of elements of a test set, without looking at the test labels. In addition,
we could use different transformations for different patterns.

For (11.2), the local invariance term (11.3) becomes

t t 0
g( tx j) t t 0

m

∑
i 1

i yi B tx j Bxi b

m

∑
i 1

i yi t t 0
B tx j Bxi

m

∑
i 1

i yi 1 B 0xj Bxi B
t t 0

tx j (11.5)

using the chain rule. Here, 1 B 0xj Bxi denotes the gradient of x x with
respect to x, evaluated at the point x x B 0xj Bxi .

As an aside, note that a sufficient, albeit rather strict condition for invariance is
thus that t t 0

B tx j Bxi vanish for all i j [86]; we will proceed in our deriva-
tion, however, with the goal to impose weaker conditions which apply for one
specific decision function, rather than simultaneously for all decision functions
expressible through different choices of the coefficients i yi.

Substituting (11.5) into (11.4), and using the relations 0 1 (the identity) and
1 x x x , yields the regularizer

1
m

m

∑
j 1

m

∑
i 1

i yi(Bxi) B
t t 0

tx j

2

1
m

m

∑
j 1

m

∑
i 1

i yi(Bxi) B
t t 0

tx j

m

∑
k 1

k yk(B
t t 0

tx j) (Bxk)

m

∑
i k 1

i yi k yk Bxi BTB Bxk (11.6)
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where

T :
1
m

m

∑
j 1 t t 0

tx j t t 0
tx j (11.7)

We now choose B such that (11.6) reduces to the standard SV target function (7.10),Self-consistency
Argument in the form obtained following the substitution of (7.15) (cf. the quadratic term of

(7.17)), where we utilize the dot product chosen in (11.2) so that

Bxi BTB Bxk Bxi Bxk (11.8)

A sufficient condition for this to hold is

B BTB B B B (11.9)

or, by requiring B to be nonsingular (meaning that no information get lost during
the preprocessing), BTB 1. This can be satisfied by a preprocessing matrix

B T
1
2 (11.10)

the positive definite square root of the inverse of the positive definite matrix
T defined in (11.7). We have thus transformed the standard SV programming
problem into one which uses an invariance regularizer instead of the standard
maximum margin regularizers, simply by choosing a different dot product, or
equivalently, by making use of a linear preprocessing operation.

In practice, we usually want something in between. In other words, we want
some invariance, but still a reasonably large margin. To this end, we use a matrix

T : (1 )T 1 (11.11)

with 0 1 instead of T. As T is positive definite, T is strictly positive definite,
and thus invertible. For 1, we recover the standard SV optimal hyperplane al-
gorithm; other values of determine the trade-off between invariance and model
complexity control.

By choosing the preprocessing matrix B according to (11.10), we obtain a formu-
lation of the problem in which the standard SV quadratic optimization technique
minimizes the tangent regularizer (11.4): the maximum of (7.17) subject to (7.18)Reduction to

Standard SVM
Formulation

and (7.19), using the modified dot product as in (11.2), coincides with the mini-
mum of (11.4) subject to the separation conditions yi g(xi) 1, where g is defined
as in (11.2).

Note that preprocessing with B does not affect classification speed: since
Bxj Bxi x j B Bxi , we can precompute B Bxi for all SVs xi, and thus ob-

tain a machine (with modified SVs) which is as fast as a standard SVM.
Let us now provide some interpretation of (11.10) and (11.7). The tangent vectors

t t 0 tx j have zero mean, thus T is a sample estimate of the covariance matrix
of the random vector t t 0 tx. Based on this observation, we call T the TangentTangent

Covariance
Matrix

Covariance Matrix of the data set xi i 1 m with respect to the transforma-
tions t.
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Being strictly positive definite,6 T can be diagonalized as T UDU , where the
columns of the unitary matrix U are the eigenvectors of T, and the diagonal matrix
D contains the corresponding positive eigenvalues. Then we can compute

B T
1
2 UD

1
2 U (11.12)

where D
1
2 is the diagonal matrix obtained from D by taking the inverse square

roots of the diagonal elements. Since the dot product is unitarily invariant (see
Section B.2.2), we may drop the leading U, and (11.2) becomes

g(x j)
m

∑
i 1

i yi D
1
2 U xj D

1
2 U xi b (11.13)

A given pattern is thus first transformed by projecting it onto the eigenvectors of
the tangent covariance matrix T, which are the rows of U . The resulting feature
vector is then rescaled by dividing by the square roots of the eigenvalues of T.7

In other words, the directions of main variance of the random vector t t 0 tx are
scaled back, thus more emphasis is put on features which are less variant under

t. This can be thought of as a whitening operation.
For example, in image analysis, if the t represent translations, more emphasis

is put on the relative proportions of ink in the image rather than the positions of
lines. The PCA interpretation of our preprocessing matrix suggests the possibility
of regularizing and reducing dimensionality by discarding some of the features,
as is common when doing PCA. As an aside, note that the resulting matrix will
still satisfy (11.9).8

Combining the PCA interpretation with the considerations following (11.2)
leads to an interesting observation: the tangent covariance matrix could be ren-
dered a task-dependent covariance matrix by computing it entirely from the SVs,
rather than from the full data set. Although the summation in (11.7) does not take
into account class labels yi, it then implicitly depends on the task to be solved, via
the SV set. Thus, it allows the extraction of features which are invariant in a task-

6. It is understood that we use T if T is not strictly positive definite (cf. (11.11)) (for the
concept of strict positive definiteness, cf. Definition 2.4 and the remarks thereafter).
7. As an aside, note that our goal to build invariant SVMs has thus serendipitously pro-
vided us with an approach for another intriguing problem, namely that of scaling: in SVMs,
there is no obvious way of automatically assigning different weight to different directions
in input space (see [102]) — in a trained SVM, the weights of the first layer (the SVs) form a
subset of the training set. Choosing these Support Vectors from the training set only gives
rather limited possibilities for appropriately dealing with different scales in different direc-
tions of input space.
8. To see this, first note that if B solves B BTB B B B, and the polar decomposition
of B is B UBs, with UU 1 and Bs Bs , then Bs also solves this expression. Thus,
we may restrict ourselves to symmetrical solutions. For our choice B T

1
2 , B commutes

with T, hence they can be diagonalized simultaneously. In this case, B2TB2 B2 can also
be satisfied by any matrix which is obtained from B by setting an arbitrary selection of
eigenvalues to 0 (in the diagonal representation).
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dependent way: it does not matter whether features for “easy” patterns change
with transformations; it is more important that the “hard” patterns, close to the
decision boundary, lead to invariant features.

11.4.2 Invariance in Feature Space

Let us now move on to the nonlinear case. We now enforce invariance in a slightly
less direct way, by requiring that the action of the invariance transformations move
the patterns parallel to the separating hyperplane; in other words, orthogonal to
the weight vector normal to the hyperplane [467, 562]. This approach may seem
specific to hyperplanes; similar methods can be used for kernel Fisher discriminant
analysis (Chapter 15), however. In the latter case, invariances are enforced by
performing oriented PCA [364, 140].

Let us now modify the analysis of the SV classification algorithm as described
in Chapter 7. There, we had to minimize (7.10) subject to (7.11). When we want
to construct invariant hyperplanes, the situation is slightly different. We do not
only want to separate the training data, but we want to separate it in such a way
that submitting a pattern to a transformation of an a priori specified Lie group
(with elements t t ) does not alter its class assignment. This can be achieved
by enforcing that the classification boundary be such that group actions move
patterns parallel to the decision boundary, rather than across it. A local statement
of this property is the requirement that the Lie derivatives t t 0

txi be orthogonal
to the normal vector w which determines the separating hyperplane in feature
space. Thus we modify (7.10) by adding a second term to enforce invariance;Invariant

Hyperplane
Objective
Function

(w)
1
2

(1 )
1
m

m

∑
i 1

w
t t 0

txi

2

w 2 (11.14)

For 1, we recover the original objective function; for values 1 0, different
amounts of importance are assigned to invariance with respect to the Lie group of
transformations t.

The above sum can be rewritten as

1
m

m

∑
i 1

w
t t 0

txi

2 1
m

m

∑
i 1

w
t t 0

txi t t 0
txi w

w Tw (11.15)

where the matrix T is defined as in (11.7),

T :
1
m

m

∑
i 1 t t 0

txi t t 0
txi (11.16)

(if we want to use more than one derivative operator, we also sum over these;
normalization may then be required). To solve the optimization problem, we
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introduce a Lagrangian,

L(w b )
1
2

(1 ) w Tw w 2
m

∑
i 1

i yi( xi w b) 1 (11.17)

with Lagrange multipliers i. At the solution, the gradient of L with respect to w
must vanish,

(1 )Tw w
m

∑
i 1

i yixi 0 (11.18)

As the left hand side of (11.15) is non-negative for any w, T is a positive definite
(though not necessarily strictly definite) matrix. It follows that for

T : (1 )T 1 (11.19)

to be invertible, 0 is a sufficient condition. In this case, we get the following
expansion for the solution vector;

w
m

∑
i 1

i yiT 1xi (11.20)

Together with (7.3), (11.20) yields the decision functionDecision
Function

f (x) sgn
m

∑
i 1

i yi x T 1xi b (11.21)

Substituting (11.20) into the Lagrangian (11.17), and given the fact that at the
point of the solution, the partial derivative of L with respect to b must vanish
(∑m

i 1 i yi 0), we get

W( )
1
2

m

∑
i 1

i yi T 1xi T T 1
m

∑
j 1

j y jx j

m

∑
i 1

i yixi T 1
m

∑
j 1

j y jx j

m

∑
i 1

i (11.22)

By virtue of the fact that T , and thus also T 1, is symmetric, the dual form of the
optimization problem takes the form

maximize
m

W( ) ∑m
i 1 i

1
2 ∑m

i j 1 i j yiy j xi T 1x j

subject to i 0 i 1 m

and ∑m
i 1 i yi 0

(11.23)

— we have thus arrived at the result of Section 11.4.1, using a rather different
approach. The same derivation can be carried out for the nonseparable case,
leading to the corresponding result with the soft margin constraints (7.38) and
(7.39).

We are now in a position to take the step into feature space. As in Section 7.4,
we now think of the patterns xi as belonging in some dot product space related
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to input space by a map

Φ : (11.24)

xi xi Φ(xi) (11.25)

Here could be N , or some other space that allows us to compute Lie derivatives.
Unfortunately, (11.21) and (11.23) are not expressed in terms of dot products be-

tween images of input patterns under Φ. Hence, substituting kernel functions for
dot products will not do. In addition, note that T now becomes an operator in
a possibly infinite-dimensional space, and is written T . In this case, we can no
longer easily compute the derivatives of patterns with respect to the transforma-
tions. We thus resort to finite differences with some small t 0, and define the
tangent covariance matrix C asTangent

Covariance
Matrix in Feature
Space

T :
1

mt2

m

∑
j 1

Φ( tx j) Φ(x j) Φ( tx j) Φ(x j) (11.26)

For the sake of brevity, we omit the summands corresponding to derivatives in the
opposite direction, which ensure that the data set is centered. For the final tangent
covariance matrix T, these do not make a difference, as the two negative signs
cancel out.

We cannot compute T explicitly, but we can nevertheless compute (11.21) and
(11.23). First note that for all x x N ,

Φ(x) T 1Φ(x ) T
1
2 Φ(x) T

1
2 Φ(x ) (11.27)

with T
1
2 being the positive definite square root of T 1. At this point, Kernel PCA

(Section 1.7) comes to our rescue. As T is symmetric, we may diagonalize it as

T UDU (11.28)

where U is a unitary matrix (U U 1); hence,

T
1
2 UD

1
2 U (11.29)

Substituting (11.29) into (11.27), and using the fact that U is unitary, we obtain

Φ(x) T 1Φ(x ) UD
1
2 U Φ(x) UD

1
2 U Φ(x ) (11.30)

D
1
2 U Φ(x) D

1
2 U Φ(x ) (11.31)

This, however, is simply a dot product between Kernel PCA feature vectors:
U Φ(x) computes projections onto eigenvectors of T (i.e., features), and D

1
2

rescales them. To get the eigenvectors, we carry out Kernel PCA on T . Essen-
tially, we have to go through the analysis of Kernel PCA using T instead of the
covariance matrix of the mapped data in . We expand the eigenvectors as

v
m

∑
i 1

i(Φ( txi) Φ(xi)) (11.32)
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and look for solutions of the eigenvalue equation v T v, with (let us
assume that 1; for 1, all eigenvalues are identical to , the minimal
eigenvalue). Note that if is infinite-dimensional, then there are infinitely many
eigenvectors with eigenvalue . We cannot find all of these via Kernel PCA,
hence we impose the restriction . We shall return to this point below.

These associated eigenvectors lie in the span of the tangent vectors. By analogy
to (1.59), we then obtain

m ((1 )Kt 1) (11.33)

where Kt is the Gram matrix of the tangent vectors, computed using the same finite
difference approximation for the tangent vectors as in (11.26) (see [467]);

(Kt)i j Φ( txi) Φ(xi) Φ( tx j) Φ(x j) (11.34)

(for a different way of expressing Kt, see Problem 11.4). To ensure that the eigen-
vectors vk (11.32) are normalized, the corresponding expansion coefficient vectors

k have to satisfy

1 k

1
k k (11.35)

where the k are those eigenvalues of (1 )Kt 1 that are larger than (Prob-
lem 11.6). Feature extraction is carried out by computing the projection of Φ(x)
onto eigenvectors v;

v Φ(x)
m

∑
k 1

k (Φ( txk) Φ(xk)) Φ(x)

m

∑
k 1

k(k( txk x) k(xk x)) (11.36)

What happens to all the eigenvectors of T with eigenvalue ? To take these into
account, we decompose T into a part 1 1 T that has a rank of at most m, and
another part 1 1 that is a multiple of the identity.9 We thus find that the invariant
kernel (11.27) can be written as

Φ(x) T 1Φ(x )
1

Φ(x) Φ(x ) Φ(x)
1

1 T 1 Φ(x ) (11.37)

For the first term, we can immediately substitute the original kernel to get 1 k(x x ).
For the second term, we employ the eigenvector decomposition (11.28), T
UDU . The diagonal elements of D are the eigenvalues of T , and satisfy Dii

for all i. Using the same eigenvectors, we can decompose 1 1 T 1 as

1
1 T 1 U

1
1 D 1 U (11.38)

The rank of this operator being at most m, it suffices to compute the columns of

9. Thanks to Olivier Chapelle for useful suggestions.
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U which correspond to the part of the space where the operator is nonzero. These
columns are the normalized eigenvectors v1 vq (q m) of T that have eigen-
values , as described above. Let us denote the corresponding eigenvalues by

1 q.
We can thus evaluate the invariant kernel (11.37) as

Φ(x) T 1Φ(x )
1

k(x x )
q

∑
i 1

vi Φ(x)
1 1

i
vi Φ(x ) (11.39)

where the dot product terms are computed using (11.36).
As in the linear case, we can interpret the second part of this kernel as a prepro-

cessing operation. Since 1 1
i

0 for all i 1 q, we can take square roots,
ending up with the preprocessing operation

1 1
1 0

0
. . . 0

... 0 1 1
p

U (11.40)

As above, U computes q eigenvector projections of the form (11.36).
We conclude the theoretical part of this section by noting an essential difference

between the approach described and that of Section 11.4.1, which we believe is an
advantage of the present method: in Section 11.4.1, the pattern preprocessing is
assumed to be linear. In the present method, the goal to get invariant hyperplanes
in feature space leads to a nonlinear preprocessing operation.

11.4.3 Experiments

Let us now consider some experimental results, for the linear case. The nonlinear
case has only recently been explored experimentally on real-world data, with
promising initial results [100]. We used the small MNIST database described in
Section A.1. We start by giving some baseline classification results.

Using a standard linear SVM (that is, a separating hyperplane, Section 7.5), we
observe a test error rate of 9 8%; by using a polynomial kernel of degree 4, this
drops to 4 0%. In all of the following experiments, we used degree 4 kernels of
various types. In a series of reference experiments with a homogeneous polyno-Smoothing

Results mial kernel k(x x ) x x 4, using preprocessing with Gaussian smoothing ker-
nels of standard deviation in the range 0 1 0 2 1 0, we obtained error rates
which gradually increase from 4 0% to 4 3%. We conclude that no improvement
of the original 4 0% performance is possible by a simple smoothing operation.
Therefore, if our linear preprocessing ends up doing better, it is not due to a sim-
ple smoothing effect.

Table 11.4 reports results obtained by preprocessing all patterns with B (cf.
(11.10)), with various values of (cf. (11.11)). In the experiments, the patterns
were scaled to have entries in [0 1], then B was computed, using horizontal and
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Table 11.4 Classification error rates, when the kernel k(x x ) x x 4 is modified with
the invariant hyperplane preprocessing matrix B C

1
2 ; cf. Eqs. (11.10)–(11.11). Enforcing

invariance with 0 2 0 3 0 9 leads to improvements over the original performance
( 1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
error rate in % 4.2 3.8 3.6 3.6 3.7 3.8 3.8 3.9 3.9 4.0

Figure 11.5 The first pattern in the small MNIST database, preprocessed with B C
1
2

(cf. equations (11.10)–(11.11)), with various amounts of invariance enforced. Top row:
0 1 0 2 0 3 0 4; bottom row: 0 5 0 6 0 7 0 8. For some values of , the preprocessing
resembles a smoothing operation; preprocessing leads to somewhat higher classification
accuracies (see text) than the latter, however.

vertical translations (this was our choice of t), and preprocessing was carriedInvariant
Hyperplanes
Results

out; finally, the resulting patterns were scaled back again (for snapshots of the
resulting patterns, see Figure 11.5). The scaling was done to ensure that patterns
and derivatives lay in comparable regions of N : the most common value of
the derivative is 0, corresponding to the constant pattern background; this value
should thus also be the most common value in the original patterns. The results
show that even though (11.7) is derived for the linear case, it leads to slight
improvements in the nonlinear case (for a degree 4 polynomial).

The above [0 1] scaling operation is affine rather than linear, hence the argumentDimensionality
Reduction
Results

leading to (11.13) does not hold for this case. We thus only report results on
dimensionality reduction for the case where the data are kept in [0 1] scaling
during the whole procedure.

We used a translation invariant radial basis function kernel (7.27) with c 0 5.
On the [ 1 1] data, for 0 4, this leads to the same performance as the degree
4 polynomial; that is, 3.6% (without invariance preprocessing, meaning that for

1, the performance is 3.9%). To get the identical system on [0 1] data, the
RBF width was rescaled accordingly, to c 0 125. Table 11.5 shows that discarding
principal components can further improve performance, up to 3.3%.
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Table 11.5 Results obtained through dropping directions corresponding to small eigen-
values of C, or in other words, dropping less important principal components (cf. (11.13)),
for the translation invariant RBF kernel (see text). All results given are for the case 0 4
(cf. Table 11.4).

PCs discarded 0 50 100 150 200 250 300 350
error rate in % 3.6 3.6 3.6 3.5 3.5 3.4 3.3 3.6

11.5 The Jittered SV Method

We now follow [134] in describing a method which, like the virtual SV method,
applies transformations to patterns; this time, however, the transformations are
part of the kernel definition. This idea is called kernel jittering [134]; it is closely
related to a concept called tangent distance [496]. Loosely speaking, kernel jittering
consists of moving around the inputs of the kernel (or, in [496], of a two-norm
distance), using transformations such as translations, until the match is best.

For any admissible SVM Gram matrix Ki j k(xi x j), consider a jittering kernel
form KJ

i j kJ(xi x j), defined procedurally as follows:Jittered Kernel

1. Consider all jittered forms of example xi (including itself) in turn, and select
the one (xq) “closest” to x j; specifically, select xq to minimize the metric distance
between xq and x j in the space induced by the kernel. This distance is given by 10

Kqq 2Kq j Kj j (11.41)

2. Let KJ
i j Kq j.

For some kernels, such as radial-basis functions (RBFs), simply selecting the
maximum Kq j value to be the value for KJ

i j suffices, since the Kqq and Kj j terms are
constant in this case. This similarly holds for translation jitters, as long as sufficient
padding exists so that no image pixels fall off the image after translations. In
general, a jittering kernel may have to consider jittering one or both examples.
For symmetric invariances such as translation, however, it suffices to jitter just one
example.

The use of jittering kernels is referred to as the JSV approach. A major motiva-
tion for considering this approach is that VSV approaches scale at least quadrat-
ically in the number (J) of jitters considered. This is because SVM training scales
at least quadratically in the number of training examples, and VSV essentially ex-

10. This corresponds to Euclidean distance in the feature space defined by the kernel, using
the definition of the two-norm,

xi x j
2 xi xi 2 xi x j x j x j
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pands the training set by a factor of J. Jittering kernels are J times more expensive
to compute, since each KJ

i j computation involves finding a minimum over J com-
putations of Ki j. The potential benefit, however, is that the training set is J times
smaller than methods such as VSV. Thus, the potential net gain is that JSV train-
ing may only scale linearly in J, instead of quadratically as in VSV. Furthermore,
through comprehensive use of kernel caching, as is common in modern practical
SVM implementations, even that factor of J may be largely amortized away.

As mentioned above, the kernel values induce a set of distances between the
points (cf. footnote 10). For positive definite kernels, we know that the feature
space has the structure of a dot product space, thus we obtain a valid metric in
that space (see Section B.2.2). For jittering kernels, this is not necessarily the case;
in particular, the triangle inequality can be violated.

For example, imagine three simple images A, B, and C consisting of a single
row of three binary pixels, with A =(1,0,0), B=(0,1,0), and C=(0,0,1). The minimal
jittered distances (under 1-pixel translation) between A and B and between B and
C are 0. However, the distance between A and C is positive (e.g., 1-2*0+1 = 2 for
a linear kernel). Thus, the triangle inequality requirement of d(A B) d(B C)
d(A C) is violated in this example (cf. also [496]). Note that with a sufficiently
large jittering set (such as the one including both 1-pixel and 2-pixel translations
in the above example), the triangle inequality is not violated.

In practice, violations tend to be rare, and are unlikely to present difficulties in
training convergence (the SMO algorithm usually handles such cases; see [134]).
Based on experiments with kernel jittering to date, it is still unclear how much im-
pact any such violations typically have on generalization performance in practice.

Jittering kernels have one other potential disadvantage compared with VSV
approaches: the kernels must continue to jitter at test time. In contrast, the VSV
approach effectively compiles the relevant jittering into the final set of SVs it
produces. Nonetheless, in cases where the final JSV SV set size is much smaller
than the final VSV SV set size, the JSV approach can still be faster at test time.

In [134], some experiments are reported which compare VSV and JSV methods
on a small subset of the MNIST training set. These experiments illustrate typical
relative behaviors, such as the JSV test time often being almost as fast or faster than
VSV (even though JSV must jitter at test time), due to JSV having many fewer final
SVs. Furthermore, both JSV and VSV typically beat standard SVMs (which do not
incorporate invariance). They also both typically beat query jitter as well, in which
the test examples are jittered inside the kernels during SVM output computations.
Query jitter effectively uses jittering kernels at test time, even though the SVM
is not specifically trained for a jittering kernel. This case was tested simply as
a control in such experiments, to verify that training the SVM with the actual
jittering kernel used at test time is indeed important.

While relative test errors between VSV and JSV vary, it does seem that VSV
methods are substantially more robust than JSV methods, in terms of the general-
ization error variance.
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11.6 Summary

Invariances can readily be incorporated in Support Vector learning machines, by
generating virtual examples from the Support Vectors, rather than from the whole
training set. The method yields a significant gain in classification accuracy for
a moderate cost in time: it requires two training runs (rather than one), and it
constructs classification rules utilizing more Support Vectors, thus slowing down
classification speed (cf. (7.25)). Given that Support Vector Machines are known to
exhibit fairly short training times (as indicated by the benchmark comparison of
[64], cf. also Chapter 10), the first point is usually not critical. Certainly, training
on virtual examples generated from the whole database would be significantly
slower. To compensate for the second point, we can use reduced set methods
(Chapter 18).

As an alternative approach, we can build known invariances directly into the
SVM objective function via the choice of kernel. With its rather general class of
admissible kernel functions, the SV algorithm provides ample possibilities for
constructing task-specific kernels. The method described for constructing kernels
for transformation invariant SVMs (invariant hyperplanes) has so far only been
applied to real world problems in the linear case (for encouraging toy results
on nonlinear data, cf. [100]), which probably explains why it is only seen to
lead to moderate improvements, especially when compared with the large gains
achieved by the Virtual SV method. The transformation invariant kernel method
is applicable to differentiable transformations — other types, such as those for
mirror symmetry, have to be dealt with using other techniques, such as the Virtual
Support Vector method or jittered kernels. Its main advantages compared with
the latter techniques are that in the linear case, it does not slow down testing
speed, and that using more invariances leaves training time almost unchanged. In
addition, it is rather attractive from a theoretical point of view, as it establishes a
surprising connection to invariant feature extraction, preprocessing, and principal
component analysis.

Although partly heuristic, the techniques in this chapter have led to the record
result on the MNIST database. In addition, SVMs present clear opportunities
for further improvement. More invariances (in the pattern recognition case, for
instance, small rotations, or varying ink thickness) could be incorporated. Further,
we might use only those Virtual Support Vectors which provide new information
about the decision boundary, or use a measure of such information to keep only
the most important vectors. Finally, if locality-improved kernels, to be described
in Section 13.3, prove to be as useful on the full MNIST database as they are on
subsets of it, accuracies could be substantially increased — admittedly at a cost in
classification speed.

We conclude this chapter by noting that all three techniques described should be
directly applicable to other kernel-based methods, such as SV regression [561] and
Kernel PCA (Chapter 14). Note, finally, that this chapter only covers some aspects
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of incorporating prior knowledge, namely about invariances. Further facets are
treated elsewhere, such as semiparametric modelling (Section 4.8), and methods
for dealing with heteroscedastic noise (Section 9.5).

11.7 Problems

11.1 (VSVs in Regression ) Apply the VSV method to a regression problem.

11.2 (Examples of Pattern Invariance Transformations ) Try to think of other pat-
tern transformations that leave class membership invariant; for instance, in the case of
image processing: translations, brightness transformations, contrast transformations,

11.3 (Task-Dependent Tangent Covariance Matrix ) Experiment with tangent co-
variance matrices computed from the SVs only. Compare with the method of [364].

11.4 (Alternative Expression of the Tangent Vector Gram Matrix [100] ) Prove
that under suitable differentiability conditions, the elements (11.34) of the tangent vector
Gram matrix can be written as a quadratic form in terms of the kernel Hessian,

(Kt)i j lim
t 0

(( txi) xi)
2k(xi x j)

xi x j
( tx j) x j (11.42)

Hint: note that the Hessian can be written as
2k(xi x j)

xi x j xi
Φ(xi) xj

Φ(x j) (11.43)

11.5 (Regularizing the Tangent Covariance Matrix ) Discuss the difference be-
tween adding 1 to the tangent covariance matrix in the linear case, and in the nonlinear
case (Section 11.4). Note that in the nonlinear case, 1 only has an effect in the span of the
training patterns.

Rather than using the decomposition (11.37), try to deal with this problem by including
other patterns in the expansion. Perform experiments to test your approach.

11.6 (Eigenvectors of the Regularized Tangent Covariance Matrix ) Suppose v k

is an eigenvector of (1 )Kt 1 with eigenvalue k . Prove that to ensure
vk vk 1 in , the coefficient vector k has to satisfy (11.35).

11.7 (Nonlinear Invariant Kernels ) Implement the kernel (11.39) for a visual pat-
tern recognition problem, using small image translations to compute the approximate tan-
gent vectors (cf. (11.26)). Apply it and study the effect of and of the size of the image
translations.

11.8 (Scaling of Input Dimensions ) Consider kernels of the form k D(x x )
k(Dx Dx ), where D is a diagonal scaling matrix. How can you use prior knowledge
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to choose D? Can you devise a method which will drive a large fraction of the diago-
nal entries of D to 0 (“input feature selection”)? Discuss the relationship to Automatic
Relevance Determination and Relevance Vector Machines (Chapter 16).



 

12 Learning Theory Revisited

Chapter 5 mainly dealt with the fundamental problem of uniform convergence
and under which conditions it occurs, based on a VC perspective. The present
chapter takes a slightly more practical approach by proving that certain estimation
methods such as the minimization of a regularized risk functional or the leave-
one-out error are, indeed, reliable estimators of the expected risk. Furthermore,
it shows alternative means of determining the reliability of estimators, based on
entropy numbers of compact operators associated with function classes, and the
Kullback-Leibler divergence between prior and posterior distributions.

The chapter is organized as follows. In Section 12.1 we will introduce the notionOverview
of a concentrated random variable and state a concentration of measure inequality
of McDiarmid. This notion will become useful to prove that for minimizers of the
regularized risk functional the empirical risk is a not too unreliable estimator of the
expected loss. A similar fact holds also for the leave-one-out estimator, discussed
in Section 12.2. This estimator also enjoys other good properties, such as being
unbiased, its computation, however, is rather expensive. For this reason, we give
three methods of approximating this estimator, ranging from an O(d) to an O(d4)
method, where d is the number of nonzero expansion coefficients.

Further ways of assessing the generalization performance of an estimator are
explained in Sections 12.3 and 12.4. The first of these methods is based on the
concept of a distribution over classifiers much akin to a Bayesian estimator. The
second, in turn, takes an operator theoretic approach to measure the capacity of
the function class described by a kernel estimator explicitly. In short, it derives a
more fine grained measure of capacity than the VC dimension.

It is useful if the reader has some familiarity with the contents of Chapter 5, how-Prerequisites
ever it is not essential for an understanding of the Sections 12.1, 12.2, 12.3. Only
Section 12.4 assumes familiarity with the techniques underlying the derivation of
a VC Bound, as described in Section 5.5.

Knowledge of the theory of Reproducing Kernel Hilbert Spaces (Section 2.2.2) is
required for some of the proofs of Section 12.1 and 12.2. A good working knowl-
edge of matrix algebra is useful in Section 12.2, and before reading Section 12.3 we
recommend that the reader become familiar with the basics of Bayesian inference,
as described in Section 16.1. Finally, Section 12.4 will most likely be difficult for
readers not familiar with notions of functional analysis.
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Estimator
12.2 Leave one out

Mechanics
12.2.5 Statistical12.2.3 Span Bound

and Stability
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5.5 Building a
VC−Style Bound

12.4 Entropy and
Covering Numbers

12.3 PAC−Bayesian

16 Bayesian Inference

12.1 Concentration of Measure Inequalities

Most of the reasoning presented in this book is concerned with minimizing a
regularized risk functional Rreg[ f ]. This generates a very specific type of statistical
estimator and it may be expected that we could find some uniform convergence
bounds that take advantage of the fact that it is not an arbitrary estimator we are
dealing with. In what follows we use a slight extension of an idea by Bousquet and
Elisseeff [67], originally described in [160], to provide such a bound. It is based on
the concentration of measure inequalities.

These are a family of theorems which state that certain random variables
are concentrated, which means that, with high probability, the values of random
draws of are very close to their expected values E [ ]. In this case we say that the
distribution is concentrated around its mean. We have already encountered one of
these cases in Theorem 5.1, where we saw that the average over a set of bounded
random variables is, with high probability, close to the expected average.

The concept of concentration is, however, much more general than just that. It
deals with classes of functions g( 1 m) of random variables ( 1 m) which
have the property of being concentrated. For instance, if the influence of each i

on g is limited, g is not likely to vary much. What we show in the following is that
the minimizers of the regularized risk functional enjoy this property.

12.1.1 McDiarmid’s Bound

Roughly speaking, McDiarmid’s bound states that if arbitrary replacements of
random variables i do not affect the value of g excessively, then the random
variable g( 1 m) is concentrated.

Theorem 12.1 (McDiarmid [356]) Denote by 1 m iid random variables and as-McDiarmid’s
Bound sume that there exists a function g : m with the property that for all i [m] (we use
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the shorthand [m] : 1 m ), and ci 0,

sup
1 m i

g( 1 m) g( 1 i 1 i i 1 m) ci (12.1)

where i is drawn from the same distribution as i. Then

P g( 1 m) E(g( 1 m)) 2 exp
2 2

∑m
i 1 c2

i

(12.2)

This means that a bound similar to the law of large numbers can be applied to any
function g which does not overly depend on individual samples i. Returning to
the example from the introduction, if we define

g( 1 m) :
1
m

m

∑
i 1

i (12.3)

where i [a b], then, clearly, ci
1
m (b a) since f can only change by this amount

if one particular sample is replaced by another. This means that the rhs of (12.2)
becomes 2 exp 2m 2

(b a)2 , in other words, we recover Hoeffding’s bound (Theorem
5.1) as a special case. See also [137] for details.

12.1.2 Uniform Stability and Convergence

In order to apply these bounds to learning algorithms we must introduce the
notion of uniform stability. This is to determine the amount by which an estimate
f : based on the training data Z : (x1 y1) (xm ym) changes
if we change one of the training patterns.

Definition 12.2 (Uniform Stability) Denote a training sample of size m by Z. More-Uniform Stability
over, denote by Zi : (Z zi ) z (where z : (x y)) the training sample where the ith
observation is replaced by z. Finally, denote by fZ the estimate produced by our learning
algorithm of choice (and likewise by fZi the estimate based on Zi). We call this mapping
Z fZ uniformly -stable with respect to a loss function c if

c x y fZ(x) c x y fZi(x) for all (x y) all Z and all i (12.4)

This means that the loss due to the estimates generated from Z, where an arbitrary pattern
of the sample has been replaced, will not differ anywhere by more than .

As we shall see, the notion of uniform stability is satisfied for regularization net-
works of different types, provided that the loss function c is Lipschitz continuous
(provided that c has bounded slope). The following theorem uses Theorem 12.1 to
prove that -stable algorithms exhibit uniform convergence of the empirical risk
Remp[ f ] to the expected risk R[ f ].
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Theorem 12.3 (Bousquet and Elisseeff [67]) Assume that we have a -stable algo-
rithm with the additional requirement that f Z(x) M for all x and for all training
samples Z . Then, for m 8M2

2 , we have,

P Remp[ fZ] R[ fZ]
64Mm 8M2

m 2 (12.5)

and for any m 1

P Remp[ fZ] R[ fZ] 2 exp
m 2

2(m M)2 (12.6)

This means that if decreases with increasing m, or, in particular, if O(m 1),
then we obtain bounds that are optimal in their rate of convergence, specifically,
bounds which have the same convergence rate as Hoeffding’s bound (5.7).

To keep matters simple, we only prove (12.6). The details for the proof of (12.5),
which is rather technical, can be found in [160].

Proof We first give a bound on the expected difference between Remp[ fZ] and
R[ fZ] (hence the bias term) and subsequently will bound the variance. This leads
to

EZ Remp[ fZ] R[ fZ] EZ z
1
m

m

∑
i 1

c(xi yi fZ(xi)) c(x y fZ(x)) (12.7)

EZ
1
m

m

∑
i 1

c(x y fZi(x)) c(x y f Z(x)) (12.8)

The last equality (12.8) followed from the fact that, since we are taking the ex-
pectation over Z z, we may as well replace zi by z in the terms stemming from
the empirical error. The bound then follows from the assumption that we have a
uniformly -stable algorithm.

Now that we have a bound on the expectation, we deal with the variance.
Since we want to apply Theorem 12.1, we have to analyze the deviations of
(Remp[ fZ] R[ fZ]) from (Remp[ fZi] R[ fZi]).

Remp fZ R fZ Remp fZi R fZi (12.9)

R fZ R fZi Remp fZ Remp fZi (12.10)
1
m

c xi yi fZ(xi) c x y fZi(x)

1
m

m

∑
j i

c x j y j fZ(x j) c x j y j fZi(x j) 2M
m (12.11)

Here (12.10) follows from the triangle inequality and the fact that the learning
algorithm is -stable. Finally, we split the empirical risks into their common parts
depending on Zi and the remainder. From (12.11) it follows that ci 2 m M

m , as
required by Theorem 12.1. This, in combination with (12.8), completes the proof.
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12.1.3 Uniform Stability of Regularization Networks

We next show that the learning algorithms we have been studying so far actually
satisfy Definition 12.2 and compute the corresponding value of .

Theorem 12.4 (Algorithmic Stability of Risk Minimizers) The algorithm minimiz-
ing the regularized risk functional Rreg

Rreg[ f ] : Remp[ f ]
2

f 2 1
m

m

∑
i 1

c(xi yi f (xi)) 2
f 2 (12.12)

has stability
2C2 2

m
where is a bound on k(x ) k(x x), c is a convex loss

function, is the RKHS norm induced by k, and C is a bound on the Lipschitz constant
of the loss function c(x y f (x)), viewed as a function of f (x).

Since the proof is somewhat technical we relegate it to Section 12.1.4. Let us now
discuss the implications of the theorem.

We can see that the stability of the algorithm depends on the regularization
constant via 1

m , hence we may be able to afford to choose weaker regularization if
the sample size increases. For many estimators, such as Support Vector Machines,
we use a constant value of C 1

m . In the context of algorithmic stability this means
that we effectively use algorithms with the same stability, regardless of the sample
size.

The next step is to substitute the values of into (12.6) to obtain practically
useful uniform convergence bounds (to keep matters simple we will only use
(12.6) of Theorem 12.3). It is straightforward to obtain corresponding statements
for (12.5) (see Problem 12.1). The following theorem is a direct consequence of
Theorems 12.3 and 12.4.

Theorem 12.5 (Uniform Convergence Bounds for RKHS) Given an algorithm min-
imizing the regularized risk functional, as in (12.12), with the assumptions of Theorem
12.4 we obtain

P Remp[ fZ] R[ fZ] 2 exp
m
2 M

2
1

2
M

(C )2
2

(12.13)

where 2C2 2

m . The
2

M2 term in the exponent stems from the fact that, in order
to make a statement concerning a certain precision , we have to take the total
scale M of the function values and loss functions into account. The (C )2 term
determines the effective dynamic range of the function class, namely by how much
the functions may change. M specifies the effective regularization strength; how
much simple functions are preferred with respect to the full range M of the loss
function c.

Finally, we can see that for fixed the rate of convergence of the empirical risk
Remp[ fZ] to R[ fZ] is given by exp( c0m), which is identical to the rates given by
Hoeffding’s bound (5.7). Note, however, that in (5.7) the constant is 2, whereas
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in the present case c0 may be significantly smaller. Thus, it seems as if the cur-
rent bounds are much worse than the classical VC-type bounds (see Section 5.5)
which essentially scale with ( m ) exp( 2m 2M 2) [574]. Yet this is not true in
general; usually the covering number ( m ) (see Section 12.4 for more details)
grows with the sample size m which counteracts the effect of the exponential term,
exp( 2m 2M 2).

Furthermore, for practical considerations, (12.13) may be very useful, even if
the rates are not optimal, since the bound is predictive even for small sample
sizes and moderate regularization strength. Still, we expect that the constants
could be improved. In particular, instead of m

2 , we suspect that 2m would be more
appropriate.

In addition, note that the current bound uses a result concerning worst case
stability. For most observations such as non-Support Vectors, however, changing a
single pattern is unlikely to change the estimate at all. We suspect that the average
stability of the estimator is much higher than what has been shown so far. It is (still)
an open problem how this goal can be achieved. Finally, the bound does not take
the specific form of the RKHS into account, but instead assumes that the space
is completely spherical. This leaves room for further theoretical improvement of
the bound. Let us proceed to a practical example.

Corollary 12.6 (Gaussian Kernel SV Regression with -loss) In the case of SV Re-
gression with Gaussian RBF kernels and the -insensitive loss (1.44) the risk of deviation
between empirical and expected risk is given by

P Remp[ fZ] R[ fZ] ¯ 2 exp
m
2

¯
M

2

1
2
M

2

(12.14)

where M denotes an upper bound on the loss and is a regularization parameter.

This is since 1 for Gaussian RBF kernels (here k(x x) 1) and, further, the loss
function (1.44) has bounded slope 1, thus also C 1.

12.1.4 Proof of Theorem 12.4

We require an auxiliary lemma.

Lemma 12.7 (Convex Functions and Derivatives) For any differentiable convex func-
tion f : and any a b we have

( f (a) f (b))(a b) 0 (12.15)

Proof Due to the convexity of f we know that f (a) (b a) f (a) f (b) and,
likewise, f (b) (a b) f (b) f (a). Summing up both inequalities and subtracting
the terms in f (a) and f (b) proves (12.15).

Proof of Theorem 12.4. We must extend the notation slightly insofar as we will
explicitly introduce the dependency on the data in the empirical risk functional.
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This simply means that, instead of writing Rreg[ f ], we will use Rreg[ f Z] and
Rreg[ f Zi] (and likewise Remp[ f Z]) for the remainder of the proof in order to
distinguish between different training sets.

Recall that fZ minimizes Rreg[ f Z], that is, the functional derivative of Rreg[ f Z]
at fZ vanishes,

f Rreg[ fZ Z] f Remp[ fZ Z] fZ 0 (12.16)

f Rreg[ fZi Zi] f Remp[ fZi Zi] fZi 0 (12.17)

Next, we construct an auxiliary risk function R̃[ f ] by

R̃[ f ] : f Remp[ fZ Z] f Remp fZi Zi f fZi
2

f fZi
2 (12.18)

Clearly R̃[ f ] is a convex function in f (the first term is linear, the second quadratic).
Additionally, by construction

R̃[ fZi] 0 (12.19)

Furthermore, the minimum of R̃[ f ] is obtained for f fZ. One can see this by
taking the functional derivative of R̃[ f ] to find

f R̃[ f ] f Remp[ fZ Z] f Remp fZi Zi f fZi f Remp[ fZ Z] f (12.20)

Eq. (12.20) vanishes for f fZ due to (12.16). From (12.19) we therefore conclude
that R̃[ fZ] 0. In order to obtain bounds on fZ fZi , we have to get rid of some
of the first terms in R̃[ f ]. We observe

m f Remp[ fZ Z] f Remp fZi Zi fZ fZi (12.21)

∑
j i

c x j y j fZ x j c x j y j fZi x j fZ(x j) fZi(x j)

c xi yi fZ (xi) fZ(xi) fZi(xi) c x y fZi (x) fZ(x) fZi(x) (12.22)

c xi yi fZ (xi) fZ(xi) fZi(xi) c x y fZi (x) fZ(x) fZi (x) (12.23)

In order to obtain (12.22) we use the same techniques as exploited in the proof
of Theorem 4.2, in particular that f c(x y f (x)) c (x y f (x))k(x ). Collecting
common terms between Remp[ f Z] and Remp[ f Zi] leads to the result. For (12.23)
we use Lemma 12.7 applied to the loss function c(x y f (x)) which is a convex
function of f (x). Combining (12.23) with R̃[ fZ] 0 gives

0 c xi yi fZ (xi) fZ(xi) fZi(xi) c x y fZi (x) fZ(x) fZi(x)
m
2

fZ fZi
2 (12.24)

Since the norm of the derivative of the loss function c (x y f (x)) is bound by C
and fZ(x) fZi M we have

m
2

fZ fZi
2

c x y fZi (x) fZ(x) fZi(x) c xi yi fZ (xi) fZ(xi) fZi(xi) (12.25)



366 Learning Theory Revisited

Finally, we must convert our result regarding the proximity of fZ and fZi in
to a statement regarding the corresponding values of the loss functions. By the
Cauchy-Schwarz inequality we can see that, for any f f and any x

f (x) f (x) f f k(x ) f f k(x ) f f (12.26)

Since c is Lipschitz continuous this leads to

c(x y fZ) c(x y fZi) C fZ(x) fZi(x) C fZ fZi C
8CM
m

(12.27)

Using (12.27) in (12.25) yields

m
2

fZ fZi
2 C fZ fZi (12.28)

and, thus, fZ fZi
2C
m . Substituting this into (12.27) proves the claim by

c(x y fZ) c(x y fZi)
2C2 2

m
.

An extension to piecewise convex loss functions can be achieved by replacing the
derivatives by subdifferentials. Most equalities for optimality conditions become
statements about memberships in sets. The auxiliary lemma can be analogously
extended, and the overall theorem stated in terms of an upper bound on the values
of the subdifferentials of the loss function. Since this would clutter the notation
even further, we have refrained from that. A second way of proving the theorem
for arbitrary convex loss functions uses Legendre transformations of the empirical
risk term. See [615] among others, for details.

12.2 Leave-One-Out Estimates

Rather than betting on the proximity between the empirical risk and the expected
risk we may make further use of the training data and compute what is commonly
referred to as the leave-one-out error of a sample. The basic idea is that we find an
estimate f i from a sample consisting of m 1 patterns by leaving the ith pattern
out and, subsequently, compute the error of misprediction on (xi yi). The error is
then averaged over all m possible patterns. The hope is that such a procedure will
provide us with a quantity that is very closely related to the real expected error.

12.2.1 Theoretical Background

Before we delve into the practical details of estimating the leave-one-out error, we
need a formal definition and have to prove that the leave-one-out estimator is a
useful quantity.
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Definition 12.8 (Leave-One-Out Error) Denote by f Z the estimate obtained by a learn-Leave-One-Out
Error ing algorithm, given the sample Z, by Zi : Z (xi yi) the sample obtained by removing

the ith pattern, and by fZi the corresponding estimate, obtained by the same learning algo-
rithm (note that we changed the definition of Zi from that in the previous section). Then
the leave-one-out error is defined as

RLOO(Z) :
1
m

m

∑
i 1

c(xi yi fZi(xi)) (12.29)

The following theorem by Luntz and Brailovsky [335] shows that RLOO(Z) is an
almost unbiased estimator.1

Theorem 12.9 (Leave-One-Out Error is Almost Unbiased [335]) Denote by P a dis-
tribution over , and by Zm and Zm 1 samples of size m and m 1 respectively,Unbiasedness of

Leave-One-Out drawn iid from P. Moreover, denote by R[ fZm 1 ] the expected risk of an estimator derived
from the sample Zm 1. Then, for any learning algorithm, the leave-one-out error is almost
unbiased,

EZm 1 R[ fZm 1 ] EZm [RLOO(Zm)] (12.30)

Proof We begin by rewriting EZm 1 R[ fZm 1] in terms of expected values only. By
definition (see (3.12)) R[ f ] : E c(x y f (x)) and, therefore, the lhs of (12.30) can
be written as

EZm 1 R[ fZm 1 ] EZm 1 (x y) c(x y fZm 1(x)) (12.31)

The leave-one-out error, on the other hand, can be restated as

EZm [RLOO(Zm)]
1
m

m

∑
i 1

EZm c(xi yi fZi
m
(xi))

EZm 1 (xm ym) c(xm ym fZm 1(xm)) (12.32)

Here we use the fact that expectation and summation can be interchanged. In
addition, a permutation argument shows that all terms under the sum have to be
equal, hence we can replace the average by one of the terms. Finally, if we rename
(xm ym) by (x y), then (12.32) becomes identical to the rhs of (12.31) which proves
the theorem.

This demonstrates that the leave-one-out error is a sensible quantity to use. We are
short, however, of another key ingredient required in the use of this method when
bounding the error of an estimator; we need a bound on the variance of RLOO(Z).
While general results exist, which show that the leave-one-out estimator is not a
worse estimate than the estimate based on the empirical error (see Kearns [285] for
example, who shows that at least the rate is not worse), we would expect that, on
the contrary, the leave-one-out error is much more reliable than the empirical risk.

1. The term “almost” refers to the fact that the leave-one-out error provides an estimate for
training on sets of size m 1 rather than m, cf. Proposition 7.4.
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We are not aware of any such result in the context of minimizers of the regu-
larized risk functional (see [136] for an overview of bounds on the leave-one-out
error). In the following we state a result which is a slight improvement on Theorem
12.3 and which uses the same concentration of measure techniques as in Section
12.1 (see also [68]).

Theorem 12.10 (Tail Bound for Leave-One-Out Estimators) Denote by A a -stable
algorithm (for training set of size m 1) with the additional requirement that 0 A(Z)Tail Bound

for LOO M for all z and for all training samples Z . Then we have;

P RLOO(Z) EZ [RLOO(Z)] 2 exp
2m 2

(m M)2 (12.33)

Proof The proof is very similar to that of Theorem 12.3 and uses Theorem 12.1.
All we must do is show that RLOO(Z) does not change by too much if we replace
one of the patterns in Z by a different pattern. This means that, for Zi : Z zi z
(where z : (x y)), we have to determine a constant c0 such that

RLOO(Z) RLOO(Zi) c0 for all i (12.34)

In the following we denote by f j
Z (and f j

Zi respectively) the estimate obtained when
leaving out the jth pattern. We may now expand (12.34) as follows.

RLOO(Z) RLOO(Zi)
1
m ∑

j i

c x j y j f j
Z(x j) c x j y j f j

Zi(x j)

1
m

c xi yi f i
Z(xi) c x y f i

Zi(x) (12.35)

1
m ∑

j i

M
m

M
m

(12.36)

In (12.36) we use the fact that we have a -stable algorithm, hence the individ-
ual summands are bounded by . In addition, the loss at arbritrary locations is
bounded from above by M (and by 0 from below), hence two losses may not differ
by more than M overall. This shows that co

M
m . Substituting this into (12.2)

proves the bound.

We may use the values of computed for minimizers of the regularized risk
functional (Theorem 12.4 and Corollary 12.6) in order to obtain practical bounds.
The current result is an improvement on the confidence bounds available for
minimizers of the regularized risk functional (there is no dependency on in the
confidence bound and the constants in the exponential term are slightly better).
One would, however, suspect that much better bounds should be possible.

In particular, rather than bounding each individual term in (12.35) by m , it
should be possible to take advantage of averaging effects and, thus, replace the
overall bound by m for example. It is an open question whether such a bound
can be obtained.
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Also note that Theorem 12.10 only applies to Lipschitz continuous, convex loss
functions. This means that we cannot use the bound in the case of classification,
since the loss function is discontinuous (we have 0-1 loss). Still, the leave-one-
out error turns out to be currently the most reliable estimator of the expected error
available. Hence, despite some lack of theoretical justification, one should consider
it a method of choice when performing model selection for kernel methods.

This brings us to another problem; how should we compute the leave-one-out
error efficiently, without running a training algorithm m times? We must find
approximations or good upper bounds for RLOO(Z) which are cheap to compute.

12.2.2 Lagrange Multiplier Estimates

One of the most intuitive and simplest bounds on the leave-one-out error to
compute is one based on the values of the Lagrange multipliers [259]. In its original
form it was proven for regularized risk functionals without constant threshold b,
so, for f . It can be stated as follows.

Theorem 12.11 (Jaakkola and Haussler [259]) Denote by Z a training set
for classification, and by f (x) ∑m

i 1 i yik(xi x) the minimizer of the regularized risk
functional (7.35). Then an upper bound on the leave-one-out error is

RLOO(Z)
1
m

m

∑
i 1

yi f (xi) ik(xi xi) (12.37)

where is the step function.

Proof Recall (7.37). This is the special case of a convex optimization problem of
the following form;

minimize D( ) :
m

∑
i 1

( i)
1
2

m

∑
i j 1

i j yiy jk(xi x j)

subject to 0 i C for all i [m]
(12.38)

Here ( i) is the term stemming from the loss function (in SV classification ( i)
i). Moreover, denote the restriction of D into the set Z (xi yi) by Di( ). Denote

by m the minimizer of (12.38) and by i m 1 the minimizer of the
corresponding problem in Di. Finally, denote the restriction of onto m obtained
by removing the ith component by ¯ (and likewise f̄ f i f̄ i).

By construction Di( i) Di( ¯ ). We modify Di slightly such that the changed
version has ¯ as its minimum. One may check that

D̄i( ) : Di( ) yi i

m

∑
j 1 j i

y j jk(xi x j) Di( ) yi i ( f (xi) i yik(xi xi))(12.39)

satisfies this property. Thus, we have D̄i( i) D̄i( ¯ ). Expanding terms we obtain

D̄i( ¯ ) Di( ¯ ) D̄i( i) Di( i) yi i

m

∑
j 1 j i

y j
i
jk(xi x j) yi i f i(xi) (12.40)
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Since i 0 for all i [m] this implies

yi( f (xi) i k(xi xi)) yi f i(xi) (12.41)

As a leave-one-out error occurs exactly if yi f i(xi) 0 this means that yi( f (xi)

i k(xi xi)) 0 is a necessary condition for a leave-one-out error and, thus, can be
used as an upper bound on it.

Note that we cannot directly apply this bound to the classical SV setting since
there f (x) w Φ(x) b, specifically, there exists a parametric constant term
b which is not regularized at all. Joachims [268] shows that Theorem 12.11 can
be modified in such a way to accommodate for this setting, namely replacing
f (xi) ik(xi xi) by f (xi) 2 ik(xi xi). Practical experiments show that this bound
is overly conservative [268]. In fact, for all practical purposes, Theorem 12.11 seems
to be predictive enough, even in the case of a constant threshold.

Additionally, (12.37) motivates a modified SV training algorithm [592] by di-
rectly minimizing the bound of Theorem 12.11,Leave-One-Out

Machine
minimize

m

∑
i 1

i

subject to yi ∑
j i

j y jk(xi x j) 1 i for all i [m]

i i 0 for all i [m]

(12.42)

Here we choose a fixed constant for the margin to ensure non-zero solutions. It
appears that an algorithm which minimizes (12.42) does not have any free pa-
rameters. Unfortunately this is not quite true. Weston and Herbrich [592] modify
(12.42) to regularize the setting by replacing the inequality constraint by

yi ∑
j i

j y jk(xi x j) i yik(xi xi) 1 i for all i [m] (12.43)

where [0 1]. Unfortunately the effect of is not so easily understood. See the
original work [592] for more details, or Problem 12.2 for an alternative approach
to fixing the parametrization problem via the -trick. Let us now proceed to a
more accurate bound on the leave-one-out error, this time computed by using the
distribution of the Support Vectors.

12.2.3 The Span Bound for Classification

Vapnik and Chapelle [565] use a quantity, called the span of the Support Vectors,
in order to provide an upper bound on the number of errors incurred by a SVM.
The proof technique is quite similar to the one in the previous section. The main
difference is that the Lagrange multipliers are adapted in such a way as to accomo-
date the constant threshold and the fact that only a subset of patterns are chosen as
Support Vectors. Consequently, we obtain a more complicated (and possibly more
precise) bound on the leave-one-out error.

In what follows, we state the main theorems from [565] without proof (see the
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original publication for details). In addition, we adapt the results to quantile esti-
mation and novelty detection (see Chapter 8 for the description of the algorithm)
and prove the latter (the proofs being similar, one can easily infer the original from
the modification). Before we proceed, we recall the notion of in-bound Support Vec-
tors. As introduced in Table 7.2, these are the SVs xi whose Lagrange multipliersIn-Bound SVs
lie in the interior of the box constraints; using the present notation, 0 i C.

Definition 12.12 (Span of a SV Classification Solution) Denote by X Y the train-Span
ing sample and by 1 m, b the solution obtained by solving the corresponding SV
soft-margin classification problem with upper bound C on the Lagrange multipliers (see
Section 1.5 and Chapter 7). Furthermore, denote by 1 n the in-bound SVs (with-
out loss of generality we assume that they are the first n patterns of the sample). Then the
span Sclass(l) of an SV classification solution with respect to the pattern l is defined by

S2
class(l) : min̄

l

n

∑
i j 1

i jk(xi x j) (12.44)

where

¯
l l 1

n

∑
i 1

i 0 and 0 i yiyl l i C (12.45)

Note that ∑n
i j 1 i jk(xi x j) ∑n

i 1 iΦ(xi) 2 and, in particular, that S2
class(l) is

the minimum distance between the patterns Φ(xl) and a linear combination of
the remaining in-bound Support Vectors which leaves the box and inequality
constraints intact.2 This is a measure for how well Φ(xl) can be replaced by the
remaining in-bound SVs.

The first thing to show is that (12.44) is actually well defined, that is, the set ¯
l is

nonempty. The following lemma tells us this and gives an upper bound on S2
class(l).

Lemma 12.13 (The Span is Well Defined [565]) The quantity S 2
class(l) is well defined,

in particular, the set ¯
l is nonempty and, further,

Sclass(l) DSV (12.46)

where DSV is the diameter of the smallest sphere containing the in-bound Support Vectors.

After these definitions we have to put our results to practical use. The two key
relevant bounds are now given.

Theorem 12.14 (Misclassification Bound via the Span [565]) If in the leave-one-out
procedure an in-bound Support Vector xl is recognized incorrectly, then the following
inequality holds:

l Sclass(l) max D C
1
2 1 (12.47)

2. Vapnik and Chapelle [565] actually define a geometrical object which they call the span
of a set of Support Vectors and then compute its distance to a pattern Φ(xl).
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Additionally, if the sets of SVs, and of in-bound SVs, remain the same during the leave-
one-out procedure, then, for any SV xl, the following equality holds,

yl( f (xl) f l(xl)) l Sclass(l)2 (12.48)

Here f l is the minimizer of the SV classification problem in which xl has been removed.

This means that we may use (12.47) as an upper bound on the size of the mis-
classification error. Furthermore, (12.48) can be employed as an approximation
of the leave-one-out error, simply by counting the number of instances where
yl f (xl) l Sclass(l)2. This is, of course, not a bound on the leave-one-out error
any more, since we can, in general, not expect that the remaining Support Vectors
will not change if the pattern xl is removed. Yet it may be a more reliable estimate
in practice. Note the similarity to the result of Jaakkola and Haussler [259] of the
previous section; there, Sclass(l)2 is replaced by k(xl xl). We conclude this section
by noting that the span bound for the -SVM has been studied in detail in [217].

12.2.4 The Span Bound for Quantile Estimation

Let us briefly review the approach of Chapter 8. A key feature was the integration
of a single class SVM with the -trick, namely the fact that we may specify a certain
fraction of patterns to lie beyond the hyperplane beforehand. In particular recall
(8.6) and, subsequently, the dual problem (8.13) with constraints (8.14) and (8.15).

In this case the constraints on the Lagrange multipliers are given by 0 i
1
m .

This setting, however, creates a problem in the case of a leave-one-out procedure;
should we adjust 1

m to 1
(m 1) or keep the original upper constraint and simply

remove the variable corresponding to the pattern xl? The first case is more faithful
to the concept of leave-one-out error testing. The second, as we shall see, is much
more amenable to the proof of practical bounds. In addition, keeping the original
constraints can be seen as a replacement of by (1 1

m ). This means that the
threshold is slightly increased for leave-one-out training. Therefore we can ex-
pect that the number of leave-one-out errors committed in the case of an estimator
trained with will be larger than for one trained with . Further, for large m, this
change is negligible. We begin with a definition of the span.

Definition 12.15 (Span/Swap of an SV Quantile Estimation Solution) Denote by
X the training sample and by 1 m, the solution obtained by solving the corre-
sponding quantile estimation problem with corresponding parameter . Moreover, denote
by 1 n the in-bound SVs. Then the span Ssupport(l) with respect to the pattern l is
defined as follows.

If the number of SVs (in-bound or not) n is bounded from below by n 1 m we
define the span as

S2
support(l) : min̄

l

n

∑
i j 1

i jk(xi x j) (12.49)
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where

¯
l l 1

n

∑
i 1

i 0 and 0 i l i 1 ( m) (12.50)

If the number of SVs is given by n m we define the swap of a Support Vector by

Swap2(l) : min
j SV

l

n

∑
i 1

iKi j
2
l Kll Kj j 2Kjl (12.51)

where as usual we use the kernel matrix Ki j : k(xi x j).

We do not have to consider the case n m since, according to Proposition 8.3,
n m. We next show that Ssupport(l) is well defined and compute a bound on it.

Lemma 12.16 (The Span is Well Defined) The quantity S 2
support(l) is well defined; the

set ¯
l is nonempty and, moreover,

Ssupport(l) DSV (12.52)

where DSV is the diameter of the smallest sphere containing the in-bound Support Vectors.

Proof For n m it is clear that Swap(l) is well defined. For n 1 m we
have to show that a set of i (with i l) exists such that

n

∑
i 1 i l

i 1 where 0 i l i
1
m

and i 0 (12.53)

since in this case S2
support(l) 2

l Φ(xl) Φ̄ 2 where Φ̄ ∑n
i 1 i l iΦ(xi) is an

element of the convex hull of the in-bound Support Vectors, and thus the diameter
of the corresponding sphere DSV is an upper bound.

Note that the maximum value for each i (with i l) is given by l i
1
m i

and, thus,

l

n

∑
i 1 i l

i

n

∑
i 1 i l

1
m i

n

∑
i 1 i l

1
m i

n
m

1 l l (12.54)

By rescaling each i with a constant factor 0 1 we obtain suitable i i
which satisfy the conditions imposed in the definition of S2

support(l).

Next we have to state an analog of Theorem 12.14. In this context we must define
more specifically what we consider an error, and, thus, a leave-one-out error for
the problem of quantile estimating.

Rather than using the threshold obtained by minimizing the adaptive regular-
ized risk functional (see Chapter 8) we should introduce an additional3 “margin”
Δ . A pattern is only classified as atypical if f (x) Δ . Otherwise all SVs,
whether in-bound or not, would be classified as leave-one-out errors.

3. This additional margin Δ is also needed in order to prove uniform convergence-type
results.
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Theorem 12.17 (Misclassification Bound via the Span) If, in the leave-one-out pro-
cedure, an in-bound Support Vector xl is recognized incorrectly, then (with the additional
margin Δ as described above) the following inequality holds,

l Ssupport(l) max
D
Δ

m
D

1 (12.55)

if n 1 m. Otherwise

lΔ Swap(l) max D C
1
2 1 (12.56)

is applicable. Furthermore, if the sets of Support Vectors and of in-bound Support Vectors
remain the same during the leave-one-out procedure, then for any Support Vector xl the
following equality holds;

( l f l(xl)) l Ssupport(l)2 (12.57)

Here f l is the minimizer of the SV classification problem where xl has been removed.

Proof As in [565], denote by 0 the solution obtained by minimizing the regu-
larized risk functional depending on m samples, and by l the solution obtained
through leaving out sample l (analogously denote by l the margin obtained by
such an estimator). Further, denote the value of the dual objective function de-
rived from the regularized risk functional by

D( ) : min
1
2

K subject to
m

∑
i 1

i 1 and 0 i
1
m

(12.58)

By construction D( 0) D( 0 ) for all m such that the constraints of (12.58)
are satisfied, and, in particular, for l l. Similarly, for l we have D( l)
D( l ) for all m satisfying the constraints of (12.58) and l 0. Hence
we obtain

D1 : D( 0) D( 0 ) D( 0) D( l) D( l ) D( l) : D2 (12.59)

Next we have to compute or bound D1 and D2. For n 1 m we choose to be
the minimizer of (12.49); i l i. This gives,

D1
1
2

( 0) K 0 1
2

( 0 ) K( 0 ) (12.60)

1
2

K K 0 (12.61)

1
2

2
l K K 0 (12.62)

2
l

2
S2

support(l) (12.63)

Here (12.62) follows from the choice of and the fact that ∑i i 0 (note also that
∑i i 0). Finally, (12.63) is due to the fact that l 0 for in-bound SVs only and
thus the second term in (12.62) vanishes.

For n m we cannot find a suitable based solely on in-bound SVs and
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therefore we must add an additional pattern, say with index j, which was not
previously a Support Vector. All we do is swap l and j, giving l l and

j l . In particular, we pick j to minimize (12.51). For D1 we thus obtain

D1
1
2

K K 0 (12.64)
2
l (Kll Kj j 2Kl j) K 0 (12.65)

2
l (Kll Kj j 2Kl j) l

n

∑
i 1

iKi j Swap2(l) (12.66)

Next we have to compute D2. We choose a particular value of , namely j

a l for some j, within the set of in-bound SVs obtained from leave-one-out
training and set all other coefficients to 0. Expanding D2 leads to

D2
1
2

K K l 1
2

K K l l (12.67)

a2

2
Kll Kj j 2Kl j a ∑

i 1

l
i Kil

l (12.68)

If xl generates a leave-one-out error we know that l ∑i 1
l
i Kil Δ . In addi-

tion, Kll Kj j 2Kl j is the squared distance between two SVs obtained by leav-
ing xl out. This, of course, can be bounded by D2, where D2 is the radius of the
data (in feature space). Therefore

D2
a2

2
D2 aΔ (12.69)

and, after unconstrained maximization over a, we obtain D2
(Δ )2

2D2 for amin
Δ
D2 .

We have to take into account, however, that a 1
m and thus, for amin

1
m , we

obtain

D2
D2

2( m)2

Δ
m

D2

2( m)2

D2

( m)2

D2

2( m)2 (12.70)

Here we exploit the assumption that amin
Δ
D2

1
m . Taking the minimum of the

two lower bounds leads to the following inequality for D2;

D2
1
2

min
(Δ )2

D2

D2

( m)2 (12.71)

Finally, since D1 D2, then (12.71) in combination with (12.63) proves the bound.
To prove (12.57) note that, for the case where no additional point becomes a

Support Vector, then, by construction min D( 0 ) D( l) and, furthermore,
min D( l ) D( 0). Moreover, note that in this case n 1 m since, oth-
erwise, the -property would not be satisfied for the leave-one-out estimate. We
next show that l where is the minimizer of S2

support(l). To see this note
that, for any m with ∑i i 0 and l l, it follows from (12.60) that

D1
1
2

K K 0 1
2

K (K 0 )
1
2

K (12.72)
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The latter is maximized (D( ) is minimized) for l and, thus, D1
1
2

2
l S2

support. Finally, note that

D( l ) D( l)
1
2

K K l (12.73)

1
2

K (K l l) (12.74)

1
2

2
l S2

support(l) (K l l) (12.75)

1
2

2
l S2

support(l) l( f l(xl) l) (12.76)

where (12.74) follows from ∑i i 0, (12.75) is a consequence of the optimality
of l for , and in (12.76) all but one term in the dot product vanish since
f l(xi) l 0 for all in-bound Support Vectors. Exploiting the equality between
D1 and the minimum value of D( l ) D( l) proves (12.57).

Even though the assumption that led to (12.57) is rarely satisfied in practice, it
provides a good approximation of the leave-one-out error and therefore may be
preferrable to the more conservative estimate obtained from Theorem 12.17.

12.2.5 Methods from Statistical Physics

Opper and Winther [396] use a reasoning similar to the above that leading to
provide an estimator of the leave-one-out bound. As in (12.48) and (12.57), the
following assumptions are made:

In-Bound Support Vectors xi will remain so even after removing a pattern xl and
the corresponding function values f (xi) will not change under the leave-one-out
procedure.

Margin errors will remain margin errors.

Correctly classified patterns with a margin will remain correctly classified.

These assumptions are typically not satisfied, yet in practice the leave-one out
approximation that follows from them is still fairly accurate (in the experiments
of [396] the accuracy was to within 1 10 3).4 The practical appeal of the methods
in this section is their computational simplicity when compared to the span bound
and similar methods, which require the solution of a quadratic program.5

For the sake of simplicity we assume that the first n patterns are in-bound SVs,
and that patterns n 1 to n are bound SVs. We begin with a simple example —

4. Other studies, such as the one by Dawson [131] found lower but still relatively high
accuracies of the estimate at a very favorable computational cost of the method.
5. In fact, the span bound almost attempts to solve the quadratic program resulting from
leaving one sample out exactly, under the assumption that the SVs remain unchanged.
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SV classification without a constant threshold. Here

f (x)
n

∑
j 1

jk(x j x) (12.77)

f l(x)
n

∑
j 1 j l

l
jk(x j x) (12.78)

Using the notation j : l
j j, we obtain

f l(x) f (x)
n

∑
j 1 j l

jk(x j x) lk(xl x) (12.79)

For an in-bound SV xi (where i l) to remain so after the leave-one out procedure
we need f (xi) f l(xi) or, more specifically,

lk(xl xi)
n

∑
j 1 j l

jk(x j xi) (12.80)

This leads to a system of n variables with n linear constraints if xi is a bound
constrained SV (and n 1 variables and constraints if xi is an in-bound SVs).
The obvious search is for a method to solve this linear system efficiently for all
n SVs. We will show that, in a slightly more general setting of semiparametric
models (and/or additional adaptive margins), we may compute the leave-one-out
approximation with O((n N)2n ) cost. This is considerably cheaper than the n
linear programs in n variables that must be solved in the case of the span bound.
Additionally, the estimates may be even more precise than those when using the
span bound; margin errors are not necessarily real errors, nor does the fact that
a pattern is a margin error automatically imply that it will be misclassified by a
classifier which ignored it during training.

Rather than deriving equations for the simple case of a pure kernel expansion,
we consider the situation that we have a semiparametric model, in particular a
kernel expansion plus a small, fixed number of terms (see Section 4.8), and we
derive a closed form expression for it. This includes the addition of a constant
offset b, as a special case. Without going into details (which can be found in
Chapter 4) we have the following kernel expansion

f (x)
N

∑
i 1

i i(x)
m

∑
i 1

ik(xi x) (12.81)

subject to
m

∑
i 1

i j(xi) 0 for all j [N] (12.82)

Here i, with i [N], are additional parametric functions (setting 1(x) 1 and
N 1 would lead the case of a constant offset, b). The following proposition gives
an approximation of the changes due to leave-one-out training. As before, only the
Support Vectors matter in the calculations. To give a more concise representation,
we state the equations in matrix notation.
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Proposition 12.18 (Mean Field Leave-One-Out Approximation) Denote by K n

n n the submatrix of kernel functions between in-bound SVs and by Kn (n n) n

the submatrix of kernel functions between in-bound and bound SVs. Likewise, denote by
Ψn n N the matrix consisting of the function values j(xi), where xi are in-boundMean Field

Leave-One-Out
Approximation

SVs, and by Ψn (n n) N the matrix of function values j(xi) where xi are bound
SVs. Then, if xl is an in-bound SV, the following approximation holds;

f (xl) f l(xl) l
Kn (Ψn)

Ψn 0

1

ll

1

(12.83)

and, for bound constrained SVs,

f (xl) f l(xl) l Kll
Kn

Ψn

Kn (Ψn)

Ψn 0

1
Kn

Ψn

ll

(12.84)

Here we use Kll as shorthand for k(xl xl).

Proof We begin with the case that xl is a bound constrained Support Vector.
Since we have to enforce f (xi) f l(xi) for all in-bound SVs, while maintaining
the constraints (12.82), we have a system of n N variables ( i and i) together
with n N constraints. In matrix notation the above condition translates into

Kn (Ψn)

Ψn 0

1
...

n

1
...

N

l

k(x1 xl)
...

k(xn xl)

1(xl)
...

N(xl)

(12.85)

Solving (12.85) for i and i and substituting into the approximation for f l(xl)
leads to

f (xl) f l(xl) lk(xl xl)
n

∑
i 1

ik(xi xl)
N

∑
i 1

i i(xl) (12.86)

l Kll l

k(x1 xl)
...

k(xn xl)

1(xl)
...

N(xl)

Kn (Ψn)

Ψn 0

1

k(x1 xl)
...

k(xn xl)

1(xl)
...

N(xl)

(12.87)

Rewriting (12.87) leads to (12.84). To compute this expression efficiently we may
use an indefinite symmetric (e.g. triangular) factorization of the inverse matrix
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into T DT. Often it will be necessary to compute the pseudoinverse [131], since
Kn tends to be rank degenerate for many practical kernels. Overall, the calculation
costs O((n N)2(n N)) operations.

In the case that xl is an in-bound Support Vector we obtain a similar expression,
the only difference being that the row and columns corresponding to xl were
removed from (12.87) in both Kn and Ψn. Recall that (see [337], 9.11.3.2a)

A C

C D

1

A 1 A 1C(D C A 1C) 1C A 1 A 1C(D C A 1C) 1

(D C A 1C) 1C A 1 (D C A 1C) 1

(12.88)

By setting A equal to the square matrix in (12.87), with the contributions of xl

removed, and, further, identifying C with the remaining column vector (which
contains the contribution of xl) we see that (12.87) can be rewritten as in (12.83).

Remark 12.19 (Modifications for Classification) In the case of classification, the
function expansions are usually given by sums of yi ik(xi x). Simply replace i by yi i

throughout to apply Proposition 12.18.

Since the assumptions regarding the stability of the types of SVs that led to this
result are the same as the ones that led to (12.48) and (12.57), it comes as no
surprise that the trick (12.88) can also be applied to compute (12.44) under those
assumptions. This is due to the fact that in this case, the box constraints in 12.45
can be dropped. These issues are discussed in detail in [102].

In order to apply a similar reasoning to -SVM a slightly modified approach
is needed. We only state the result for classification. The proof and extensions to
regression and novelty detection are left as an exercise (see Problem 12.4).

Proposition 12.20 (Mean Field Leave-One-Out for -Classification) Let K n de-
note the n n submatrix of kernel functions between in-bound SVs, and Kn the
(n n) n submatrix of kernel functions between in-bound and bound SVs. Moreover,
denote by yn n the vector of labels ( 1) of the in-bound SVs, likewise by yn n n

the vector of labels of bound SVs, and by 1n n and 1n n n the corresponding
vectors with all entries set to 1. Then, if xl is an in-bound SV, the following approximation
holds;

(yl f (xl) ) (yl f l(xl) l) l yl

Kn yn 1n

yn 0 0

1n 0 0

1

ll

1

(12.89)
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and, for bound SVs;

(yl f (xl) ) (yl f l(xl) l)

l yl Kll

Kn

yn

1n

Kn yn 1n

yn 0 0

1n 0 0

1
Kn

yn

1n
ll

(12.90)

Again, we use Kll as a shorthand for k(xl xl).

Remark 12.21 (Absolute Differences in Classification) Often it will appear more
useful to compute yl( f (xl) f l(xl)) only, rather than the relative distance from the mar-
gin. In this case we have to compensate for the changes in l; we should compute only the
changes in i and b (for the constant offset). One can see that, for boundary constrained
SVs,

1
...

n

b

Kn yn 1n

yn 0 0

1n 0 0

1
Kn

yn

1n

(12.91)

and, therefore, the correction term in can be easily ignored in the expansion. We obtain

yl( f (xl) f l(xl)) yl

n

∑
i 1

i yik(xi xl) b (12.92)

As far as in-bound SVs are concerned, this is not so easily achieved, since the matrix to
be inverted is different for each pattern xl. Luckily it is obtained by removing one row and
one column from the full (n 2) (n 2) system (see the proof of Proposition 12.18 and
(12.91)). This allows us to compute its inverse by performing the converse operation to a
rank-1 update. To do this we use (12.88) in the opposite direction. One can easily check

by substitution that for
A C

C D

1
ϒ Γ
Γ Δ

we have A 1 ϒ Γ Δ 1Γ.

Computing A 1 costs only O(n2) operations per in-bound Support Vector, which is
acceptable, in particular, when compared to the cost of inverting the (n 2) (n 2)
system itself. This means that we can perform prediction as cheaply as in the standard
SVM case.

Extensions to the situation where we have loss functions other than the -
insensitive or the soft margin will require further investigation. It is not yet clear
what the equivalent of in-bound and bound SVs should be, since it is a very rare
case that the slope of the loss function c(x y f (x)) changes at only a small num-
ber of locations (for example, only once in the soft margin case, or twice in the

-insensitive case, etc.). This is needed, however, for cheap computation of the
leave-one-out approximation.
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12.3 PAC-Bayesian Bounds

This section requires some basic knowledge of ideas common to Bayesian estima-
tion (see Chapter 16). In particular, we suggest that the reader be familiar with the
content of Section 16.1 before going further in this section. The reasoning below
focuses on the case of classification, primarily in the noise-free case. The first work
in this context is by McAllester [353, 354] with further applications by Herbrich
and coworkers [240, 213, 238].

The proof strategy works as follows; after definitions of quantities such as the
Gibbs and the Bayes classifier, needed in the context, we prove a set of theorems,
commonly referred to as PAC-Bayesian theorems. These relate the posterior proba-
bility of sets of hypotheses to uniform convergence bounds. Finally, we show how
large margins and large posterior probabilities are connected through the concept
of version spaces.

12.3.1 Gibbs and Bayes Classifiers

In a departure from the concepts of the previous chapters we will extend our view
from single classifiers to distributions over classifiers. This means that, instead of
a deterministic prediction, say f (x) y, we may obtain predictions f according
to some P(y x). This additionally means that we have to extend the notion of
empirical or expected loss of a function f to the empirical or expected loss with
respect to a distribution.

In the following denote by such a set of classifier, by P( f ) a prior probability
distribution over mappings f : and by P( f Z) a posterior probability distri-
bution (see Section 16.1), based on P( f ) and the data Z. We now proceed with the
definitions of risk and loss wrt. P( f ) and P( f Z).

Definition 12.22 (Risk with Respect to Distributions) Denote by P( f ) a distribu-
tion over . Then the risk functional, with respect to a distribution, is defined as

R[P( f )] : E f P( f ) R[ f ] (12.93)

and, in particular,

Remp[P( f )] : E f P( f ) Remp[ f ] (12.94)

Rreg[P( f )] : E f P( f ) Remp[ f ] Ω[ f ] (12.95)

Taking a sampling point of view, by considering the classifiers f directly, we arrive
at the Gibbs classifier.

Definition 12.23 (Gibbs Classifier) The Gibbs Classifier is defined by the followingGibbs Classifier
random variable,

fGibbs(x) f (x) where f P( f Z) (12.96)
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In other words, fGibbs(x) is given by f (x) where f is drawn randomly from P( f Z) for fixed
Z. Note that, by definition, R[ fGibbs] R[P( f Z)].

Another way to construct a predictor from a distribution p( f Z) is to predict
according to the majority values of f (x) where f P( f Z). We obtain the Bayes
Classifier:

Definition 12.24 (Bayes Classifier) Denote by P( f Z) a distribution over mappings
f : where x and Z ( )m. Then the Bayes optimal classifier is given
by

fBayes(x) : argmax
y

P( f (x) y Z) (12.97)

In other words, the Bayes optimal estimator chooses the class y with the largest posterior
probability.

Note that for regression (12.97) will lead to an estimator based on the mode of the
posterior distribution p( f (x) Z). While in many cases the mode and the mean of a
distribution may be reasonably close (this is one of the practical justifications of the
maximum a posterior estimates, see (16.22)) the mean need not necessarily be any-
where close to the optimal estimate. For instance, for the exponential distribution
e on [0 ), the mode of the distribution is 0, the mean, however, is 1.

Despite their different definitions, the Bayes classifier and the Gibbs classifier are
not completely unrelated. In fact, the following lemma, due to Herbrich, holds:

Lemma 12.25 (Gibbs-Bayes Lemma [238]) Denote by P( f Z) a distribution over map-
pings f : , where x and Z ( )m, and by R[ f ] the loss due to f under the
0 1 loss, namely the loss function c(x y f (x)) (1 y( f (x))). Further, denote by
the cardinality of . Then the following inequalities hold;

R[ fBayes] R[ fGibbs] R[P( f Z)] (12.98)

Proof To prove (12.98) we must consider the set ΔZ, where the Bayes classifier
commits an error. It is given by

ΔZ : (x y) (x y) and c(x y fBayes(x)) 1 (12.99)

Then, for any given distribution P̃(x y), the error of the Bayes estimator is given by
R[ fBayes] P̃(ΔZ). On ΔZ, however, the conditional probability P(y fBayes(x) Z x)
is bounded from below by 1 since fBayes(x) is chosen according to (12.97). This
means that the error of the Gibbs classifier fGibbs on ΔZ is at least 1 R[ fBayes] which
is a lower bound for R[ fGibbs] on .

Note that a converse statement for bounding R[ fGibbs] in terms of R[ fBayes] is not
true. In particular, one can find cases where R[ fBayes] 0 and R[ fGibbs] 1

2 for
any 0 (see also Problem 12.5). The practical use of Lemma 12.25 is in the ability
to extend bounds on R[ fGibbs] to bounds on R[ fBayes].
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In many cases it is necessary to relate the behavior of fBayes or fGibbs to the behav-
ior of a single hypothesis f obtained by a (possibly) different learning algorithm.
The following characterization for sets of hypotheses (due to Herbrich [238]) is
useful.

Definition 12.26 (Bayes Admissible Hypotheses) Denote by a space of hypotheses
and by P( f ) a probability (measure) over . Then a subset B is called Bayes
admissible with respect to P( f ) and some function f if, for all (x y) ,

c(x y f (x)) c(x y fBayes(x)) (12.100)

Here c is the 0 1 loss function and fBayes is the Bayes estimator with respect to P( f f
B), that is, with respect to f restricted to B.

Simply put, the loss of the single hypothesis f has to agree with the Bayes
estimator fBayes based on P( f f B). This criterion is not always easily verified,
in the case of kernels, however, the following lemma holds.

Lemma 12.27 (Balls in RKHS are Bayes Admissible) Denote by P( f ) the uniform
measure over a subset of the RKHS . Then, for any additive offset b, any ball
Br( f ) B with radius r and center f is Bayes admissible with respect to f b.

Proof Simply note that, for any cut through the ball, the center of the ball always
lies in the bigger of the two parts (the offset b determines the amount by which the
cutting hyperplane misses the center). Thus the estimator at the center of the ball
f b will agree with fBayes.

We use this lemma to connect the concept of maximum margin classifiers with the
notion of Bayes estimators derived from a large posterior probability.

12.3.2 PAC-Bayesian Bounds for Single Classifiers

Our aim in this section is to bound the expected error of fBayes and fGibbs based
on the posterior distribution P( f Z) of the hypotheses on which zero, or low,
training error is obtained. We begin with a simple binomial tail bound on a
single hypothesis which achieves zero classification error on a sample of size m.
Essentially it plays an analogous role to Hoeffding’s bound (5.7) in the nonzero
loss classification and regression cases.

Lemma 12.28 (Binomial Tail Bound) Denote by P a random variable with values
0 1 and by 1 m m instances of , as drawn independently from P. Then, for

Remp :
1
m

m

∑
i 1

i and R : E [ ] (12.101)

the following inequality holds

P(Remp 0 and R ) e m for all m and 0 (12.102)
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Proof We prove the lemma by computing a bound on the probability of Remp 0
under the assumption that R . For any R p

P( 1 m 0 R p) (1 p)m (1 )m exp( m ) (12.103)

since, for all (0 1), we have (1 ) e .

This bound implies that, for a single hypothesis, achieving zero training error over
a sample of size m (equivalently the probability for the expected error to differ
from 0) decays exponentially as m increases. In all realistic cases, however, we
have more than one hypothesis to choose from.

While, given a set of possible hypotheses f to choose from, we could assign
equal weight to all of them, there is absolutely no need to do so. In fact, we could
“bet” beforehand, that is, before any data arrives, on the hypotheses we think
will obtain a low error. Qualitatively, our goal is to obtain better bounds in the
case where our bet is lucky, at the expense of obtaining slightly worse bounds for
unlucky guesses. This concept was formalized by Shawe-Taylor et al. [491] and is
commonly referred to as the Luckiness Framework (see also [241] for an extension
of the framework to algorithms rather than classes of functions). We give a simple
version [238], which can be used to combine bounds for individual hypotheses.

Theorem 12.29 (Combining Hypotheses) Denote by P a probability measure on
and by i(x ) : TRUE FALSE with i , parametrized logical formulas
for which

Px( i(x ) TRUE) 1 for all 0 1 (12.104)

Then, for all i 0 with ∑i i 1, the following inequality holds

Px ∏
i

i(x i) TRUE 1 (12.105)

Here we used ∏ to denote a logical AND, and ∑ to denote a logical OR.

Proof To prove (12.105) we replace the lhs by its complementary event and then
use a simple union bound argument on the individual terms. We obtain

Px ∏
i

i(x i) TRUE 1 Px ∑
i

i(x i) FALSE (12.106)

1 ∑
i

Px ( i(x i) FALSE) (12.107)

1 ∑
i

i 1 (12.108)

Here the last inequality follows from (12.104).

Note that typically the logical formulas i(x ) will be expressions as to whether
a certain bound holds and, moreover, Px will be the probability measure over all
m-samples. Next we combine Lemmas 12.28 and 12.29 to obtain McAllester’s first
PAC-Bayesian theorem [353], namely bounds on the generalization performance
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of classifiers with zero training error. Furthermore, by using Hoeffding’s bound
(Theorem 5.1), we may obtain a counterpart for the case of Remp[ f ] 0.

Theorem 12.30 (Single Classifiers with Zero Loss [353]) For any probability distri-
bution P( ) from which the training sample Z is drawn in an iid fashion, for any (prior)Zero Loss Case
probability distribution P( f ) on the space of hypotheses , for any (0 1), and for any f
for which Remp[ f ] 0 and which has nonzero P( f ), the following bound on the expected
risk holds;

P R[ f ] for
ln P( f ) ln

m
(12.109)

This means that the bound becomes better if we manage to “guess” f as well as
possible by a suitable prior distribution P( f ). Additionally, it justifies the maxi-
mum a posteriori estimation procedure (see also Section 16.2.1) since for identical
likelihoods (zero error) the prior probability is the only quantity to distinguish be-
tween different hypotheses f . We prove this by a combination of Lemma 12.28 and
Theorem 12.29.

Proof A sufficient condition for (12.109) is to show that, simultaneously for all f
(and not only, say, for the maximizer of P( f )) the bound holds. All we must do
is set i P( f ) and consider the logical formulas i(Z ) (here Z is the training
sample) where the binomial tail-bound (12.103) is violated;

i(Z ) : Remp[ fi] 0 or R[ fi]
1
m

ln (12.110)

Since ∑i i ∑i P( fi) we satisfy all conditions of Theorem 12.29, which proves
(12.109).

It is straightforward to obtain an analogous version for nonzero loss. The only
difference is that we have to use Hoeffding’s theorem 5.1 instead of the binomial
tail bound.

Corollary 12.31 (Single Classifiers with Nonzero Loss [353]) For any probability
distribution P( ) from which the training sample Z is drawn in an iid fashion, forNonzero Loss

Case any (prior) probability distribution P( f ) on the space of hypotheses , for any (0 1),
and for any f with nonzero P( f ) the following bound on the expected risk holds;

P R[ f ] for Remp[ f ]
ln P( f ) ln

2m
(12.111)

Proof Using (5.7) define the logical formulas i(Z ) with

i(Z ) : R[ fi] Remp[ fi]
ln

2m
(12.112)

By construction we have PZ( i(Z )) . Setting i : P( fi) and using iXi we
obtain (12.111).



386 Learning Theory Revisited

0 5 10
0

0.05

0.1

0.15

0.2

0.25

F

p(
f)

 a
nd

 p
(f

|F
’)

0 5 10
0

0.05

0.1

0.15

0.2

0.25

F

p(
f)

 a
nd

 p
(f

|Z
)

Figure 12.1 Left: prior probability distribution P( f ) (solid line) on and restriction of
P( f ) to (dotted line). Right: P( f ) (solid line) and reweighted posterior distribution
P( f Z) (dotted line).

Comparing (12.111) with (12.109) we note the difference in the dependency on m. It
appears that (12.111) with 1

m in the denominator is much less tight than (12.109),
where the bound depends on 1

m .
This is, however, an artifact of Hoeffding’s bound in the sense that the factor

of 2m in the denominator increases with decreasing R[ f ] and, thus, allows for a
tighter bound (for R[ f ] 0 we recover the behavior of the binomial tail bound).
Unfortunately, the latter is rather technical, which is why we omit a detailed
description of the improvement. See [574], among others, for details on how to
obtain tighter bounds.

12.3.3 PAC-Bayesian Bounds for Combinations of Classifiers

More interesting than single classifiers, however, is the question of whether and
how bounds on combinations of such classifiers can be obtained. Two possible
strategies come to mind; we could combine from a subset of the space of
hypotheses and weigh them according to the prior distribution P( f ) which we fix
before finding a good set of estimates [353]. Alternatively, we could use the posterior
distribution P( f Z), influenced by the performance of estimates on the data, as a
weighting scheme [354]. See Figure 12.1 for an illustration of the two cases. The
following two theorems give uniform convergence bounds for these.

Theorem 12.32 (Combination with Prior Weighting [353]) As before, denote by a
hypothesis class and by P( f ) a probability measure on , denote by a measurable
subset, and by P( f ) the probability distribution obtained from P( f ) by restricting f
to and with normalization by P( ). Then the following bounds hold with probability
1 :

R[P( f )] Remp[P( f )]
ln ln P( ) 2 ln m

2m
1
m

(12.113)
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R[P( f )]
ln ln P( ) 2 ln m 1

m
if Remp[P( f )] 0 (12.114)

We will give a proof of (12.114) at the end of this section, after we stated the
“Quantifier Reversal Lemma” (Lemma 12.34), which is needed in the proof. Eq.
(12.113) can be proven analogously and its proof is therefore omitted. Before we
do so, however, we give the related result for a posterior distribution P( f Z) rather
than only a restriction of P( f ) onto .

Theorem 12.33 (Combination with Posterior Weighting [354]) Again denote by
a hypothesis class and by P( f ) and P( f Z) two probability measure on , where P( f Z)
depends on the data Z. Then the following bound holds with probability 1 ;

R[P( f Z)] Remp[P( f Z)]
d(P( f Z) P( f )) ln ln m 2

2m 1
(12.115)

Here d(P( f Z) P( f )) is the Kullback-Leibler divergence between P( f Z) and P( f ). It is
given by

d(P( f Z) P( f )) : EP( f Z) ln
dP( f Z)

dP( f )
(12.116)

The proof of Theorem 12.33 is rather technical and we refer the reader to [354] for
details. Note that (12.115) depends on the Kullback-Leibler divergence between
the prior and posterior distributions. This is an (asymmetric) distance measure
between the two distributions and vanishes only if they coincide. Consequently,
the bound improves with our ability to guess (represented by the prior probability
distribution P( f )) the likely outcome of the estimation procedure.

On the other hand, it means that unless we make a lucky guess, the alternative
being to remain cautious and choose a flat (= constant) prior P( f ) over , we
will not obtain a bound that is much tighter than the logarithm of the number
of significantly distinct functions in . We obtain a bound similar to (5.36), the
only benefit being the automatic adaptation of the scale, determined by the spread
of P( f Z), to the learning problem at hand. This “lucky guess” will allow us to
take advantage of favorable data. However, we have to keep in mind, that the
performance guarantees can also be significantly worse, if we are “unlucky” in the
specification of the prior. The remaining terms such as ln or the m

1
2 dependency

are standard.
Finally, note that for a restriction of onto a subset the Kullback-Leibler di-

vergence between P( f ) and P( f ) becomes ln P( ) since in this case dP( f )
P( )dP( f ) if f . This means that, up to constant terms, (12.113) is a special case
of (12.113).

As promised we conclude this section with a proof of (12.114). For this purpose
we need a key lemma; the so-called “Quantifier Reversal Lemma”.
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Lemma 12.34 (Quantifier Reversal [353]) Denote by x y random variables and letQuantifier
Reversal Lemma (0 1]. Furthermore, let (x y ) be a measurable formula such that, for any x y, we have

(0 1] : (x y ) TRUE (0 max] for some max. If, for all x, and 0,

Py (x y ) TRUE 1 (12.117)

then, for all 0, and (0 1),

Py for all 0 : Px x y ( )
1

1 TRUE 1 1 (12.118)

This means that, if a logical formula holds for all x and with high probability
for all y, then, with high probability for all y x, and for a fixed , the formula is
also true. We transferred the uncertainty, initially encoded by , into one, jointly
encoded by and . Now we are ready to prove (12.114). For the purpose of the
proof below, f will play the role of x and Z the role of y.

Proof of (12.114). We will use the Binomial tail-bound of Lemma 12.28. By anal-
ogy to (12.110) we define

(Z f ) : Remp[ f ] 0 implies R[ f ]
1
m

ln (12.119)

By construction (and via Lemma 12.28) we have that, for all f , and all 0,
PZ (Z f ) TRUE 1 . This expression has the same form as the one
needed in (12.117). Therefore, for all 0, and (0 1),

PZ for all 0 : P f f Z ( )
1

1 TRUE 1 1 (12.120)

The goal is to contract the two nested probability statements on Z and f into
one on Z alone. This is done by replacing the inner (probabilistic) statement by a
(deterministic) superset. Consider the argument of the first probability statement.
Here, with probability 1 ,

P f f Z ( )
1

1 TRUE 1 (12.121)

Now we substitute values for and . Denote by a set for which
Remp[P( f )] 0 and, moreover, let P( )

m and 1
m . We obtain

P f Remp[ f ] 0 implies R[ f ]
ln P( ) ln 2 ln m

(1 1
m )m

1
P( )

m
(12.122)

This means that on the bound holds at least with (1 1
m ) probability (recall

that f Remp[ f ] 0 ). In all other cases, the loss is bounded by 1 (we are
dealing with a classification problem). Averaging over all f adds a 1

m term to
the inequality of the lhs of (12.122). This replaces the probabilistic statement over
f by a deterministic bound and we obtain that with probability 1 ,

Remp[P( f )] 0 implies R[P( f )]
ln P( ) ln 2 ln m 1

m
(12.123)

The proof of (12.113) is similar and is left as an exercise (see Problem 12.7).
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12.3.4 Applications to Large Margin Classifiers

We conclude this section with applications of the PAC-Bayesian theorems to the
domain of large margin classifiers. The central idea is that a classifier achieving a
large margin (or, equivalently, a small value of w ) corresponds to the summary
of a large set of classifiers, which all have desirable generalization performance
properties. This is so since, for a large margin classifier, there exist many similar
classifiers which (albeit with a smaller margin) achieve the same (or similar)
training error.

To keep matters simple we show the basic idea using classifiers that achieve zero
training error and where, further, all points lie on the surface of a hypersphere.
The latter is a technical restriction that renders the computation of the volume of
version spaces, the space of hypotheses with Remp[ f ] 0, much easier. We begin
with the definition of a normalized margin.

Definition 12.35 (Normalized Margin) Denote by f (x) : w Φ(x) a classifier with
w 1. Here the normalized margin norm( f ) is defined as

norm( f ) : min
i [m]

yi f (xi)
Φ(xi)

(12.124)

In other words, this margin is normalized with respect to the length of the feature
vectors of the training sample. The following bound on the generalization perfor-
mance holds.

Theorem 12.36 (PAC-Bayesian Margin Bound [238]) For a feature space with di-
mension n and a linear classifier w Φ(x) achieving zero empirical risk
Remp[ f ] 0 the following bound holds with probability 1 ;

R[ f ]
2
m

d ln 1 1 2
norm( f ) 2 ln m ln 2 (12.125)

Here d : min(m n).

Proof In a first step we must translate the size of norm( f ) into a corresponding
size of the version space. For this purpose we give a lower bound on the maximum
angle. Any other w may be such that a corresponding f (x) : w Φ(x) will still
achieve Remp[ f ] 0.

The latter is equivalent to requiring that the angle (w Φ(xi)) between w and
Φ(xi) must not exceed 2 . By the triangle inequality we have

(w Φ(xi)) (w w) (w Φ(xi)) (w w) max
j

(w Φ(x j))

A sufficient condition for this inequality to hold is

(w w )
2

max
j

(w Φ(x j)) (12.126)
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2

Φ(x)
Φ(x)

w

w
Figure 12.2 A geo-
metric interpretation of
w w 1 2

norm( f ).

Taking the cosine on both sides (this is admissible since all angles involved are
smaller than 2 ) yields

w w 1 min
j

w
Φ(x j)
Φ(x j)

2

1 2
norm( f ) (12.127)

Figure 12.2 depicts this situation graphically.
We assume a uniform prior distribution over all functions on the unit sphere,

thus P( f ) const. in addition, previous results mean that the set given by
: w w w 1 2

norm( f ) is consistent with the observations Z, hence
Remp[P( f )] 0. Therefore, P( ) is given by the volume ratio between (the
cap of the cone spanned between w and w ) and the unit sphere in N dimen-
sions. After tedious calculations involving spherical harmonics and a binomial
tail bound (see [238] and [209, 373]) we find that

ln P( ) ln
Vol( )
Vol( )

d ln 1 1 2
norm( f ) (12.128)

This means that, for f drawn from P( f ), we may apply (12.113) of Theo-
rem 12.32. Therefore, with probability 1 , the following bound holds;

R[P( f )] m 1 ln ln d ln 1 1 2
norm( f ) 2 ln m 1 (12.129)

The final step is to translate the statement about a distribution of functions into one
about a single classifier, namely the one given by w. This is achieved by appealing
to the Gibbs-Bayes Lemma (Lemma 12.25) which allows the conversion from a
Gibbs classifier to a Bayes-optimal classifier, and Lemma 12.27, which shows that,
in fact, w is the Bayes-optimal classifier corresponding to .

The net effect is that the rhs of (12.129) increases by a factor of 2 (we have y 1
and y 1 as possible outcomes of the classification).6

6. See also [314] for an improved version which does not depend on the cardinality of .



12.4 Operator-Theoretic Methods in Learning Theory 391

12.4 Operator-Theoretic Methods in Learning Theory

In the previous section we considered distributions over the space of hypotheses
which correspond to a weighting scheme over all possible functions. One could,

however, also use an explicit covering of with a set of “representative” functions
in order to approximate a (possibly) infinite number of hypotheses by a finite
number . This is advantageous since there exist many uniform convergence
bounds for finite hypothesis classes. Further, there exist tools from the theory
of Banach spaces which allow us to bound the number of functions needed to
approximate with sufficiently high precision.

The concepts presented in this section build largely on [606, 605, 518]. It is
impossible to convey the results in complete detail and to point out further ex-
tensions, many of which are due to Mendelson [358, 357], Kolchinskiı̆ [303], and
coworkers. For another application of entropy numbers in mathematical learning
theory, see [129].

We limit ourselves to the basic ideas underlying scale sensitive capacity mea-
sures such as covering and entropy numbers, and the fat shattering VC dimension
(Section 12.4.1). In this context we show how these capacity measures can be used
to formulate bounds on the generalization performance of estimators and present
analogues of Theorems 12.32 and 12.33, based on the number of functions needed
to approximate . The rest of the section is then devoted to methods for efficiently
computing such capacity measures. Examples of translation invariant kernels (cf.
Section 4.4) conclude the presentation.

The material below builds on the mathematical prerequisites of functional
analaysis and entropy numbers summarized in Section B.3.1.

12.4.1 Scale-Sensitivity and the Fat Shattering Dimension

In Section 5.5.6 we introduced the notion of the VC dimension of a class of indi-
cator functions as the maximum number of points which is able to shatter in
any arbitrary way. Note that this notion was scale insensitive — changes of the
sign of f were considered relevant regardless of the amount of change in f . This is
not always the best way of measuring the capacity of functions, in particular when
considering regression problems or large margin classifiers, where the scale of the
solution matters. The following remark sheds some light on this problem:

Remark 12.37 (Gaussian RBF Networks with Infinite VC Dimension) Denote by
r an arbitrary positive number and N a compact set. Consider the class of functions

: f f ∑
i

ik(xi ) with xi ∑
i j

i jk(xi x j) r (12.130)

where k is the Gaussian kernel. We show that has infinite VC dimension by demonstrat-
ing that any arbitrary set X x1 xm of size m can be shattered by thresh-
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olded functions from . According to Theorem 2.18, the matrix (k(x i x j))i j has full rank.
Hence, for arbitrary y1 ym 1 1 , there exists a function f ( ) ∑i ik(xi )
with f (x j) y j for all j. Rescaling f to satisfy the inequality in (12.130) yields an f̃
which still shatters the set, proving the statement.

The term ∑i j i jk(xi x j) in (12.130) equals the w 2 regularizer in , as used
in SVMs (see (2.49)). The VC dimension is thus infinite even if w is small,
and it can thus not directly be used to justify the large margin regularizer in SV
regression. Things are slightly different in pattern recognition. There, our final
scaling operation (obtaining f̃ from f ) would leave us with a hyperplane which is
no longer in canonical form with respect to (x1 y1) (xm ym), cf. Definition 7.1.
Nevertheless, there are some problems in using the VC dimension also in that case,
see [491].7

The construction described in Remark 12.37 was possible since we were allowed
to rescale f without sacrificing any of its discriminatory power. With a large margin
classifier, on the other hand, we seek to find a solution which is the least scale
sensitive possible.

A first step towards better bounds is to introduce a scale sensitive counterpart
of the VC dimension, dubbed the (level) fat shattering VC dimension. It was
introduced to statistical learning theory by [286]. According to [537], however, the
idea of fat shattering itself had been proposed by Kolmogorov already in the late
1950s in the context of approximation theory.

The fat shattering dimension of a function class is a straightforward extensionFat Shattering
Dimension of the VC dimension. It is defined for real valued functions as the maximum

number of points that can be -shattered. Here a set x1 xm is -shattered,
if there exist some bi such that for all sets yi 1 there is an f with
yi( f (xi) bi) . A slightly more restrictive definition is the level fat shattering
dimension, where a set is shattered if yi( f (xi) b) for one common value of
b. For applications to classification see [491, 460]. [22, 6] discuss the estimation of
real valued functions.

12.4.2 Entropy and Covering Numbers

Despite its improvement over the original definition, the fat shattering dimension
is still a fairly crude summary of the capacity of the class of functions under
consideration. Covering and entropy numbers can be used to derived more finely
grained capacity measures. We begin with some definitions.

7. Note that in Theorem 5.5, the hyperplane decision functions are only defined on a
finite set of points. When defined on the whole space, the notion of canonicality cannot
be employed anymore. Canonicality, however, is the notion that introduces scale sensitivity
into the VC dimension analysis of margin classifiers. To work around this problem, we
either have to use the notion of fat shattering dimension described below, or we have to
define decision functions taking values in 1 0 , with the value 0 referring to the margin
[85, 564].
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Recall that an -cover of a set M in E is a set of points in E such that the union
of all -balls around these points contains M.

The -covering number of with respect to the metric d, denoted ( d), is the
smallest number of elements of an -cover for using the metric d. Typically,
will be the class of functions under consideration. Moreover, d will be the metric
induced by the values of f on some data X x1 xm , such as the m

metric. We denote this quantity by m (X). For 1 we recover the (scale less)
definition of the covering number (Section 5.5.3).

To avoid some of the technical difficulties, that come with this dependency on X,
one usually takes the supremum of ( m (X)) with respect to X. This quantity
will be called the -growth function of the function class . Formally we have

m( ) : sup
x1 xm

( X ) (12.131)

where ( X ) is the -covering number of with respect to X . Most gener-
alization error bounds can be expressed in terms of m( ). An example (Theo-
rem 12.38) is given in the following section.

Covering numbers and the growth function are inherently discrete quantities.
The functional inverse of m( ), referred to as the entropy number, however, is
more amenable to our analysis. The nthentropy number of a set M E, for n , isEntropy

Numbers given by

n(M) : inf 0 there exists an -cover for M in E
containing n or fewer points (12.132)

Since we are dealing with linear function classes, we will introduce the notion
of entropy numbers of operators and represent the possible function values that
these linear function classes can assume on the data as images of linear operators.

For this purpose we need to introduce the notion of entropy numbers of oper-
ators. Denote by E G Banach spaces and by (E G) the space of linear operators
from E into G. The entropy numbers of an operator T (E G) are defined as

n(T) : n(T(UE)) (12.133)

Note that 1(T) T , and that n(T) is well-defined for all n precisely if T is
bounded (see Section B.3.1). Moreover, limn n(T) 0 if and only if T is compact;
that is, if T(UE) is precompact.

A set is called precompact if its closure is compact. A set is called compact if everyCompact and
Precompact sequence in S has a subsequence that converges to an element also contained in

S.8

8. Strictly speaking, we should be considering the notion of relative compactness; however,
for Banach spaces, this coincides with precompactness, and we can disregard these ramifi-
cations.



394 Learning Theory Revisited

The dyadic entropy numbers of an operator are defined as

en(T) : 2n 1 (T) n ; (12.134)

similarly, the dyadic entropy numbers of a set are defined from its entropy num-
bers. A beautiful introduction to entropy numbers of operators is given in a book
by Carl and Stephani [90].

12.4.3 Generalization Bounds via Uniform Convergence

Recall the reasoning of Section 5.5. There we explained how uniform convergence
bounds in terms of the covering number could be obtained. For the sake of con-
creteness, we quote a result suitable for regression, which was proved in [6]. Let
Em[ f ] : 1

m ∑m
i 1 f (xi) denote the empirical mean of f on the sample x1 xm.

Uniform Conver-
gence Bounds Lemma 12.38 (Alon, Ben-David, Cesa-Bianchi, and Haussler, 1997) Let be a class

of functions from into [0 1]. For all 0, and all m 2
2 ,

P sup
f

Em[ f ] E[ f ] 12m E 6
X̄ exp

2m
36

(12.135)

where the P on the left hand side denotes the probability w.r.t. the sample x1 xm

drawn iid from the underlying distribution, and E the expectation w.r.t. a second sample
X̄ (x̄1 x̄2m), also drawn iid from the underlying distribution.

In order to use this lemma one usually makes use of the fact that, for any P,

EX̄ ( m (X̄)) m( ) (12.136)

An alternative is to exploit the fact that ( m (X̄)) is a concentrated random
variable and measure on the actual training set. See [66, 293] for further details
on this subject. Theorem 12.38 in conjunction with (12.136) can be used to give a
generalization error result by applying it to the loss-function induced class. The
connection is made by the following lemma:

Lemma 12.39 (Lipschitz-Continuous Loss [606, 14]) Denote by a set of functions
from to [a b], with a b, a b and by l : 0 a loss function satisfying
a Lipschitz-conditionLoss Functions

l( ) l( ) C for all [a b b a] (12.137)

Moreover, let Z : (xi yi)m
j 1, l f Zj

: l( f (x j) y j), l f Z : (l f Zj)
m
j 1, l Z : l f Z: f

and ( l Z) : ( l Z
Z ). Then the following equation holds;

max
Z ( [a b])m

( l Z) max
X m C X (12.138)

The proof works by explicitly exploiting the Lipschitz property of the loss. Apply-
ing this result to polynomial loss leads to the following corollary.
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Corollary 12.40 (Polynomial Loss) Let the assumptions be as in Lemma 12.39. Then,
for loss functions of type

l( ) p 1 p with p 1 (12.139)

we have C (b a)(p 1), in particular C (b a) for p 2 and, therefore,

max
Z ( [a b])m

( l Z) max
x m (b a)p 1 x (12.140)

We can readily combine the uniform convergence results with the above results to
get overall bounds on generalization performance. We do not explicitly state such
a result here, since the particular uniform convergence result needed depends on
the exact setup of the learning problem. In summary, a typical uniform conver-
gence result (see for instance (5.35) or (12.135)) takes the form

P sup
f

Remp( f ) R( f ) c1(m) m( )e m c2 (12.141)

Even the exponent in (12.141) depends on the setting.9 Since our primary interest
is in determining m( ) we will not try to summarize the large body of work
now done on uniform convergence results and generalization error.

These generalization bounds are typically used by setting the right hand side
equal to and solving for m m( ) (which is called the sample complexity).Learning Curves
Another way to use these results is as a learning curve bound ¯( m), where

P sup
f

Remp( f ) R( f ) ¯( m) (12.142)

We note here that the determination of ¯( m) is quite convenient in terms of en, the
dyadic entropy number associated with the covering number m( ) in (12.141).
Setting the right hand side of (12.141) equal to , we have

c1(m) m( )e m c2

log2 c1(m)
m

c2 ln 2 log2
m( ) (12.143)

Eq. (12.143) is satisfied if we can find some such that

e
log2 c1(m)

m
c2 ln 2 1

(12.144)

holds. Clearly we want the minimal that satisfies (12.144), since determines the
tightness of the bound (12.141). Therefore we define

¯( m) min (12 144) holds (12.145)

Hence the use of n or en (which will arise naturally from our techniques) is, in
fact, a convenient thing to do to find learning curves.

9. In regression can be set to 1, however, in agnostic learning Kearns et al. [287] show
that, in general, 2, except if the class is convex, in which case it can be set to 1 [322].
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The key idea in the present section concerns the manner in which the covering
numbers are computed. Traditionally, appeal has been made to the Sauer-Shelah-
Vapnik-Chervonenkis Lemma (originally due to [567] and rediscovered in [493,
458]). In the case of function learning, a generalization due to Pollard (called the
pseudo-dimension), or Vapnik and Chervonenkis (called the VC dimension of real
valued functions, see Section 5.5.6), or a scale-sensitive generalization of that (the
fat-shattering dimension) is used to bound the covering numbers. These results
reduce the computation of m( ) to the computation of a single “dimension-
like” quantity. An overview of various dimensions, some details of their history,
and some examples of their computation can be found in [13].

12.4.4 Entropy Numbers for Kernel Machines

The derivation of bounds on the covering number (and entropy number) of
proceeds by making statements about the shape of the image of the input space
under the feature map Φ. We make use of Mercer’s theorem (Theorem 2.10) and
of the scaling operator constructed in Section 2.2.5.

Recall that in Proposition 2.13, where we described valid scaling operators
that map Φ( ) into 2, the numbers li are related to the eigenvalues according
to (2.50). Following (2.50), it was pointed out that for some common kernels, it
is not necessary to distinguish between li and i. In the present section, we will
formulate the results for the li; however, the reader may bear in mind that these
are essentially determined by the i.

In the following (without loss of generality) we assume the sequence of (lj) j (cf.
(2.50)) is sorted in nonincreasing order.

As discussed in Section 2.2.5, the rate of decay of the eigenvalues has implica-
tions for the area occupied by the data in feature space.

As a consequence of Proposition 2.13, we can construct a mapping A from the
unit ball in 2 to an ellipsoid such that Φ( ) , as in the following diagram:

Φ �� Φ( ) A 1
�� U 2

A

�����������������
(12.146)

Shrinkage
Operator The operator A will be useful for computing the entropy numbers of concatena-

tions of operators. (Knowing the inverse will allow us to compute the forward
operator, and that can be used to bound the covering numbers of the class of func-
tions, as shown in the next subsection.)

Define

R : s j l j
j

2

(12.147)
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From Proposition 2.13 it is clear that we may use

A RS 1 s j l j
j

2

S 1 (12.148)

We call such scaling (inverse) operators admissible. The next step is to compute the
entropy numbers of the operator A and use this to obtain bounds on the entropy
numbers for kernel machines such as SVMs. We make use of the following theorem
(see [208, p. 226], stated in the given form in [90, p. 17]).

Theorem 12.41 (Diagonal Scaling Operators) Let 1 2 j 0 be a
non-increasing sequence of non-negative numbers and let

Dx ( 1x1 2x2 jx j ) (12.149)

for x (x1 x2 xj ) p be the diagonal operator from p into itself, generated by
the sequence ( j) j, where 1 p . Then, for all n ,

sup
j

n
1
j ( 1 2 j)

1
j n(D) 6 sup

j
n

1
j ( 1 2 j)

1
j (12.150)

We can exploit the freedom in choosing A to minimize an entropy number as
the following corollary shows. This is a key ingredient in our calculation of the
covering numbers for SV classes, as shown below.Application to

Φ( )
Corollary 12.42 (Entropy Numbers for Admissible Scaling Operators) Let k:

be a Mercer kernel and let the scaling operator A be defined by (12.148) and R by
(12.147), with lisi i 2. Then

n(A: 2 2) sup
j

6R n a1a2 a j
1
j (12.151)

This result follows immediately from the identification of D and A. We can opti-
mize (12.151) by exploiting the freedom that we still have in choosing a particular
operator A among the class of admissible ones. This leads to the following result
(the infimum is in fact attainable [220]).

Corollary 12.43 (Entropy Numbers for Optimal Scaling) There exists an A defined
by (12.148) and R defined in (12.147) that satisfies

n(A: 2 2) inf
(si)i :( lisi)i 2

sup
j

6R n a1a2 a j
1
j (12.152)

The functions that an SV machine generates can be expressed as x w Φ(x) b,
where w Φ(x) and b . The “ b” term is dealt with in [606]; for now we
consider the simplified class

Λ : x w Φ(x) x w Λ (12.153)

What we seek are the m covering numbers for the class Λ induced by the
kernel in terms of the parameter Λ. As described in Chapter 7, this is the inverse
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of the size of the margin in feature space, or, equivalently, the size of the weight
vector in feature space as defined by the dot product in . We call such hypothesisSV Classes
classes with a length constraint on the weight vectors in feature space SV classes.
Let T be the operator T SΦ(X)Λ where Λ , and define the operator SΦ(X) by

SΦ(X) : 2
m

SΦ(X) : w Φ(x1) w Φ(xm) w
(12.154)

The following theorem is useful in computing entropy numbers in terms of T
and A. Originally due to Maurey, it was extended in [89]. See [605] for further
extensions and historical remarks.

Theorem 12.44 (Maurey’s Bound [90]) Let m and S (H m ), where H is a
Hilbert space. Then there exists a constant c 0 such that, for all m n ,Maurey’s

Theorem
en(S) c S n 1 log2 1

m
n

1 2
(12.155)

An alternative proof of this result (given in [605]) provides a small explicit value
for the constant; c 103.

The restatement of Theorem 12.44 in terms of 2n 1 en will be useful in the
following. Under the assumptions given we have

n(S) c S (log2 n) 1 log2 1
m

log2 n

1 2

for n 1 (12.156)

Now we can combine the bounds on entropy numbers of A and SΦ(X) to obtain
bounds for SV classes. First we need the following lemma.

Product
Bounds Lemma 12.45 (Product Bound [90]) Let E F G be Banach spaces, R (F G), and

S (E F). Then, for n t ,

nt(RS) n(R) t(S) (12.157)

n(RS) n(R) S (12.158)

n(RS) n(S) R (12.159)

Note that the latter two inequalities follow directly from (12.157) and the fact that 1(R)
R for all R (F G).

Theorem 12.46 (Bounds for SV classes) Let k be a Mercer kernel, let Φ be induced
via (2.40) and let T : SΦ(X)Λ where SΦ(X) is given by (12.154) and Λ . Let A be
defined by (12.148). Then the entropy numbers of T satisfy the following inequalities, for
n 1;

n(T) c A Λ log 1 2
2 n log1 2

2 1 m
log2 n (12.160)

n(T) 6Λ n(A) (12.161)

nt(T) 6cΛ log 1 2
2 n log1 2

2 1 m
log2 n t(A) (12.162)

where c is defined as in Lemma 12.44.
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This result gives several options for bounding n(T). We shall see in examples later
that the best inequality to use depends on the rate of decay of the eigenvalues of k.
The result gives effective bounds on m( Λ) since

n(T: 2
m ) 0

m( 0 Λ) n (12.163)

Proof We use the following factorization of T to upper bound n(T).Factorization

U 2 2
T ��

Λ

��

m

ΛU 2 2

SΦ(X)

��������������������
A �� Λ 2

S(A 1Φ(X))

��
(12.164)

The top left part of the diagram follows from the definition of T. The fact that the
diagram commutes stems from the fact that, since A is diagonal, it is self-adjoint
and hence for any x ,

w Φ(x) w AA 1Φ(x) Aw A 1Φ(x) (12.165)

Instead of computing the covering number of T SΦ(X)Λ directly, which is difficult
or wasteful, as the bound on SΦ(X) does not take into account that Φ(x) but
just makes the assumption of Φ(x) U 2 for some 0, we will represent T as
S(A 1Φ(X))AΛ. This is more efficient as we construct A such that Φ( )A 1 U 2 fills
a larger proportion of it than just 1 Φ( ).

By construction of A, and due to the Cauchy-Schwarz inequality, we know that
SA 1Φ(X) 1. Thus, applying Lemma 12.45 to the factorization of T, and using

Theorem 12.44 proves the theorem.

As we see below, we can give asymptotic rates of decay for n(A). (In fact we
give non-asymptotic results with explicitly evaluable constants.) It is thus of some
interest to give overall asymptotic rates of decay of n(T) in terms of the order
of n(A). By “asymptotic” here we mean asymptotic in n; this corresponds to
asking how ( ) scales as 0 for fixed m.

Overall
Asymptotic
Rates

Lemma 12.47 (Rate bounds on n) Let k be a Mercer kernel and suppose A is the
scaling operator associated with it, as defined by (12.148).

1. If n(A) O(log2 n) for some 0 then for fixed m

n(T) O(log ( 1 2)
2 n) (12.166)

2. If log2 n(A) O(log2 n) for some 0 then for fixed m

log2 n(T) O(log2 n) (12.167)

This lemma shows that, in the first case, Maurey’s result (Theorem 12.44) allows an
improvement in the exponent of the entropy number of T, whereas in the second,
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it affords none (since the entropy numbers decay so fast anyway). The Maurey
result may still help in that case for nonasymptotic n. Note that for simplicity of
notation we dropped to mention the dependency of the bounds on m. See e.g.,
[526, 606] for further details.

Proof From Theorem 12.44 we know that n(S) O(log 1 2
2 n). Now use (12.157),

splitting the index n in the following way;

n n n(1 ) with (0 1) (12.168)

For the first case this yields

n(T) O(log 1 2
2 n )O(log2 n1 ) 1 2(1 ) O(log ( 1 2)

2 n) (12.169)
Dominant Rates

In the second case we have

log2 n(T) log2 ( 1 2)O(log 1 2
2 n) (1 ) O(log2 n) O(log2 n) (12.170)

In a nutshell we can always obtain rates of convergence better than those due
to Maurey’s theorem, because we are not dealing with arbitrary mappings into
infinite dimensional spaces. In fact, for logarithmic dependency of n(T) on n, the
effect of the kernel is so strong that it completely dominates the n 1 2 behavior for
arbitrary Hilbert spaces. An example of such a kernel is k(x y) exp( (x y)2);
see Proposition 12.51 and also Section 12.4.5 for the discretization question.

12.4.5 Discrete Spectra of Convolution Operators

The results presented above show that if we know the eigenvalue sequence of a
compact operator, we can bound its entropy numbers. Whilst it is always possible
to assume that the data fed into a SV machine has bounded support, the same can
not be said of the kernel k( ). A commonly used kernel is k(x y) exp( (x y)2)
which has noncompact support. The induced integral operatorIntegral Operator

(Tk f )(x) k(x y) f (y) dy (12.171)

then has a continuous spectrum and is not compact [17, p.267]. The question arises
as to whether we make use of such kernels in SVMs and still obtain generalization
error bounds of the form developed above? A further motivation stems from the
fact that, by a theorem of Widom [595], the eigenvalue decay of any convolution
operator defined on a a compact set via a kernel having compact support can
be no faster than j O(e j2

). Thus, if we seek very rapid decay of eigenvalues
(with concomitantly small entropy numbers), we must use convolution kernels
with noncompact support.

We will resolve these issues in this section. Before doing so, let us first consider
the case that supp k [ a a] for some a . Suppose, further, that the data points
xj satisfy xj [ b b] for all j. If k( ) is a convolution kernel (k(x y) k(x y)),
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then the SV hypothesis hk( ) can be written

hk(x) :
m

∑
j 1

jk(x x j)
m

∑
j 1

˜ jkp(x x j) : hkp (x) (12.172)

for p 2(a b), where kp( ) is the p-periodic extension of k( ), as given by (4.42);

kp(x x ) : ∑
j

k(x jp x ) (12.173)

Here we used k(x x ) k(x x ). We now relate the eigenvalues of Tkp
to the

Fourier transform of k( ). The following lemma is a direct consequence of Proposi-
tion 4.12 (all we need to do is replace 2 by the new period p).

Lemma 12.48 (Discrete Spectrum of Periodic Kernels) Let k: be a symmetric
convolution kernel, let K( ) F[k(x)]( ) denote the Fourier transform of k( ) and kv

denote the p-periodical kernel derived from k (assume also that kp exists). Then kp has aConnection be-
tween Spectrum
and Fourier
Transform

representation as a Fourier series with 0 : 2
p and

kp(x y) ∑
j

2
p

K( j 0)ei j 0x

2
p

K(0) ∑
j 1

2
p

2 K( j 0) cos( j 0(x y)) (12.174)

Moreover, j 2 K( j 0) for j and Ck
2
p (see (2.51) for the definition of Ck).

Finally, for k : N N and a p-periodic kernel kp in each direction (x (x1 xN))
(derived from k), we get the following spectrum j of kp

j (2 )N 2K( 0j) (2 )N 2K( 0 j ) where Ck (2 p)N 2 (12.175)

Thus, even though Tk may not be compact, Tkp may be (if (K( j 0)) j 2 for
example). The above lemma can be applied whenever we can form k p( ) from
k( ). Clearly k(x) O(x (1 )) for some 0 suffices to ensure the sum in (12.173)
converges.

Let us now consider how to choose p. Note that the Riemann-Lebesgue lemma
tells us that, for integrable k( ) of bounded variation (surely any kernel we would
use would satisfy that assumption), one has K( ) O(1 ). There is an trade-off
in choosing p in that, for large enough , K( ) is a decreasing function of (at
least as fast as 1 ) and thus, by Lemma 12.48, j 2 K(2 j p) is an increasing
function of p. This suggests one should choose a small value of p. But a small p
will lead to high empirical error (as the kernel “wraps around” and its localization
properties are lost) and large Ck. There are several approaches to picking a value
of p. One obvious one is to a priori pick some ˜ 0 and choose the smallest p such
that k(x) kp(x) ˜ for all x [ p 2 p 2]. Thus one would obtain a hypothesis
hkp(x) uniformly within C˜ of hk(x), where ∑m

j 1 j C.
Finally, it is worth to note how the choice of a different bandwidth of theInfluence of

Bandwidth kernel, namely letting k( )(x) : k( x), affects the spectrum of the corresponding
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operator. We have K( )( ) K( ), hence scaling a kernel by means more
densely spaced eigenvalues in the spectrum of the integral operator Tk( ) .

In conclusion: in order to obtain a discrete spectrum, we need to use a periodic
kernel. For a problem at hand, one can always periodize a nonperiodic kernel in
a way that changes the estimated function in an arbitrarily small way, hence the
above results can be applied.

12.4.6 Covering Numbers for Given Decay Rates

In this section we will show how the asymptotic behavior of n(A: 2 2), where
A is the scaling operator introduced before, depends on the eigenvalues of Tk.

Note that we need to sort the li in a nonincreasing manner because of the re-
quirements in Corollary 12.43. Many one-dimensional kernels have nondegener-
ate systems of eigenvalues. In this case it is straightforward to explicitly compute
the geometrical means of the eigenvalues, as will be shown below. Note that whilst
all of the examples which follow are for convolution kernels (k(x y) k(x y)),
there is nothing in the formulations of the propositions themselves that requires
this. When we consider the N-dimensional case we shall see that, with rotationally
invariant kernels, degenerate systems of eigenvalues are generic. This can be dealt
with by a slight modification of theorem 12.41 — see [606] for details.

Let us consider the special case in which (l j) j decays asymptotically with some
polynomial or exponential degree. In this case we can choose a sequence (aj) j for
which we can evaluate (12.152) explicitly. By the eigenvalues of a kernel k we mean
the eigenvalues of the induced integral operator Tk.

Laplacian
Kernel Proposition 12.49 (Polynomial Decay [606]) Let k be a Mercer kernel with l j

2 j ( 1) for some 0. Then for any (0 2) we have

n(A: 2 2) O(ln 2 n) (12.176)

An example of such a kernel is k(x) e x.

Proposition 12.50 (Exponential Decay [606]) Suppose k is a Mercer kernel with l j
2e ( j 1) for some 0. Then

ln 1
n (A: 2 2) O(ln

1
2 n) (12.177)

An example of such a kernel is k(x) 1
1 x2 .

Gaussian
Kernel Proposition 12.51 (Exponential Quadratic Decay) Suppose k is a Mercer kernel with

l j
2e ( j 1)2

for some 0. Then

ln n(A: 2 2) O(ln
2
3 n) (12.178)

An example of such a kernel is the Gaussian k(x) e x2
.

We conclude this section with a general relation between exponential-polynomial
decay rates and orders of bounds on n(A).
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Proposition 12.52 (Exponential-Polynomial decay) Suppose k is a Mercer kernel
with l j

2e jp
for some p 0. Then

ln n(A: 2 2) O(ln
p

p 1 n) (12.179)

In [606], it is shown that the rates given in Propositions 12.49, 12.50, 12.51, and
12.52 are tight. These results give the guarantees on the learning rates of estimators
using such types of kernels, which is theoretically satisfying and leads to desirable
sample complexity rates. In practice, however, it is often better to take advantage
of estimates based on an analysis of the distribution of the training data since the
rates obtained by the latter can be superior [604].

12.5 Summary

In this chapter we studied four alternative ways of assessing the quality of an
estimator, none of which relies on the VC dimension as the basic mechanism.

The first method was based on the concept of algorithmic stability, i.e., on the
fact that the estimates we obtain by minimizing the regularized risk functional do
not depend to a large extent on individual instances. This facilitated the applica-
tion of concentration of measure inequalities and ultimately the proof of uniform
convergence bounds.

A second strategy relied on leave-one-out estimators, which provide an (almost)
unbiased, yet somewhat noisy estimate of the expected error of the estimation
algorithm. In some cases, however, such as the minimization of regularized risk
functionals, it is possible to derive upper bounds on the variance of the leave-
one-out estimate. In this context we presented three means of computing such
estimates, based on ideas from statistical mechanics and optimization theory.

Thirdly, also Bayesian-like concepts can be employed in the assessment of an
estimator. In this context, we introduced the notion of the risk of a distribution
over hypotheses rather than a single function. Using a connection between the
width of the margin and the posterior weight we established bounds which are
readily predictive already for small sample sizes but which are oblivious of the
shape of the data mapped into feature space.

Finally, we gave a brief overview over a capacity concept based on the metric
entropy of function spaces which crucially relies on the shape of the data in feature
space. This enabled us to give significantly improved bounds on the capacity of
function classes derived from specific kernels, by combining concepts from the
theory of Banach spaces and functional analysis.

Only time and future research will tell, whether we may be able to establish a
master concept which encompasses all these different facets of bounds on the gen-
eralization performance of estimators. It seems to be a rewarding and promising
avenue for future work.
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12.6 Problems

12.1 (Uniform Convergence Bounds for SVM ) Prove a uniform convergence state-
ment for Support Vector Machines using (12.5) and Theorem 12.4.

12.2 (Adaptive Margin SVM with the -Property ) An alternative to (12.43) is to
use the -trick (see Section 3.4.3) to modify the optimization problem (12.42). Prove that

minimize
1
m

m

∑
i 1

i

subject to yi ∑
j i

j y jk(xi x j) i for all i [m]

i i 0 for all i [m]

(12.180)

has the -property, that is, that at most a fraction of 1 patterns are classified correctly
with margin larger than and that at most a fraction of patterns are margin errors.

12.3 (Span Bound for -Classification ) Prove an analog to the Span Bound (The-
orem 12.14) in the case of -Classification. Hint: you will have to distinguish between the
case of n m and n m which will lead to the introduction of Span and Swap
of a SV solution as in the case of quantile estimation (see Section 12.2.4).

12.4 (Leave-One-Out Approximation for -SVM ) Using the techniques from
Section 12.2.5 derive an approximation of the leave-one-out error in the case of -SVM.
As opposed to the standard SV setting you also have to take possible changes in the width
of the margin into account. Hint: assume that in-bound SVs will remain so and adapt the
Lagrange multipliers i accordingly such that ∑i l i 1 is satisfied (note: do not rescale
the bound constrained multipliers from 1

m to 1
(m 1)). Simultaneously adapt the margin

such that the in-bound SVs still remain in-bound SVs. In other words choose and i

such that, for all in-bound SVs, ∑i l ik(xi x j) jk(x j x j) .

12.5 (Counterexample for R[ fGibbs] CR[ fBayes] ) Show that there exist cases where
R[ fBayes] 0 and R[ fGibbs] 1

2 for any 0. Hint: consider a posterior distribution
p( f Z) where 1

2 p( f (x) 1 Z x) 1
2 .

12.6 (Error of the Gibbs Classifier ) Assume that we know the distribution P(x y)
according to which data are generated. What is the error that the Gibbs classifier fGibbs

will achieve? Prove that it is always greater or equal to the error of the Bayes classifier.
Can you construct a case where the Gibbs classifier has smaller error than the Bayes

classifier (in the case where posterior distribution and true distribution disagree)?

12.7 (PAC-Bayesian Bound for Nonzero Loss [353] ) Prove (12.113) by following
the steps of the proof of (12.114). Step 1: derive a suitable ( f Z ) by using Hoeffding’s
bound. Step 2: apply the Quantifier Reversal Lemma with P( )

m and 1
m and recall

that the loss incurred by classification is bounded by 1.



 

III KERNEL METHODS

Nur droben, wo die Sterne,
Gibt’s Kirschen ohne Kerne.

H. Heine1

We have previously argued that one of the merits of SV algorithms is that they
draw the attention of the machine learning community to the practical usefulness
of statistical learning theory. Whilst the mathematical formalization that this has
brought about is certainly beneficial to the field of statistical machine learning,
it is by no means the only merit. The second advantage, potentially even more
far-reaching, is that SV methods popularize the use of positive definite kernels
for learning. The use of such kernels is not limited to SVMs, and a number of
interesting and useful algorithms also benefit from the “kernel trick.”

The third and final part of the present book therefore focuses on kernels. This
is done in two ways. First, by presenting some non-SV algorithms utilizing kernel
functions, starting with Kernel PCA (historically the first such algorithm), and effi-
cient modifications thereof (Chapter 14). We then move on to a supervised variant,
the kernel Fisher discriminant (Chapter 15), and describe a kernel algorithm for mod-
elling unlabelled data using nonlinear regularized principal manifolds (Chapter 17).
We also discuss Bayesian variants and insights into kernel algorithms (Chapter 16).
Finally, we describe some rather useful techniques for reducing the complexity

1. From Nachgelesene Gedichte 1845 - 1856.
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of the kernel expansion returned by the above algorithms, and by SVMs (Chap-
ter 18). It turns out that these techniques also have the potential to develop into
other algorithms, in areas such as denoising and nonlinear modelling of data.



 

13 Designing Kernels

In general, the choice of a kernel corresponds to

choosing a similarity measure for the data — Section 1.1 introduces kernels as a
mathematical formalization of a notion of similarity;

choosing a linear representation of the data — given a kernel, Section 2.2 con-
structs a linear space endowed with a dot product that corresponds to the kernel;

choosing a function space for learning — the representer theorem (Section 4.2)
states that the solutions of a large class of kernel algorithms, among them SVMs,
are precisely given by kernel expansions; thus, the kernel determines the func-
tional form of all possible solutions;

choosing a regularization functional — given a kernel, Theorem 4.9 character-
izes a regularization term with the property that an SVM using that kernel can be
thought of as penalizing that term; for instance, Gaussian kernels penalize deriva-
tives of all orders, and thus enforce smoothness of the solution;

choosing a covariance function for correlated observations; in other words, en-
coding prior knowledge about how observations at different points of the input
domain relate to each other — this interpretation is explained in Section 16.3;

choosing a prior over the set of functions — as explained in Section 4.10 and
16.3, each kernel induces a distribution encoding how likely different functions
are considered a priori.

Therefore, the choice of the kernel should reflect prior knowledge about the prob-
lem at hand. Specifically, the kernel is the prior knowledge we have about a prob-
lem and its solution. Accordingly, just as there is no “free lunch” in learning (Sec-
tion 5.1), there is also no free lunch in kernel choice.

This chapter gathers a number of methods and results concerning the design of
kernel functions. We start with a somewhat anecdotal collection of general meth-Overview
ods for the construction of kernels that are positive definite (Section 13.1). We then
consider some interesting classes of kernels engineered for particular tasks. Specif-
ically, we look at string kernels for the processing of sequence data (Section 13.2),
and locality-improved kernels that take into account local structure in data, such
as spatial vicinity in images (Section 13.3). Following this, we summarize the key
features of a class of kernels that take into account underlying probabilistic mod-
els, and can thus be thought of as defining a similarity measure which respects the
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process that generated the patterns (Section 13.4).
The chapter strongly relies on background from Chapter 2; in particular, onPrerequisites

Sections 2.1 through 2.3. Some background from Section 4.4 is useful to understand
the Fourier space representation of translation invariant kernels. The material
in Section 13.3 requires basic knowledge of the SVM classification algorithm, as
described in Section 1.5 and Chapter 7. Finally, the section on natural kernels,
builds on concepts introduced in Section 3.3.

13.1 Tricks for Constructing Kernels

We now gather a number of results useful for designing positive definite kernels
(referred to as kernels for brevity) [42, 121, 1, 85, 340, 480, 125]. Many of these tech-
niques concern manipulations that preserve the positive definiteness of Defini-
tion 2.5; which is to say, closure properties of the set of admissible kernels.

Proposition 13.1 (Sums and Limits of Kernels) The set of kernels forms a convex
cone, closed under pointwise convergence. In other words,Linear

Combination
of Kernels if k1 and k2 are kernels, and 1 2 0, then 1k1 2k2 is a kernel;

if k1 k2 are kernels, and k(x x ) : limn kn(x x ) exists for all x x , then k is a
kernel.

Whilst the above statements are fairly obvious, the next one is rather surprising
and often useful for verifying that a given kernel is positive definite.

Proposition 13.2 (Pointwise Products [483]) If k 1 and k2 are kernels, then k1k2, de-
fined by (k1k2)(x x ) : k1(x x )k2(x x ), is a kernel.Product of

Kernels
Note that the corresponding result for positive definite matrices concerns the
positivity of the matrix that is obtained by element-wise products of two positive
definite matrices. The original proof of Schur [483] is somewhat technical. Instead,
we briefly reproduce the proof of [402], which should be enlightening to readers
with a basic knowledge of multivariate statistics.

Proof Let (V1 Vm) and (W1 Wm) be two independent normally dis-
tributed random vectors, with mean zero, and respective covariance matrices
K1 and K2. Then the matrix K, whose elements are the products of the corre-
sponding elements of K1 and K2, is the covariance matrix of the random vector
(V1W1 VmWm), hence it is positive definite.

A special case of the above are conformal transformations [10],Conformal
Transformation

k f (x x ) f (x)k(x x ) f (x ) (13.1)
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obtained by multiplying a kernel k with a rank-one kernel (cf. Problem 2.15)
k (x x ) f (x) f (x ), where f is a positive function. Since

cos Φ f (x) Φ f (x )
f (x)k(x x ) f (x )

f (x)k(x x) f (x) f (x )k(x x ) f (x )
k(x x )

k(x x) k(x x )
cos Φ(x) Φ(x )

this transformation does not affect angles in the feature space.
For kernels of the dot product type, written k(x x ) k( x x ), the following

conditions apply.Dot Product
Kernels

Theorem 13.3 (Necessary Conditions for Dot Product Kernels [86]) A differentiable
function of the dot product k(x x ) k( x x ) has to satisfy

k(t) 0 k (t) 0 and k (t) tk (t) 0 (13.2)

for any t 0, in order to be a positive definite kernel.

Note that the conditions in Theorem 13.3 are only necessary but not sufficient. The
general case is given by the following theorem (see also Section 4.6.1 for the finite
dimensional counterpart).

Theorem 13.4 (Power Series of Dot Product Kernels [466]) A function
k(x x ) k( x x ) defined on an infinite dimensional Hilbert space, with a power series
expansion

k(t) ∑
n 0

antn (13.3)

is a positive definite kernel if and only if for all n, we have an 0.

A slightly weaker condition applies for finite dimensional spaces. For further
details and examples see Section 4.6 and [42, 511].

We next state a condition for translation invariant kernels, meaning kernels of
the form k(x x ) k(x x ).

Theorem 13.5 (Fourier Criterion [516]) Suppose N . A translation invariant
function k(x x ) k(x x ) is a positive definite kernel if the Fourier transform

F[k]( ) (2 )
N
2 e i x k(x) dx (13.4)

is nonnegative.

This theorem is proved, and further discussed, in Section 4.4.
As discussed in Chapter 2, we typically do not worry about the exact map ΦKernels

Constructed
from Mappings

to which the kernel corresponds, once we have a suitable kernel. For the purpose
of constructing kernels, however, it can be useful to compute the kernels from
mappings into some dot product space , Φ : . Ideally, we would like
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to choose Φ such that we can obtain an expression for Φ(x) Φ(x ) that can be
computed efficiently. Consider now mappings into function spaces,

x fx (13.5)

with fx being a real-valued function. We further assume that these spaces are
equipped with a dot product,

fx fx fx(u) fx (u) du (13.6)

We can then define kernels of the form

k(x x ) : fx fx
d (13.7)

for instance. As an example, suppose the input patterns xi are q q images. Then
we can map these patterns to two-dimensional image intensity distributions fxi

(for instance, splines on [0 1]2). The dot product between the fxi then approxi-
mately equals the original dot product between the images represented as pixel
vectors, which can be seen by considering the finite sum approximation to the
integral,

1

0

1

0
fx(u) fx (u) d2u

1
q2

q

∑
i 1

q

∑
j 1

fx
i 1

2

q
j 1

2

q
fx

i 1
2

q
j 1

2

q

Note that in the function representation, it is possible, for instance, to define
kernels that can compare images in different resolutions.

Given a function k(x x ), we can construct iterated kernels (e.g., [112]) usingIterating Kernels

k(2)(x x ) : k(x x )k(x x ) dx (13.8)

Note that k(2) is a positive definite kernel even if k is not, as can be seen by verifying
the condition of Mercer’s theorem,

k(2)(x x ) f (x) f (x ) dxdx k(x x )k(x x ) f (x) f (x ) dx dxdx

k(x x ) f (x) dx
2

dx (13.9)

A similar construction can be accomplished in the discrete case, cf. Problem 13.3.
According to Proposition 13.2, the product of kernels is also a kernel. Let us now

consider a different form of product, the tensor product, which also works if the two
kernels are defined on different domains.

Proposition 13.6 (Tensor Products) If k1 and k2 are kernels defined respectively on
1 1 and 2 2, then their tensor product,Tensor Product

Kernel
(k1 k2)(x1 x2 x1 x2) k1(x1 x1)k2(x2 x2) (13.10)

is a kernel on ( 1 2) ( 1 2). Here, x1 x1 1 and x2 x2 2.
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This result follows from the fact that the (usual) product of kernels is a kernel (see
Proposition 13.2 and Problem 13.4).

There is a corresponding generalization from the sum of kernels to their direct
sum [234, 480].

Proposition 13.7 (Direct Sums) If k1 and k2 are kernels defined respectively on 1 1

and 2 2, then their direct sum,

(k1 k2)(x1 x2 x1 x2) k1(x1 x1) k2(x2 x2) (13.11)

is a kernel on ( 1 2) ( 1 2). Here, x1 x1 1 and x2 x2 2.

This construction can be useful if the different parts of the input have different
meanings, and should be dealt with differently. In this case, we can split the inputs
into two parts x1 and x2, and use two different kernels for these parts [480].

This observation naturally leads to the general problem of defining kernels on
structured objects [234, 585]. Suppose the object x is composed of xd d,Kernels on

Structured
Objects

where d 1 D (note that the sets d need not be equal). For instance, consider
the string x ATG, and D 2. It is composed of the parts x1 AT and x2 G,
or alternatively, of x1 A and x2 TG. Mathematically speaking, the set of
“allowed” decompositions can be thought of as a relation R(x1 xD x), to be
read as “x1 xD constitute the composite object x.”

Haussler [234] investigated how to define a kernel between composite objects by
building on similarity measures that assess their respective parts; in other words,
kernels kd defined on d d. Define the R-convolution of k1 kD asR-Convolution

Kernel
(k1 kD)(x x ) : ∑

R

D

∏
d 1

kd(xd xd) (13.12)

where the sum runs over all possible ways (allowed by R) in which we can decom-
pose x into x1 xD and x into x1 xD; that is, all (x1 xD x1 xD) such
that R(x1 xD x) and R(x1 xD x ).1 If there is only a finite number of ways,
the relation R is called finite. In this case, it can be shown that the R-convolution
is a valid kernel [234].

Specific examples of convolution kernels are Gaussians (Problem 13.7) and
ANOVA kernels [578, 88, 562, 529]. ANOVA stands for analysis of variance, and
denotes a statistical technique to analyze interactions between attributes of the
data. To construct an ANOVA kernel, we consider SN for some set S, and ker-
nels k(i) on S S, where i 1 N. For D 1 N, the ANOVA kernel of order
D is defined asANOVA Kernel

kD(x x ) : ∑
1 i1 iD N

D

∏
d 1

k(id)(xid
xid

) (13.13)

1. Note that we use the convention that an empty sum equals zero, hence if either x or x
cannot be decomposed, then (k1 kD)(x x ) 0.
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Note that if D N, the sum consists only of the term for which (i1 iD)
(1 N), and k equals the tensor product k(1) k(N). At the other extreme, if
D 1, then the products collapse to one factor each, and k equals the direct sum
k(1) k(N). For intermediate values of D, we get kernels that lie in between
tensor products and direct sums. It is also possible to use ANOVA kernels to
interpolate between (ordinary) products and sums of kernels, cf. Problem 13.6.

ANOVA kernels typically use some moderate value of D, which specifies the
order of the interactions between attributes xid

that we are interested in. The sum
then runs over the numerous terms that take into account interactions of order
D; fortunately, the computational cost can be reduced by utilizing recurrent pro-
cedures for the kernel evaluation [88, 529]. ANOVA kernels have been shown to
work rather well in multi-dimensional SV regression problems (cf. Chapter 9 and
[529]). In this case, the inputs were N-dimensional vectors, and all k(n) where cho-
sen identically as one-dimensional linear spline kernels with an infinite number of
nodes: for x x 0 ,

k(n)(x x )
min(x x )3

3
min(x x )2 x x

2
1 xx n 1 N (13.14)

Note that it is advisable to use a kernel for k(n) which never or rarely takes the value
zero, since a single zero term would eliminate the product in (13.13). Finally, it is
possible to prove that ANOVA kernels are special cases of R-convolutions ([234],
cf. Problem 13.8).

13.2 String Kernels

One way in which SVMs have been used for text categorization [265] is the bag-of-
words representation, as briefly mentioned in Chapter 7. This maps a given text to
a sparse vector, where each component corresponds to a word, and a component
is set to one (or some other number) whenever the related word occurs in the text.
Using an efficient sparse representation, the dot product between two such vectors
can be computed quickly. Furthermore, this dot product is by construction a valid
kernel, referred to as a sparse vector kernel. One of its shortcomings, however, isSparse Vector

Kernel that it does not take into account the word ordering of a document. Other sparse
vector kernels are also conceivable, such as one that maps a text to the set of pairs
of words that are in the same sentence [265, 585], or those which look only at pairs
of words within a certain vicinity with respect to each other [495].

A more sophisticated way of dealing with string data was recently proposed
[585, 234]. The basic idea is as described above for general structured objects
(13.12): Compare the strings by means of the substrings they contain. The more
substrings two strings have in common, the more similar they are. The substrings
need not always be contiguous; that said, the further apart the first and last
element of a substring are, the less weight should be given to the similarity.

Remarkably, it is possible to define an efficient kernel which computes the
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dot product in the feature space spanned by all substrings of documents, with
a computational complexity that is linear in the lengths of the documents being
compared, and the length of the substrings. We now describe this kernel, following
[333].

Consider a finite alphabet Σ, the set of all strings of length n, Σn, and the set of
all finite strings,

Σ :
n 0

Σn (13.15)

The length of a string s Σ is denoted by s , and its elements by s(1) s( s );
the concatenation of s and t Σ is written st. Let us now form subsequences u of
strings. Given an index sequence i : (i1 i u ) with 1 i1 i u s , we
define u : s(i) : s(i1) s(i u ). We call l(i) : i u i1 1 the length of the subsequence
in s. Note that if i is not contiguous, then l(i) is longer than u.

The feature space built from strings of length n is defined to be n : (Σn). This
notation means that the space has one dimension (or coordinate) for each element
of Σn, labelled by that element (equivalently, we can think of it as the space of all
real-valued functions on Σn). We can thus describe the feature map coordinate-
wise for each u Σn via

[Φn(s)]u : ∑
i:s(i) u

l(i) (13.16)

Here, 0 1 is a decay parameter: The larger the length of the subsequence
in s, the smaller the respective contribution to [Φn(s)]u. The sum runs over all
subsequences of s which equal u.

For instance, consider a dimension of 3 spanned (that is, labelled) by the string
. In this case, we have [Φ3( )] 3, while [Φ3( )] 2 5.2

The kernel induced by the map Φn takes the formString Kernel

kn(s t) ∑
u Σn

[Φn(s)]u[Φn(t)]u ∑
u Σn

∑
(i j):s(i) t(j) u

l(i) l(j) (13.17)

To take into account strings of different lengths n, we can use linear combinations,

k : ∑
n

cnkn (13.18)

with cn 0. Let us denote the corresponding feature map by Φ. Clearly, the num-
ber and size of the terms in the above sum strongly depend on the lengths of s and
t. Normalization of the feature map, using Φ(t) Φ(t) , is therefore recommended
[333]. For the kernel, this implies that we should use k(s t) k(s s)k(t t).

2. In the first string, is a contiguous substring. In the second string, it appears twice as
a non-contiguous substring of length 5 in , the two occurrences are and

.
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To describe the actual computation of kn, define

ki(s t) : ∑
u Σi

∑
(i j):s(i) t(j) u

s t i1 j1 2 for i 1 n 1 (13.19)

Using x Σ1, we then have the following recursions, which allow the computation
of kn(s t) for all n 1 2 (note that the kernels are symmetric):

k0(s t) 1 for all s t

ki(s t) 0 if min( s t ) i

ki(s t) 0 if min( s t ) i

ki(sx t) ki(s t) ∑
j:t j x

ki 1(s t[1 j 1]) t j 2 i 1 n 1

kn(sx t) kn(s t) ∑
j:t j x

kn 1(s t[1 j 1]) 2 (13.20)

For further detail, see [585, 333, 156].

13.3 Locality-Improved Kernels

13.3.1 Image Processing

As described in Chapter 2, using a kernel k(x x ) x x d in an SVM classifier
implicitly leads to a decision boundary in the space of all possible products of
d pixels. Using all such products, however, may not be desirable, since in real-
world images, correlations over short distances are much more reliable features
than are long-range correlations. To take this into account, we give the following
procedural definition of the kernel kd1 d2

p (cf. Figure 13.1 and [478]):Local Image
Kernel

1. Compute a third image (x x ), defined as the pixel-wise product of x and x

2. Sample (x x ) with pyramidal receptive fields of diameter p, centered at all
locations (i j), to obtain the values

zi j : ∑
i j

w max( i i j j ) (x x )i j (13.21)

A possible choice for the weighting function w : 0 is w(n) max(q n 0),
where q 0 . In this case, p 2q 1 is the width of the pyramidal receptive field.

3. Raise each zi j to the power d1, to take into account local correlations within the
range of the pyramid

4. Sum zd1
i j over the whole image, and raise the result to the power d2 to allow for

long-range correlations of order d2

The resulting kernel is of order d1 d2, however it does not contain all possible
correlations of d1 d2 pixels unless d1 1. In the latter case, we recover the standard
complete polynomial kernel of degree d2.
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<,>d1

Σd2

x x’

<,>d1

Figure 13.1 Kernel utilizing local
correlations in images. To compute
k(x x ) for two images x and x ,
we sum over products between cor-
responding pixels of the two im-
ages, in localized regions (in the fig-
ure, this is denoted by dot prod-
ucts ), weighed by pyramidal
receptive fields. A first nonlinearity
in form of an exponent d1 is ap-
plied to the outputs. The resulting
numbers for all patches (only two
are displayed) are summed, and the
d2th power of the result is taken as
the value k(x x ). This kernel corre-
sponds to a dot product in a polyno-
mial space which is spanned mainly
by localized correlations between
pixels (see Section 13.3).

Table 13.1 Summary: Error rates on the small MNIST database (Section A.1), for various
methods of incorporating prior knowledge. In all cases, degree 4 polynomial kernels were
used, either of the local type, or (by default) of the complete polynomial type.

Classifier Test Error in %
SV (complete polynomial kernel of degree 4) 4.0
semi-local kernel k2 2

9 (Section 13.3.1) 3.1
purely local kernel k4 1

9 (Section 13.3.1) 3.4
Virtual SV (Section 11.3), with translations 2.8
Virtual SV with k2 2

9 2.0

We now report experimental results. As in Section 11.4, we used the smallCharacter
Recognition
Results

MNIST database (Section A.1). As a reference, we employ the degree 4 polynomial
SVM, performing at 4 0% error (Table 11.4). To exploit locality in images, we used
the pyramidal receptive field kernel kd1 d2

p with diameter p 9 and d1 d2 4;
these are degree 4 polynomials kernels that do not use all products of 4 pixels.
For d1 d2 2, we observe an improved error rate of 3 1%; a different degree 4
kernel with only local correlations (d1 4 d2 1) leads to an error rate of 3 4%
(Table 13.1, [467]).

Although better than the 4 0% error rate for the degree 4 homogeneous polyno-
mial, this is still worse than the Virtual SV result: Using image translations to gen-
erate a set of Virtual SVs leads to an error rate of 2 8%. As the two methods exploit
different types of prior knowledge, however, we expect that combining them will
lead to still better performance; and indeed, this yields the best performance of all
(2 0%), halving the error rate of the original system. Similar results were obtained
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on the USPS database, where the combination of VSVs and locality-improved ker-
nels led to the best result on the original version of the dataset (see Table 7.4 and
[478]). Similarly good results have been reported for other applications, such as
object recognition [467, 76] and texture classification [25].

13.3.2 DNA Start Codon Recognition

To illustrate the universality of the above methods, let us now look at an applica-
tion in a rather different domain, following [617, 375]. Genomic sequences contain
untranslated regions, and so-called coding sequences (CDS) which encode pro-
teins. In order to extract protein sequences from nucleotide sequences, it is a cen-
tral problem in computational biology to recognize the translation initiation sites
(TIS), from which coding starts to determine which parts of a sequence will be
translated.

Coding sequences can be characterized by alignment methods using homolo-
gous proteins (e.g., [405]), or intrinsic properties of the nucleotide sequence which
are learned for instance with Hidden Markov models (HMMs, e.g., [256]). A dif-
ferent approach, which has turned out to be more successful, is to model the task
of finding TIS as a classification problem (see [406, 617]). Out of the four letter
DNA alphabet A C G T , a potential start codon is typically an ATG triplet. The
classification task is therefore to decide whether a symmetrical sequence window
around the ATG indicates a true TIS, or a so called pseudo site. Each nucleotide
in the window is represented using a sparse four-number encoding scheme. For
known nucleotides A C G T , the corresponding entry is set to 1; unknown nu-
cleotides are represented by distributions over the four entries, determined by
their respective frequencies in the sequences. The SVM gets a training set con-
sisting of an input of encoded nucleotides in windows of length 200 around the
ATG, together with a label indicating true/false TIS. In the TIS recognition task, it
turns out to be rather useful to include biological knowledge, by engineering an
appropriate kernel function. We now give three examples of kernel modifications
that are particularly useful for start codon recognition.

While certain local correlations are typical for TIS, dependencies between dis-
tant positions are of minor importance, or do not even exist. Just as in the image
processing task described in Section 13.3.1, we want the feature space to reflect
this. We therefore modify the kernel as follows: At each sequence position, we
compare the two sequences locally, within a small window of length 2l 1 around
that position. We sum matching nucleotides, multiplied by weights j, which in-
crease from the boundaries to the center of the window. The resulting weighted
counts are raised to the dth

1 power. As above, d1 reflects the order of local correla-
tions (within the window) that we expect to be of importance;Locality-

Improved DNA
Kernel winp(x x )

l

∑
j l

j matchp j(x x )
d1

(13.22)
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Table 13.2 Comparison of start codon classification errors (measured on the test set)
achieved with different learning algorithms. All results are averages over the six data
partitions. SVMs were trained on 8000 data points. An optimal set of parameters was
selected according to the overall error on the remaining training data ( 3300 points);
only these results are presented. Note that the windows consist of 2l 1 nucleotides. The
neural net results were achieved by Pedersen and Nielsen ([406], personal communication).
In the latter study, model selection seems to have involved test data, which might lead
to slightly over-optimistic performance estimates. Positional conditional preference scores
were calculated in a manner analogous to Salzberg [456], but extended to the same amount
of input data supplied to the other methods. Note that all performance measures shown
depend on the value of the classification function threshold. For SVMs, the thresholds
are by-products of the training process; for the Salzberg method, ‘natural’ thresholds are
derived from prior probabilities by Bayesian reasoning. Error rates denote the ratio of false
predictions to total predictions.

algorithm kernel parameters error
neural network 15.4%
Salzberg method 13.8%
SVM, simple polynomial d=1 13.2%
SVM, locality-improved kernel d1=4,l=4 11.9%
SVM, codon-improved kernel d1=2,l=3 12.2%
SVM, Salzberg kernel d1=3,l=1 11.4%

Here, matchp j(x x ) is defined to be 1 for matching nucleotides at position p j,
and 0 otherwise. The window scores computed with winp are summed over the
whole length of the sequence. Correlations between windows of order up to d2 are
taken into account by raising the resulting sum to the power of d2; that is,

k(x x )
l

∑
p 1

winp(x x )
d2

(13.23)

We call this kernel locality-improved, as it emphasizes local correlations.
In an attempt to further improve performance, we incorporate another form of

biological knowledge into the kernel, this time concerning the codon-structure of
the coding sequence. A codon is a triplet of adjacent nucleotides that codes for
one amino acid. By definition, the difference between a true TIS and a pseudo site
is that downstream of a TIS, there are CDS (which shows codon structure), while
upstream there are not. CDS and non-coding sequences show statistically different
compositions. It is likely that the SVM exploits this difference for classification.

We also hope to improve the kernel by reflecting the fact that CDS shifted by
three nucleotides still look like CDS. Therefore, we further modify the locality-
improved kernel function to account for this translation-invariance. In addition to
counting matching nucleotides on corresponding positions, we also count matches
that are shifted by three positions. We call this kernel codon-improved. It can beCodon-Improved

Kernel shown to be an admissible kernel function by explicitly deriving the monomial
features.
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A third modification to the kernel function is obtained by the Salzberg method,
where we essentially represent each data point by a sequence of log odd scores,
corresponding to two probabilities for each position: First, the likelihood that the
observed nucleotide at that position derives from a true TIS; and second, the
likelihood that the nucleotide occurs at the given position relative to any ATG
triplet, either centered around true translation initiation sites, or around pseudo
sites. We then proceed in a manner analogous to the locality-improved kernel,Local Kernel

Using Salzberg
Score

replacing the sparse representation by the sequence of these scores. As expected,
this leads to a further improvement in classification performance.

All three engineered kernel functions outperform both a neural net and the
original Salzberg method, reducing the overall number of misclassifications by up
to 25% compared with the neural network (see Table 13.2). These SVM results are
encouraging, especially since they apply to a problem domain whose importance
is increasing. Further successful applications of SVMs in bioinformatics have been
reported for microarray gene expression data and other problems [81, 224, 190,
372, 403, 584, 611].

13.4 Natural Kernels

Generative model techniques such as Hidden Markov Models (HMMs), dynamic
graphical models, or mixtures of experts, can provide a principled framework
for dealing with missing and incomplete data, uncertainty, or variable length se-
quences. On the other hand, discriminative models like SVMs and other kernel
methods have become standard tools of applied machine learning, leading to
record benchmark results in a variety of domains. A promising approach to com-
bine the strengths of both methods, by designing kernels inspired by generative
models, was made in the work of Jaakkola and Haussler [259, 258]. They pro-
pose the use of a construction called the Fisher kernel, to give a “natural” similar-
ity measure that takes into account an underlying probability distribution. Since
defining a kernel function automatically implies assumptions about metric rela-
tions between the examples, they argue that these relations should be defined di-
rectly from a generative probability model p(x ), where are the parameters of
the model. Below, we follow [388].

13.4.1 Natural Kernels

To define a class of kernels derived from generative models, we need to introduce
some basic concepts of information geometry. Consider a family of generative
models p(x ) (in other words, density functions), smoothly parametrized by
( 1 r). These models form a manifold (called the statistical manifold) in the
space of all probability density functions. The key idea introduced by [259] is to
exploit the geometric structure on this manifold to obtain an induced metric for
the training patterns xi.
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Rather than dealing with p(x ) directly, we use the log-likelihood instead;
l(x ) : ln p(x ). For convenience, we repeat a few concepts from Chapter 3, in
particular Section 3.3.2:

The derivative map of l(x ) is called the score (cf. (3.27)) V : r ,Score Map

V (x) : ( 1 l(x ) r l(x )) l(x ) ln p(x ) (13.24)

the coordinates of which are taken as a ‘natural’ basis of tangent vectors. For
example, if p(x ) is a normal distribution, one possible parametrization is
( ), where is the mean vector and is the covariance matrix of the Gaussian.
The magnitude of the components of V (x) specifies the extent to which a change
in a particular component of (thus, a particular model parameter) changes the
probability of generating the object x. The relationship of these components to
sufficient statistics is discussed in [257].

Since the manifold of ln p(x ) is Riemannian (e.g., [8]), there is a metric defined
on its tangent space (the space of the scores), with metric tensor given by the
inverse of the Fisher information matrix (cf. (3.28)),Fisher

Information
Matrix I : Ep V (x)V (x) i.e., Ii j Ep i ln p(x ) j ln p(x ) (13.25)

Here, Ep denotes the expectation with respect to the density p.
This metric is called the Fisher information metric, and induces a ‘natural’ distance
in the manifold. As we will show below, it can be used to measure the difference
in the generative process between a pair of examples xi and x j via the score map
V (x) and I 1.

Definition 13.8 (Natural Kernel) Denote by M a strictly positive definite matrix, to be
referred to subsequently as the natural matrix. The corresponding natural kernel is givenNatural Matrix
by

knat
M (x x ) : V (x) M 1V (x ) ln p(x ) M 1 ln p(x ) (13.26)

For M I, we obtain the Fisher kernel; for M 1 we obtain a kernel which we will call
the plain kernel3. The latter is often used for convenience if I is too difficult to compute.4

In the next section, we give a regularization theoretic analysis of the class of natural
kernels, and in particular of knat

I and knat
1 .

3. In [257], kernels of the form knat
M (x x ) exp( V (x) V (x ) 2 c) are also considered.

4. Strictly speaking, we should write knat
M p(x ) rather than knat

M , since k also depends on the
generative model, and on the parameter chosen by some other procedure such as density
estimation. In addition, note that rather than requiring M to be strictly positive definite,
definiteness would be sufficient. We would then have to replace M 1 by the pseudo-inverse,
however, and the subsequent reasoning would be more cumbersome.
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13.4.2 The Natural Regularization Operator

Let us briefly recall Section 4.3. In SVMs, we minimize a regularized risk func-
tional, where the complexity term can be written as w 2 in feature space nota-
tion, or as ϒ f 2 when considering the functions in input space. The connection
between kernels k and regularization operators ϒ is given by

k(xi x j) (ϒk)(xi ) (ϒk)(x j ) (13.27)

This relation states that if k is a Green’s function of ϒ ϒ, minimizing w 2 in feature
space is equivalent to minimizing the regularization term ϒ f 2.

To analyze the properties of natural kernels knat
I , we exploit this connection

between kernels and regularization operators by finding an associated operator
ϒnat

M such that (13.27) holds. To this end, we need to specify a dot product in (13.27).
Note that this is one aspect of the choice of the class of regularization operators
that we are looking at — in particular, we are choosing the dot product space
into which ϒ maps. We opt for the dot product in the L2(p) space of real-valued
functions,

f g : f (x)g(x)p(x )dx (13.28)

since this leads to a simple form for the corresponding regularization operators.
Measures different from p(x )dx are also possible, leading to different forms of ϒ.

Proposition 13.9 (Regularization Operators for Natural Kernels) Given a strictly
positive definite matrix M, a generative model p(x ), and a corresponding natural kernel
knat

M (x x ), ϒnat
M is an equivalent regularization operator if it satisfies

M ϒnat
M ln p(x ) ϒnat

M ln p(x ) p(x )dx (13.29)

Proof Substituting (13.26) into (13.27) yields

knat
M (x x )

by def
ln p(x ) M 1 ln p(x ) (13.30)

(13 27) ϒnat
M knat

M (x ) ϒnat
M knat

M (x ) (13.31)

ln p(x ) M 1 ϒnat
M ln p(x )

ϒnat
M ln p(x ) M 1 ln p(x )p(x )dx (13.32)

Note that ϒnat
M acts on p as a function of x only — the terms in x and x are not

affected, which is why we may collect them outside. Thus the necessary condition
(13.29) ensures that the right hand side in (13.31) equals (13.32), which completes
the proof.

Let us consider the two special cases proposed in [259].

Corollary 13.10 (Fisher Kernel) The Fisher Kernel (M I) induced by a generative
probability model with density p corresponds to a regularizer equal to the squared L2(p)-
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norm of the estimated function,Fisher
Regularization
Operator ϒ f 2 f 2

L2(p) (13.33)

This can be seen by substituting in ϒnat
I 1 into the rhs of (13.29), which yields the

definition of the Fisher information matrix.
We now explicitly describe the behavior of this regularizer. The solution of SV

regression using the Fisher kernel has the form f (x) ∑m
i 1 iknat

I (x xi) where
the xi are the SVs, and is the solution of the SV programming problem. By
substitution, we obtain

f ( ) 2
L2(p) f (x) 2 p(x )dx (13.34)

∑i i ln p(x )I 1 ln p(xi )
2

p(x )dx

To understand this term, first recall that what we actually minimize is the regular-
ized risk Rreg[ f ]; in other words, the sum of (13.34) and the empirical risk given by
the normalized negative log likelihood. The regularization term (13.34) prevents
overfitting by favoring solutions with smaller ln p(x ). Consequently, the reg-
ularizer favors the solution which is more stable (flat). See [388] for further details.
Note, however, that the validity of this intuitive explanation is somewhat limited:
some effects can compensate each other, as the i come with different signs.

Finally, we remark that the regularization operator of the conformal transforma-
tion of the Fisher kernel knat

I into p(x ) p(x )knat
I (x x ) is the identity.

In practice, M 1 is often used [259]. In this case, Proposition 13.9 specializes to
the following result. The proof is straightforward, and can be found in [388].

Corollary 13.11 (Plain Kernel) The regularization operator associated with the plain
kernel knat

1 is the gradient operator x in the case where p(x ) belongs to the exponential
family of densities; that is, ln p(x ) x (x) c0 with an arbitrary function (x)
and a normalization constant c0.

This means that the regularization term can be written as

ϒ f 2
x f (x) 2

p x f (x) 2 p(x )dx (13.35)

thus favoring smooth functions via flatness in the first derivative.

13.4.3 The Feature Map of Natural Kernels

Recall Proposition 4.10, in which we constructed kernels from a discrete set of basis
functions via (4.23),

k(xi x j) : ∑
n

dn

n
n(xi) n(x j) (13.36)

where dn 0 1 for all m, and ∑n
dn

n
converges. Setting all dn 1 simply means

that we chose to keep the full space spanned by n. Knowledge of n and n
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helps us to understand the regularization properties of the kernel. In particular,
such information tells us which functions are considered simpler than others and
how much emphasis is placed on the individual functions n. We can explicitly
construct such an expansion using linear algebra.

Proposition 13.12 (Feature Map of Natural Kernels) Denote by I the Fisher infor-
mation matrix, by M the natural matrix, and by si Λi the eigensystem of M

1
2 IM

1
2 .

The kernel knat
M (x x ) can be decomposed into an eigensystem

i(x)
1
Λi

si M
1
2 ln p(x ) and i Λi (13.37)

Note that if M I, we have i Λi 1.

Proof It can be seen immediately that (13.36) is satisfied. This follows from the
fact that si is an orthonormal basis, 1 ∑i sisi , and the definition of knat

M ; the terms
depending on Λi cancel each other. The i are orthonormal, since

i j
1
Λi

si M
1
2 ln p(x )

1
Λ j

ln p(x )M
1
2 s j p(x ) dx

1
ΛiΛ j

si M
1
2 IM

1
2 s j i j (13.38)

which completes the proof.5

The eigenvalues I
i of knat

I are all 1, reflecting the fact that the matrix I whitensUnit Eigenvalues
the scores ln(p(x )). It can also be seen from ϒ I 1 that (13.37) becomes

i(x) 1
I
i

si ln(p(x )), 1 i r.

What are the consequences of all eigenvalues being equal? Standard VC dimen-
sion bounds (e.g., Theorem 5.5) state that the capacity of a linear class of functions
is bounded by R2Λ2. Here, R is the radius of the smallest sphere containing the
data (in feature space), and Λ is the maximum allowed length of the weight vector.
Recently, it has been shown that both the spectrum of an associated integral op-
erator (Section 12.4.1) and the spectrum of the Gram matrix k((xi x j))i j [606, 477]
can be used to formulate tighter generalization error bounds, exploiting the fact
that for standard kernels, such as Gaussians, the distribution of the data in feature
space is rather non-isotropic, and the sphere bound is wasteful.

For the Fisher kernel, the non-isotropy does not occur, since the Fisher matrix
whitens the scores. This suggests that the standard isotropic VC bounds should be
fairly precise in this case. Moreover, the flat spectrum of the Fisher kernel suggests
a way of comparing different models: if we compute the Gram matrix for a set of
models p(x j), then we expect for the true model that i 1 for all i. In [388], it is
shown experimentally that this can be used for model selection.

5. This result may be extended to generic kernels of the form k(x x ) U (x)MU [597].
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13.5 Summary

In this chapter, we collected a fair amount of material concerning the design of
kernels. We started with generic recipes for constructing kernels, and then moved
on to more specific methods which take into account features of a given problem
domain. As examples, we considered sequence processing, where we discussed
string kernels, and image recognition, where we introduced kernels that respect
local structure in images. Similar techniques also prove useful in DNA start codon
recognition. In both cases, these locality-improved kernels lead to substantial
improvements in performance. They are applicable in all cases where the relative
importance of subsets of products between features can be specified appropriately.
They do, however, slow down both training and testing by a constant factor, which
depends on the cost of evaluating the specific kernel used. Finally, we described
and analyzed the Fisher kernel method, which designs a kernel respecting an
underlying generative model. Further methods for constructing kernels had to
be omitted due to lack of space; examples being the fairly well developed theory
of kernels on groups (see Problem 13.11) and a recent modification of the Fisher
kernel [548].

As explained at the outset, the choice of kernel function is crucial in all kernel
algorithms. The kernel constitutes prior knowledge that is available about a task,
and its proper choice is thus crucial for success. Although the question of how to
choose the best kernel for a given dataset is often posed, it has no good answer.
Indeed, it is impossible to come up with the best kernel on the basis of the dataset
— the kernel reflects prior knowledge, and the latter is, by definition, knowledge
that is available in addition to the empirical observations.

13.6 Problems

13.1 (Powers of Kernels ) Using Proposition 13.2, prove that if k is a kernel and d ,
then kd is a kernel.

13.2 (Power Series of Dot Products ) Prove that the kernel defined in (13.3) is posi-
tive definite if for all n, we have an 0 (cf. Theorem 13.4).

13.3 (Iterating Kernels ) Let z1 zn , and k(x x ) be a function on . Prove that

k(2)(x x ) :
n

∑
j 1

k(x z j)k(x zj) (13.39)

is positive definite in the sense of Definition 2.5.

13.4 (Tensor Products ) Prove Proposition 13.6. Hint: represent the tensor product
kernel as the product of two simpler kernels, and use Proposition 13.2.
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13.5 (Direct Sums ) Prove Proposition 13.7.

13.6 (Diagonal Projection ) If k(x1 x2 x1 x2) is a kernel on 2 2, then the diag-
onal projection is defined as (e.g., [234])

kΔ(x x ) : k(x x x x ) (13.40)

Prove that if k1 and k2 are kernels on , we have (k1 k2)Δ k1k2 and (k1 k2)Δ

k1 k2 Consider as a special case the ANOVA kernel (13.13), and compute its diagonal
projections when D N and D 1.

13.7 (Gaussian Kernels as R-Convolutions [234] ) Consider (13.12) for 1

D. In this case, each composite object x is simply a D-tuple consisting of the
components x1 xD. Show that k1 kD(x x ) ∏D

d 1 kd(xd xd). Next, specialize
this result to the case where for d 1 D, d , considering the one-dimensional
Gaussian kernel kd(xd xd) exp( (xd xd)2 cd) with cd 0. Show that the convolution
of k1 kD is a multi-dimensional Gaussian kernel (cf. Chapter 2).

13.8 (ANOVA Kernels ) Prove that ANOVA kernels (13.13) are positive definite,
either directly from the definition, or by showing that they are special cases of R-
convolutions.

13.9 (Kernels of Sets [234] ) Let ˜ denote the set of all finite subsets of . Prove that if
k is a kernel on , then

k̃(A B) : ∑
x A x B

k(x x ) (13.41)

is a kernel on ˜ ˜ . Hint: consider the feature map Φ̃(A) : ∑x A Φ(x) where Φ is the
feature map induced by k.

13.10 (Weighted Kernels of Sets ) Generalize the construction of the previous prob-
lem to allow for

Φ̃(A) ∑
x A

w(x)Φ(x) (13.42)

where w is some nonnegative function on . Consider the case where w takes values in
0 1 only, and discuss the connection to the R-convolution kernel [234].

13.11 (Kernels on Groups ) Let G be a group, and g g G. Consider a kernel of the
form k(g g ) h((g ) 1g) where the function h : G is chosen such that k is positive
definite [219]. Such functions are called positive definite (cf. also Definition 2.29).

1. Prove that h is Hermitian, that is, h(g 1) h(g)

2. Prove that h(g) h(e), where e is the neutral element of the group

3. Prove that finite products of positive definite functions are again positive definite
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4. Consider the special case where the group is ( N ). Construct a positive definite
kernel on N via k(g g ) h((g ) 1g), where h is some positive definite function (e.g.,
one of the cpd functions of order 0 in Table 2.1).

13.12 (The Kernel Map as a GNS Representation ) Let be a complex Hilbert
space. Using the notation of Problem 13.11, consider complex-valued functions of the form

h(g) U(g)v v (13.43)

where v , and U : G ( ) is a unitary representation of G. Verify that k(g g ) :
h((g ) 1g) is a positive definite kernel on G G. Show that Φ : g U(g)v is a valid
feature map for k, i.e., that k(g g ) Φ(g) Φ(g ) .

Next, consider the converse. Show that given any positive definite function h on G, we
can associate a complex Hilbert space h, a unitary representation Uh of G in h, and a
(cyclic) unit vector vh such that

h(g) Uh(g)vh vh (13.44)

holds true. Proceed as follows: as the Hilbert space, use the RKHS associated with k; as vh,
use the function k( e) h(e 1 ) h( ) (recall that e is G’s neutral element); finally, for
f h, define the representation Uh as

(Uh(g) f )(g ) : f (g 1g ) (13.45)

Using these definitions, verify (13.44).
This representation is called the Gelfand-Naimark-Segal (GNS) construction.

13.13 (Conditional Symmetric Independence Kernels [585] ) Consider the fea-
ture map

Φ(x) : p(x ci) p(ci)
i 1 2

(13.46)

where p(x ci) is the probability that some discrete random variable X takes the value x,
conditional on C having taken the value ci. Compute the kernel induced by this feature
map, and interpret it as a probability distribution. What kind of distributions can be
expressed in this way? A potentially rather useful class of such distributions arises from
pair hidden Markov models [585].

13.14 (String Kernel Recursion [585, 333] ) Prove that the recursion (13.20) al-
lows the computation of (13.17).

13.15 (Local String Kernels ) Construct local string kernels by transferring the idea
described in Section 13.3 to the kernels described in Section 13.2. How does this relate to
the locality induced by the decay parameter ?

13.16 (String Kernels Penalizing Excess Length ) Note that the longer a matching
sequence is, the less it contributes to the comparison, if 1. Design a string kernel that
does not suffer from this drawback, by choosing the ci in (13.18) such that the overall kernel
only penalizes ‘excess’ length.
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13.17 (Two-Dimensional Sequence Kernels ) Can you generalize the ideas put
forward for sequences in Section 13.2 to two-dimensional structures, such as images? Can
you, for instance, construct a kernel that assesses the similarity of two images according to
the number and contiguity of common sub-images?

13.18 (Regularization for Composite Kernels ) Denote by Φ : a feature
map with known regularization operator ϒ, i.e., there exists some ϒ and a space with dot
product such that

ϒk(x ) ϒk(x ) k(x x )

Furthermore denote by Φ : a second feature map, also with known regularization
operator ϒ .

Can you construct the composite regularization operator ϒ̃ corresponding to

k̃(x x ) : Φ (Φ(x)) Φ (Φ(x ))

from this information?
As a special case, let Φ be the score map of Section 13.4.1, Φ the map obtained by

applying a Gaussian kernel to Φ(x) Φ(x ).

13.19 (Tracy-Widom Law for the Fisher Kernel Matrix ) If the distribution in
feature space is spherical and Gaussian, the Tracy-Widom law describes the average and
standard deviation of the largest Eigenvalue in the Covariance matrix [544, 524, 270].
Noting that the distribution in the Fisher kernel feature space is spherical (but not neces-
sarily Gaussian), study how accurately the Tracy-Widom law holds in this case.



 

14 Kernel Feature Extraction

The idea of implicitly mapping the data into a high-dimensional feature space
has been very fruitful in the context of SV machines. Indeed, as described in
Chapter 1, it is this feature which distinguishes them from the Generalized Portrait
algorithm, which has been around since the sixties [573, 570], and which makes
SVMs applicable to complex real-world problems that are not linearly separable.
Thus, it is natural to ask whether the same idea might prove useful in other
domains of learning.

The present chapter describes a kernel-based method for performing a nonlinear
form of Principal Component Analysis, called Kernel PCA. We show that through
the use of positive definite kernels, we can efficiently compute principal compo-
nents in high-dimensional feature spaces, which are related to input space by some
nonlinear map. Furthermore, the chapter details how this method can be embed-
ded in a general feature extraction framework, comprising classical algorithms
such as projection pursuit, as well as sparse kernel feature analysis (KFA), a kernel
algorithm for efficient feature extraction.

After a short introduction to classical PCA in Section 14.1, we describe howOverview
to transfer the algorithm to a feature space setting (Section 14.2). In Section 14.3,
we describe experiments using Kernel PCA for feature extraction. Following this,
we introduce a general framework for feature extraction (Section 14.4), for which
Kernel PCA is a special case. Another special case, sparse KFA, is discussed in
more detail in Section 14.5, with particular focus on efficient implementation.
Section 14.6 presents toy experiments for sparse KFA.

Most of the present chapter only requires knowledge of linear algebra, includingPrerequisites
matrix diagonalization, and some basics in statistics, such as the concept of vari-
ance. In addition, knowledge of positive definite kernels is required, as described
in Chapter 1, and, in more detail, in Chapter 2. Section 14.5 requires slightly more
background information, and builds on material explained in Chapters 4 and 6.

14.1 Introduction

Principal Component Analysis (PCA) is a powerful technique for extracting struc-
ture from possibly high-dimensional data sets. It is readily performed by solving
an eigenvalue problem, or by using iterative algorithms which estimate princi-



428 Kernel Feature Extraction
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14.6 Experiments

pal components. For reviews of the existing literature, see [271, 140]; some of the
classical papers are [404, 248, 280]. PCA is an orthogonal transformation of the
coordinate system in which we describe our data. The new coordinate system is
obtained by projection onto the so-called principal axes of the data. The latter are
called principal components or features. A small number of principal components is
often sufficient to account for most of the structure in the data. These are some-
times called factors or latent variables of the data.

Let us begin by reviewing the standard PCA algorithm. In order to be able
to generalize it to the nonlinear case, we formulate it in a way which uses dot
products exclusively.

Given a set of observations xi
N , i 1 m, which are centered, ∑m

i 1 xi 0,
PCA finds the principal axes by diagonalizing the covariance matrix1,Covariance

Matrix
C

1
m

m

∑
j 1

xjx j (14.1)

Note that C is positive definite, and can thus be diagonalized with nonnegative
eigenvalues (Problem 14.1). To do this, we solve the eigenvalue equation,

v Cv (14.2)

for eigenvalues 0 and nonzero eigenvectors v N 0 . Substituting (14.1)

1. More precisely, the covariance matrix is defined as the expectation of xx ; for conve-
nience, we use the same term to refer to the estimate (14.1) of the covariance matrix from a
finite sample.
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into this expression,

v Cv
1
m

m

∑
j 1

xj v x j (14.3)

we see that all solutions v with 0 lie in the span of x1 xm, hence for these
solutions (14.2) is equivalent to

xi v xi Cv for all i 1 m (14.4)

14.2 Kernel PCA

We now study PCA in the case where we are not interested in principal compo-
nents in input space, but rather principal components of variables, or features,
which are nonlinearly related to the input variables. These include variables ob-
tained by taking arbitrary higher-order correlations between input variables, for
instance. In the case of image analysis, this amounts to finding principal compo-
nents in the space of products of pixels.

As described in Chapter 2, the kernel trick enables us to construct different
nonlinear versions of any algorithm which can be expressed solely in terms of
dot products (thus, without explicit usage of the variables themselves).

14.2.1 Nonlinear PCA as an Eigenvalue Problem

Let us consider a feature space (Chapter 2), related to the input domain (for
instance, N ) by a map

Φ : x Φ(x) (14.5)

which is possibly nonlinear. The feature space could have an arbitrarily large,Feature Space
and possibly infinite, dimension. Again, we assume that we are dealing with
centered data, ∑m

i 1 Φ(xi) 0 — we shall return to this point later. In , the
covariance matrix takes the form

C
1
m

m

∑
j 1

Φ(x j)Φ(x j) (14.6)

If is infinite-dimensional, we think of Φ(xj)Φ(x j) as a linear operator on ,
mapping x Φ(x j) Φ(x j) x

We now have to find eigenvalues 0 and nonzero eigenvectors v 0
satisfyingEigenvalue

Problem in
v Cv (14.7)



430 Kernel Feature Extraction

Again, all solutions v with 0 lie in the span of Φ(x1) Φ(xm). For us, this has
two useful consequences: first, we may instead consider the set of equations

Φ(xn) v Φ(xn) Cv for all n 1 m (14.8)

and second, there exist coefficients i (i 1 m) such thatDual Eigenvector
Representation

v
m

∑
i 1

iΦ(xi) (14.9)

Combining (14.8) and (14.9), we get

m

∑
i 1

i Φ(xn) Φ(xi)
1
m

m

∑
i 1

i Φ(xn)
m

∑
j 1

Φ(x j) Φ(x j) Φ(xi) (14.10)

for all n 1 m. In terms of the m m Gram matrix Ki j : Φ(xi) Φ(x j) thisGram Matrix
reads

m K K2 (14.11)

where denotes the column vector with entries 1 m. To find solutions of
(14.11), we solve the dual eigenvalue problem,Eigenvalue

Problem for the
Expansion
Coefficients

m K (14.12)

for nonzero eigenvalues. It can be shown that this yields all solutions of (14.11)
that are of interest for us (Problem 14.14).

Let 1 2 m denote the eigenvalues of K (in other words, the solutionsEigenvalues
m of (14.12)), and 1 m the corresponding complete set of eigenvectors,
with p being the last nonzero eigenvalue (assuming that Φ is not identically 0).
We normalize 1 p by requiring that the corresponding vectors in (see
(14.9)) be normalized,

vn vn 1 for all n 1 p (14.13)

By virtue of (14.9) and (14.12), this translates to a normalization condition for
1 p,Normalization in

1
m

∑
i j 1

n
i

n
j Φ(xi) Φ(x j)

m

∑
i j 1

n
i

n
j Ki j

n K n
n

n n (14.14)

For the purpose of principal component extraction, we need to compute projec-
tions onto the eigenvectors vn in (n 1 p). Let x be a test point, with an
image Φ(x) in . Then

vn Φ(x)
m

∑
i 1

n
i Φ(xi) Φ(x) (14.15)



14.2 Kernel PCA 431

are the nonlinear principal components (or features) corresponding to Φ.2

Let us summarize the algorithm. To perform kernel-based PCA (Figure 14.1),
henceforth referred to as Kernel PCA, the following steps are carried out. First, weSummary of

the Algorithm compute the Gram matrix Ki j k(xi x j)i j. Next, we diagonalize K, and normalize
the eigenvector expansion coefficients n by requiring n

n n 1. Finally, to
extract the principal components (corresponding to the kernel k) of a test point x,
we then compute projections onto the eigenvectors byFeature

Extraction
vn Φ(x)

m

∑
i 1

n
i k(xi x) n 1 p; (14.16)

see (14.15) and Figure 14.2.
For the sake of simplicity, we have so far made the assumption that the observa-

tions are centered. This is easy to achieve in input space, but more difficult in ,
as we cannot explicitly compute the mean of the mapped observations in . There
is a way to do it, however, and this leads to slightly modified equations for kernel
PCA. It turns out (Problem 14.5) that we then need to diagonalizeCentering

K̃i j (K 1mK K1m 1mK1m)i j (14.17)

using the notation (1m)i j : 1 m for all i j.
Kernel PCA based on the centered matrix K̃ can also be performed with the

larger class of conditionally positive definite matrices. This is due to the fact
that when we center the data, we make the problem translation invariant (cf.
Proposition 2.26).

14.2.2 Properties of Kernel PCA

We know that Kernel PCA corresponds to standard PCA in some high-dimensional
feature space. Consequently, all mathematical and statistical properties of PCA (cf.
[271, 140]) carry over to Kernel PCA, with the modification that they become state-
ments about a set of points Φ(xi) i 1 m, in , rather than in N .

Proposition 14.1 (Optimality Properties of Kernel PCA) Kernel PCA is the orthog-
onal basis transformation in with the following properties (assuming that the eigenvec-
tors are sorted in descending order of eigenvalue size):

The first q (q 1 m ) principal components, or projections on eigenvectors, carry
more variance than any other q orthogonal directions

The mean-squared approximation error in representing the observations in by the first
q principal components is minimal (over all possible q directions)

2. Note that in our derivation, we could have used the known result (e.g., [297]) that PCA
can be carried out on the dot product matrix xi xj i j instead of (14.1). For the sake of clarity
and ease of extendability (regarding centering the data in ), however, we gave a detailed
derivation.
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Figure 14.1 The basic idea of Kernel
PCA. In some high-dimensional feature
space (bottom right), we perform lin-
ear PCA, as with classical PCA in in-
put space (top). Since is nonlinearly
related to input space (via Φ), the con-
tour lines of constant projections onto the
principal eigenvector (drawn as an ar-
row) are nonlinear in input space. We can-
not draw a pre-image of the eigenvector
in input space, as it may not even ex-
ist. Crucial to Kernel PCA is the fact that
there is no need to perform the map into

: all necessary computations are car-
ried out using a kernel function k in input
space (here: 2).

Σ
(v ,Φ(x)) = Σ αi k(xi,x)

input vector x

sample x1, x2, x3,...

comparison: k(xi,x)

feature value

weights (eigenvector
              coefficients)α1 α2  α3  α4

k k k k

Figure 14.2 Feature extractor constructed using Kernel PCA (cf. (14.16)). In the first layer,
the input vector is compared to the sample via a kernel function, chosen a priori (e.g.
polynomial, Gaussian, or sigmoid). The outputs are then linearly combined using weights,
which are found by solving an eigenvector problem. As shown in the text, the function of
the network can be thought of as the projection onto an eigenvector of a covariance matrix
in a high-dimensional feature space. As a function on input space, it is nonlinear.

The principal components are uncorrelated

The first q principal components have maximal mutual information (see [140, 132]) with
respect to the inputs (this holds under Gaussianity assumptions in , and thus strongly
depends on the particular kernel chosen and on the data)

Proof All these statements are completely analogous to the case of standard
PCA. As an example, we prove the second property, in the simple case where
the data x1 xm in feature space are centered. We consider an orthogonal basis
transformation W, and use the notation Pq for the projector on the first q canonical
basis vectors e1 eq . Then the mean squared reconstruction error using q
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vectors is
1
m ∑

i
xi W PqWxi

2 1
m ∑

i
Wxi PqWxi

2

1
m ∑

i
∑
j q

Wxi e j
2

1
m ∑

i
∑
j q

xi W e j

2

1
m ∑

i
∑
j q

W e j xi xi W e j

∑
j q

W e j CW e j (14.18)

It can easily be seen that the values of this quadratic form (which gives the vari-
ances in the directions W e j) are minimal if the W e j are chosen as its (orthogonal)
eigenvectors with smallest eigenvalues.

To translate these properties of PCA in into statements about the data in input
space, we must consider specific choices of kernel. One such input space character-
istic is the invariance property of kernels depending only on x x (cf. Section 2.3).

Can we guarantee that this algorithm works well, particularly in high-dimensi-
onal spaces (cf. Problem 14.9)? It is possible to draw some simple analogies to
the standard SV reasoning. The feature extractors (14.16) are linear functions in
the feature space , with regularization properties characterized by the length of
their weight vector v, as in the SV case. When applied to the training data, the
nth feature extractor generates a set of outputs with variance n. Dividing each
coefficient vector n by n, we obtain a set of nonlinear feature extractors with
unit variance output, and the following interesting property:Connection to

SVMs
Proposition 14.2 (Connection KPCA — SVM [480]) For all n 1 p , the nth
Kernel PCA feature extractor, scaled by 1 n, is optimal among all feature extractors of
the form f (x) ∑i ik(xi x) (cf. (14.16)), in the sense that it has minimal weight vector
norm in the RKHS ,

v 2
m

∑
i j 1

i jk(xi x j) (14.19)

subject to the conditions that
(1) it is orthogonal to the first n 1 Kernel PCA feature extractors (in feature space), and
(2) it leads to a unit variance set of outputs when applied to the training set x1 xm.

Therefore, Kernel PCA can be considered a method for extracting potentially
interesting functions that have low capacity. Here, “interestingness” is ensured by
the unit variance, and capacity is measured by the length of the weight vector.
As discussed in Section 16.3, this capacity measure is identical to that used in
Gaussian processes, hence it could be interpreted as a Bayesian prior on the
space of functions by setting p( f ) exp( 1

2 ϒ f 2), where ϒ is the regularization
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operator corresponding to k (see Theorem 4.9 for details). From this perspective,
the first extractor (cf. (14.16)) f (x) ∑m

i 1 ik(xi x) is given by

f argmax
Var( f ) 1

exp
1
2

ϒ f 2 (14.20)

where Var( f ) denotes the (estimate of the) variance of f (x) for x drawn from the
underlying distribution. We return to this topic in Section 14.4, where we use
Proposition 14.2 as the basis of a general feature extraction framework.

Unlike linear PCA, the method proposed allows the extraction of a number ofNumber of
Features principal components which can exceed the input dimensionality. Suppose that the

number of observations m exceeds the input dimensionality N. Linear PCA, even
when it is based on the m m dot product matrix, can find at most N nonzero
eigenvalues — the latter are identical to the nonzero eigenvalues of the N N
covariance matrix. By contrast, Kernel PCA can find up to m nonzero eigenvalues
— a fact that illustrates that it is impossible to perform kernel PCA directly on an
N N covariance matrix.

Being just a basis transformation, standard PCA allows the reconstruction of the
original patterns xi i 1 m from a complete set of extracted principal com-
ponents xi v j j 1 m, by expansion in the eigenvector basis. Even usingReconstruction

from Principal
Components

an incomplete set of components, good reconstruction is often possible. In Kernel
PCA, this is more difficult: we can reconstruct the image of a pattern in from its
nonlinear components; if we only have an approximate reconstruction, however,
there is no guarantee that we can find an exact pre-image of the reconstruction in
input space. In this case, we have to resort to approximations (cf. Chapter 18).

14.2.3 Comparison to Other Methods

Starting from some of the properties characterizing PCA, it is possible to develop
a number of generalizations of linear PCA to the nonlinear case. Alternatively, we
may choose an iterative algorithm which adaptively estimates principal compo-
nents, and make some of its parts nonlinear to extract nonlinear features. Rather
than giving a full review of this field here, we briefly describe four approaches,
and refer the reader to [140] for more detail.

Beginning with the pioneering work of Oja [387], a number of unsupervised
neural-network type algorithms to compute principal components have been pro-
posed (for instance, [457]). Compared with the standard approach of diagonalizingHebbian

Networks the covariance matrix, they have advantages in cases where the data are nonsta-
tionary. Nonlinear variants of these algorithms are obtained using nonlinear neu-
rons. The algorithms then extract features, referred to by the authors as nonlinear
principal components. These approaches, however, do not have the geometrical
interpretation of Kernel PCA as being standard PCA in a feature space nonlinearly
related to input space, and it is thus more difficult to understand what exactly they
are extracting. For a discussion of some approaches, see [279].

Next, consider a linear perceptron with one hidden layer, which is smaller
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than the input (that is, the dimension of the data). If we train it to reproduce
the input values as outputs (in other words, we use it in autoassociative mode),
then the hidden unit activations form a lower-dimensional representation of the
data, closely related to PCA (see for instance [140]). To generalize to a nonlinearAutoassociative

Multi-Layer
Perceptrons

setting, we use nonlinear neurons and additional layers.3 While this can of course
be considered a form of nonlinear PCA, it should be stressed that the resulting
network training consists of solving a hard nonlinear optimization problem, with
the possibility of getting trapped in local minima. Additionally, neural network
implementations often pose a risk of overfitting. Another drawback of neural
approaches to nonlinear PCA is that the number of components to be extracted
has to be specified in advance. As an aside, note that hyperbolic tangent kernels
can be used to extract neural network type nonlinear features using Kernel PCA
(Figure 14.6). As in Figure 14.2, the principal components of a test point x in this
case take the form ∑i

n
i tanh( (xi x) Θ).

An approach with a clear geometric interpretation in input space is the method
of principal curves [231], which iteratively estimates a curve (or surface) that cap-
tures the structure of the data. The data are projected onto a curve, determined byPrincipal Curves
the algorithm, with the property that each point on the curve is the average of all
data points projecting onto it. It can be shown that the only straight lines with the
latter property are principal components, so principal curves are indeed a gener-
alization of standard PCA. To compute principal curves, a nonlinear optimization
problem must be solved. The dimensionality of the surface, and thus the number
of features to extract, is specified in advance. Some authors [434] discuss parallels
between the Principal Curve algorithm and self-organizing feature maps [302] for
dimensionality reduction. For further information, and a kernel-based variant of
the principal curves algorithm, cf. Chapter 17.

Kernel PCA is a nonlinear generalization of PCA in the sense that (a) it performsKernel PCA
PCA in feature spaces of arbitrarily large (possibly infinite) dimensionality, and
(b) if we use the kernel k(x x ) x x , we recover the original PCA algorithm.
Compared with the above approaches, the main advantage of Kernel PCA is that
no nonlinear optimization is involved — it is essentially linear algebra, as with
standard PCA. In addition, we need not specify the number of components that
we want to extract in advance. Compared with principal curves, Kernel PCA is
harder to interpret in input space; however, for polynomial kernels at least, it
has a very clear interpretation in terms of higher-order features. Compared with
neural approaches, Kernel PCA can be disadvantageous if we need to process a
very large number of observations, as this results in a large matrix K. It is possible,
however, to use sparse greedy methods to perform Kernel PCA approximately
(Section 10.2).

3. Simply using nonlinear activation functions in the hidden layer does not suffice: the
linear activation functions already lead to the best approximation of the data (given the
number of hidden nodes), so for the nonlinearities to have an effect on the components, the
architecture needs to be changed (see [140]).
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All these techniques provide nonlinear feature extractors defined on the whole
input space. In other words, they can be evaluated on patterns regardless of
whether these are elements of the training set or not. Some other methods, such as
the LLE algorithm [445] and multidimensional scaling (MDS) [116], are restricted toMDS
the training data. They aim to only provide a lower-dimensional representation of
the training data, which is useful for instance for data visualization.

Williams [598] recently pointed out that when considering the special case
where we only extract features from the training data, Kernel PCA is actually
closely connected to MDS. In a nutshell, MDS is a method for embedding data
into q , based on pairwise dissimilarities. Consider a situation where the dissim-
ilarities are actually Euclidean distances in N (N q). In the simplest variant of
MDS (“classical scaling”), we attempt to embed the training data into q such that
the squared distances Δ2

i j : xi x j
2 between all pairs of points are (on average)

preserved as well as possible. It can be shown from Proposition 14.1 that this is
readily achieved by projecting onto the first q principal components.

In metric MDS, the dissimilarities Δi j are transformed by a (nonlinear) function
before the embedding is computed. In this case, the computation of the embed-

ding involves the minimization of a nonlinear “stress” function, which consists of
the sum over all mismatches. Usually, this stress function is minimized using non-
linear optimization methods. This can be avoided for a large class of nonlinearities

, however. Williams [598] showed that the metric MDS solution is a by-product
of performing kernel PCA with RBF kernels, k(xi x j) ( xi x j ) (Δi j).4 In
this case, we thus get away with solving an eigenvalue problem.

The second of the aforementioned dimensionality reduction algorithms, LLE,Locally Linear
Embedding can also be related to kernel PCA. One can show that one obtains the solution

of LLE by performing kernel PCA on the Gram matrix computed from what we
might call the locally linear embedding kernel. This kernel assesses similarity of two
patterns based on the similarity of the coefficients required to represent the two
patterns in terms of neighboring patterns. For details, see Problem 14.16.

We conclude this section by noting that it has recently been pointed out that one
can also connect kernel PCA to orthogonal series density estimation [200]. The kernelOrthogonal

Series Density
Estimation

PCA eigenvalue decomposition provides the coefficients for a truncated density
estimator expansion taking the form pq(x) ∑q

n 1 n
1
m ∑m

i 1
n
i vn Φ(x) where

q is the number of components taken into account, and n
i and v are defined (and

4. One way of performing metric MDS is to first apply , and then run classical MDS
on the resulting dissimilarity matrix. An interesting class of nonlinearities is the power
transformation (Δi j) Δi j , where 0 ([127], cited after [598]). Provided the original
dissimilarities Δi j arise from Euclidean distances, the power transformation generally leads
to a conditionally positive definite matrix ( 1

2 (Δi j)2)i j if and only if 1 (cf. (2.81)). The
centered version of this matrix, which is used in MDS, is thus positive definite if and only if

1 (cf. Proposition 2.26). Therefore, it is exactly in these cases that we can run classical
MDS after applying without running into problems. This answers a problem posed by
[127], for the case of Euclidean dissimilarities.
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Figure 14.3 Two-dimensional toy example, with data generated as follows: x-values have
uniform distribution in [ 1 1], y-values are generated from yi x2

i , where is normal
noise with standard deviation 0.2. From left to right, the polynomial degree in the kernel
(14.21) increases from 1 to 4; from top to bottom, the first 3 eigenvectors are shown, in order
of decreasing eigenvalue size (eigenvalues are normalized to sum to 1). The figures contain
lines of constant principal component value (contour lines); in the linear case (d 1), these
are orthogonal to the eigenvectors. We did not draw the eigenvectors, as in the general case,
they belong to a higher-dimensional feature space. Note, finally, that for d 1, there are only
2 nonzero eigenvectors, this number being equal to the dimension of the input space.

normalized) as in Section 14.2.1. This work builds on the connection between the
eigenfunctions of the integral operator Tk associated with the kernel k and the
eigenvectors of the Gram matrix (see Problem 2.26).

14.3 Kernel PCA Experiments

In this section, we present a set of experiments in which Kernel PCA is used (in the
form taking into account centering in ) to extract principal components. First,
we take a look at a simple toy example; following this, we describe real-world
experiments where we assess the utility of the extracted principal components in
classification tasks.

To provide insight into how PCA in behaves in input space, we describe a setToy Examples
of experiments with an artificial 2-D data set, using polynomial kernels,

k(x x ) x x d (14.21)
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Eigenvalue=0.251 Eigenvalue=0.233 Eigenvalue=0.052 Eigenvalue=0.044

Eigenvalue=0.037 Eigenvalue=0.033 Eigenvalue=0.031 Eigenvalue=0.025

Eigenvalue=0.014 Eigenvalue=0.008 Eigenvalue=0.007 Eigenvalue=0.006

Eigenvalue=0.005 Eigenvalue=0.004 Eigenvalue=0.003 Eigenvalue=0.002

Figure 14.4 Two-dimensional toy example with three data clusters (Gaussians with stan-
dard deviation 0.1; depicted region, [ 1 1] [ 0 5 1]): first 16 nonlinear principal compo-
nents extracted with k(x x ) exp x x 2 0 1 . Note that the first 2 principal compo-
nent (top left), which possess the largest eigenvalues, nicely separate the three clusters. The
components 3–5 split the clusters into halves. Similarly, components 6–8 split them again,
in a manner orthogonal to the above splits. The higher components are more difficult to
describe. They look for finer structure in the data set, identifying higher-order moments.

of degree d 1 4 (see Figure 14.3). Linear PCA (on the left) leads to just 2
nonzero eigenvalues, as the input dimensionality is 2. By contrast, nonlinear PCA
allows the extraction of further components. In the figure, note that nonlinear
PCA produces contour lines of constant feature value, which reflect the structure
in the data better than in linear PCA. In all cases, the first principal component
varies monotonically along the parabola that underlies the data. In the nonlinear
cases, the second and the third components also show behavior which is similar
across different polynomial degrees. The third component, which comes with
small eigenvalues (rescaled to sum to 1), seems to pick up the variance caused by
the noise, as can be seen in the case of degree 2. Dropping this component would
thus amount to noise reduction.

Further toy examples, using radial basis function kernels (2.68) and neural
network type sigmoid kernels (2.69), are shown in Figures 14.4–14.6.

In Figure 14.7, we illustrate the fact that Kernel PCA can also be carried out
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Figure 14.5 A plot of the data rep-
resentation given by the first two
principal components of Figure 14.4.
The clusters of Figure 14.4 end up
roughly on separate lines (the left,
right, and top regions correspond to
the clusters left, top, and right, re-
spectively). Note that the first com-
ponent (the horizontal axis) already
separates the clusters — this cannot
be done using linear PCA.

Figure 14.6 A smooth transition from linear PCA to nonlinear PCA is obtained using
hyperbolic tangent kernels k(x x ) tanh x x 1 with varying gain : from top to
bottom, 0 1 1 5 10 (data as in the previous figures). For 0 1, the first two features
look like linear PCA features. For large , the nonlinear region of the tanh function comes
into play. In this case, kernel PCA can exploit the nonlinearity to allocate the highest feature
gradients to regions where there are data points, as can be seen in the case 10.
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Figure 14.7 Kernel PCA on a toy dataset using the cpd kernel (2.81); contour plots of the
feature extractors corresponding to projections onto the first two principal axes in feature
space. From left to right: 2 1 5 1 0 5. Notice how smaller values of make the feature
extractors increasingly nonlinear, which allows the identification of the cluster structure
(from [468]).

using conditionally positive definite kernels. We use the kernel k(x x ) x
x (2.81). As detailed in Chapter 2, algorithms that are translation-invariant in
feature space can utilize cpd kernels. Kernel PCA is such an algorithm, since any
translation in feature space is removed by the centering operation. Note that the
case 2 is actually equivalent to linear PCA. As we decrease , we obtain
increasingly nonlinear feature extractors. As the kernel parameter gets smaller,
we also get more localized feature extractors (in the sense that the regions where
they have large gradients, corresponding to dense sets of contour lines in the plot,
get more localized). This could be interpreted as saying that smaller values of
put less weight on large distances, thus yielding more robust distance measures.

These toy experiments serve illustrative purposes, but they are no substitute for
experiments on real-world data. Thus, we next report a study on a handwritten
character recognition problem, the US postal service database (Section A.1). ThisUSPS Character

Recognition database contains 9298 examples of dimensionality 256, of which 2007 make up the
test set. For computational reasons, we used a subset of 3000 training examples to
compute the matrix K. We then used polynomial Kernel PCA to extract nonlinear
principal components from the training and test set. To assess the utility of the
components (or features), we trained a soft margin hyperplane classifier on the
classification task.

Table 14.1 illustrates two advantages of using nonlinear kernels: first, perfor-
mance of a linear classifier trained on nonlinear principal components is better
than for the same number of linear components; second, the performance for non-
linear components can be further improved by using more components than pos-
sible in the linear case. The latter is related to the fact that there are many more
higher-order features than there are pixels in an image. Regarding the first point,
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Table 14.1 Test error rates on the USPS handwritten digit database, for linear Support
Vector Machines trained on nonlinear principal components extracted by PCA with kernel
(14.21), for degrees 1 through 7. The case of degree 1 corresponds to standard PCA, with
the number of nonzero eigenvalues being at most the dimensionality of the space (256).
Clearly, nonlinear principal components afford test error rates which are lower than in the
linear case (degree 1).

Test Error Rate for degree
# of components 1 2 3 4 5 6 7

32 9.6 8.8 8.1 8.5 9.1 9.3 10.8
64 8.8 7.3 6.8 6.7 6.7 7.2 7.5

128 8.6 5.8 5.9 6.1 5.8 6.0 6.8
256 8.7 5.5 5.3 5.2 5.2 5.4 5.4
512 n.a. 4.9 4.6 4.4 5.1 4.6 4.9

1024 n.a. 4.9 4.3 4.4 4.6 4.8 4.6
2048 n.a. 4.9 4.2 4.1 4.0 4.3 4.4

note that extracting a certain number of features in a 1010-dimensional space con-
stitutes a much greater reduction of dimensionality than extracting the same num-
ber of features in 256-dimensional input space.

For all numbers of features, the optimal kernel degree to use is around 4, which
is consistent with Support Vector Machine results on the same data set. Addition-
ally, with only one exception, the nonlinear features are superior to their linear
counterparts. The resulting error rate for the best of our classifiers (4.0%) is much
better than that obtained using linear classifiers operating directly on the image
data (a linear Support Vector Machine achieves 8.9%; [470]); performance is iden-
tical to that of nonlinear Support Vector classifiers [470]. This makes sense — recall
from Section 2.2.6 that using all principal components is equivalent to running a
nonlinear SVM with the same kernel. After all, if we consider all eigenvectors, Ker-
nel PCA is just an orthogonal basis transformation, leaving the dot product invari-
ant (cf. Section B.2). For a comprehensive list of results obtained on the USPS set,
cf. Chapter 7. Note that the present results were obtained without using any prior
knowledge about invariances of the problem at hand, which is why the perfor-
mance is inferior to Virtual Support Vector classifiers (3.2%, Chapter 11). Adding
local translation invariance, be it by generating “virtual” translated examples or
by choosing a suitable kernel incorporating locality (such as those in Section 13.3,
which led to an error rate of 3.0%), could further improve the results.

Similarly good results have been obtained for other visual processing tasks,
such as object recognition [467] and texture classification [294]. Kernel PCA has
also been successfully applied to other problems, such as processing of biological
event-related potentials [440], nonlinear regression [441], and document retrieval
[126], as well as face detection and pose estimation [328, 436]. Yet another applica-
tion, in image denoising, is described later (Chapter 18). One of the more surpris-
ing applications, with impressive success, is model selection [101].
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14.4 A Framework for Feature Extraction

Whilst it is encouraging that Kernel PCA leads to very good results, there are nev-
ertheless some issues that need to be addressed. First, the computational complex-
ity of the standard version of Kernel PCA, as described above, scales as O(m3) in
the sample size m. Second, the resulting feature extractors are given as dense ex-
pansions in terms of the training patterns. Thus, for each test point, the feature
extraction requires m kernel evaluations. Both issues can be dealt with using ap-
proximations. As mentioned above, Kernel PCA can be approximated in a sparse
greedy way (Section 10.2); moreover, the feature extractors can be approximated in
a sparse way using reduced set techniques, such as those described in Chapter 18.
Alternatively, Tipping recently suggested a way of sparsifying Kernel PCA [540].

There is a second way of approaching the problem, however. Rather than stick-
ing to the original algorithm, and trying to approximate its solution, we instead
modify the algorithm to make it more efficient, and so that it automatically pro-
duces sparse feature extractors. In order to design the modified algorithm, called
sparse kernel feature analysis (KFA), it is useful to first describe a general feature
extraction framework, which will contain Kernel PCA and sparse KFA as special
cases.

To this end, denote by X : x1 xm our set of patterns drawn inde-
pendently and identically distributed from an underlying probability distribution
P(x). Our goal is to compute feature extractors that satisfy certain criteria of sim-
plicity (such as small RKHS norm [578, 512] or 1 norm [343, 104, 37, 502, 72, 347])
and optimality (maximum variance [248, 280], for instance).

14.4.1 Principal Component Analysis

Let us start with PCA, assuming that N . The first principal component of
a sample is given by the direction of projection with maximum variance. For
centered data,

X̃ : x̃i x̃i xi
1
m

m

∑
i 1

xi i 1 m (14.22)

Maximum
Variance Under
Constraints

the first eigenvector v1 can be obtained as

v1 argmax
v 2 1

1
m

m

∑
i 1

v x̃i
2 (14.23)

The successive eigenvectors v2 vN are chosen to be orthogonal to those preced-
ing, where each eigenvector vi satisfies a property similar to (14.23) with respect
to the remaining (N i 1)-dimensional subspace.

The solution of this optimization problem is normally obtained by computing
the largest principal component of the covariance matrix of X̃ (14.1). We shall
show below that there exist situations where finding the solution of problems like
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(14.23) can be much easier than that. This simplification is achieved by replacing
the constraint on v by one that lends itself to faster evaluation and optimization.
We shall return to this point below, in a more general setting.

14.4.2 Kernel PCA

We denote by Φ̃(xi) Φ(xi) 1
m ∑m

i 1 Φ(xi) the centered version of the data in
feature space, and define

F : w w w 2 1 (14.24)
Set of Projections

to be the set of candidate vectors to project on. The problem of finding the first
Kernel PCA eigenvector can then be stated as

v1 argmax
v F

1
m

m

∑
i 1

v Φ̃(xi)
2 argmax

v F
Var v Φ(xi) (14.25)

This modification, building on Proposition 14.2, may seem innocuous. Neverthe-
less, it allows us to modify the feature extraction problem in interesting ways,
by replacing F with other sets that are more suitable for optimization. Before
moving on, let us recall the function space interpretation of Kernel PCA, already
mentioned in Section 14.2.2.

As explained in Section 2.2, we may think of the feature space in different
representations. One such representation, discussed in Chapter 4, uses functions
f expanded in terms of kernels. Therefore, rather than using the abstract feature
space element w, the regularizer can be thought of in terms of functions f , and
Ω[ f ] f 2 . In this case, the constraint (14.24) becomes a constraint in this func-
tion space. This means that we are looking for the function f with the largest em-
pirical variance under the constraint Ω[ f ] 1; in other words, we would like f not
to be overly complex. Depending on the specific RKHS (and thus, depending
on the kernel), this can mean a function with small first derivative, or a small sum
of derivatives, or a particular frequency spectrum (cf. (4.28)). The criterion of large
variance under constraints can thus be interpreted as the requirement to seek aMaximum

Variance Problem simple yet “interesting” function of the current observations. In the next section,
we replace Ω[ f ] by another regularization functional, which turns out to be better
suited to optimization.

14.4.3 Sparse Kernel Feature Analysis

Sparse solutions are often achieved in supervised learning settings by using an 1Compact
Functional
Representation

penalty on the expansion coefficients (see Section 4.9.2 and [343, 104, 184, 459, 37,
502, 71, 347]). We now use the same approach in feature extraction, deriving an
algorithm which requires only n basis functions to compute the first n features.
This algorithm is computationally simple, and scales approximately one order of
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Figure 14.8 Left: the circle denotes the set F of possible v to be used to find the projection
of maximum variance. Right: the absolute convex hull FLP determines the set of possible
directions of projection under the constraint ∑i i 1. In both cases, the small circles
represent observations.

magnitude better on large datasets than standard Kernel PCA. First, we choose

Ω[ f ]
m

∑
i 1

i (14.26)

as suggested in Section 4.9.2. This yields

FLP : w w
m

∑
i 1

iΦ(xi) with
m

∑
i 1

i 1 (14.27)

where the ‘LP’ in the name derives from the use of similar constructions in linearConvexity
Constraint programming (see for instance Section 7.7). Figure 14.8 gives a depiction of FLP.

This setting leads to the first “principal vector” in the 1 context,

v1 argmax
v FLP

1
m

m

∑
i 1

v Φ(xi)
1
m

m

∑
j 1

Φ(x j)
2

(14.28)

Again, subsequent “principal vectors” can be defined by enforcing optimality
with respect to the remaining orthogonal subspaces. Due to the 1 constraint,
the solution of (14.28) has the favorable property of being sparse in terms of the
coefficients i (the coefficients are chosen from the “hyper-diamond-shaped” 1

ball).5 In fact, as we shall show in Section 14.5, the optimal solution is found by
picking the direction Φ(xi) corresponding to a single pattern, meaning that the
solution lies on one of the vertices of the 1 ball. We shall return to this point below.

5. Note that the requirement of v 2 1, or the corresponding 1 constraint, are necessary
— the value of the target function could otherwise increase without bound, simply by
rescaling v.
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For the sake of completeness, note that rather than using 1 constraints, we could
instead seek optimal solutions with respect to p balls,p-Convex Hulls

Fp : w w
m

∑
i 1

iΦ(xi) with
m

∑
i

i
p 1 (14.29)

In a nutshell, we have obtained sparse KFA by sticking with the variance crite-
rion, and modifying the constraint. By contrast, in the next section, we revisit the
standard 2 ball constraint that we know from (kernel) PCA, and instead change
the objective function to be maximized subject to the constraint.

14.4.4 Projection Pursuit

Projection Pursuit [182, 252, 272, 176, 181, 139] differs from Principal Component
Analysis (Section 14.4.1) in that it replaces the criterion of maximum variance by
different criteria, such as non-Gaussianity. The first principal direction in Projec-
tion Pursuit is given by

v1 argmax
v 2 1

1
m

m

∑
i 1

q v x̃i (14.30)

where q : is a function such that ∑m
i 1 q v x̃i is large whenever theContrast

Function distribution of v x̃i is non-Gaussian. More generally, if some coupling between
the different projections occurs, we can write Projection Pursuit as

v1 argmax
v 2 1

Q v x̃1 v x̃m (14.31)

A possible function q is for instance q( ) 4. Apart from non-Gaussianity,
contrast functions are sometimes designed to capture other properties, such as
whether the distribution of features has multiple modes, the Fisher Information
(so as to maximize it), the negative Shannon entropy, or other quantities of interest.
For a detailed account of these issues see [182, 181, 252, 272, 176, 227].

To evaluate these contrast functions, it is often necessary to first compute a den-
sity estimate for the distribution of v xi , for instance using the Parzen windows
method. A final issue to note is that the determination of interesting directions is
often quite computationally expensive [109, 301], since (14.31) may exhibit manyCost of Projection

Pursuit local minima unless Q is convex. Practical projection pursuit tools (such as XGobi
[533]) use gradient descent for optimization purposes, sometimes with additional
(interactive) user input.

14.4.5 Kernel Projection Pursuit

With slight abuse of notation, F is used below to denote both the set of possible
weight vectors w, and the set of functions f that satisfy a corresponding constraint
on f (e.g., f (x) w Φ(x) where w 1).

We are now ready to state a general feature extraction framework that contains
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PCA, Projection Pursuit, and Kernel PCA as special cases, by combining the mod-General Feature
Extractors ifications of Sections 14.4.3 and 14.4.4. We obtain

f 1 argmax
f F

1
m

m

∑
i 1

q( f (xi)) (14.32)

or more generally,

f 1 argmax
f F

Q f (x1) f (xm) (14.33)

where q( ) and Q( ) are functions which are maximized for a given property of the
resulting function f 1(x), and

F : f f : and Ω[ f ] 1 (14.34)

Note that if F is the class of linear functions in input space (that is, if f f (x)
w x and w 2 1 , where the projections are restricted to the unit ball), we

recover Projection Pursuit.

14.4.6 Connections to Supervised Learning

The setting described above bears some resemblance to the problem of minimizing
a regularized risk functional in supervised learning (Chapter 4). In the latter case,
we try to minimize a function (the empirical risk Remp[ f ]) that depends on the
observed data, with the constraint Ω[ f ] c. In the feature extraction setting, we
try to maximize a function Q[ f ] Q( f (x1) f (xm)) under the same constraint.

Risk Minimization Feature Extraction

minimize Remp[ f ]

subject to Ω[ f ] c

maximize Q[ f ]

subject to Ω[ f ] c

(14.35)

This means that many of the theoretical guarantees from supervised learning, such
as bounds on the difference between Q[ f ] and the expectation E[Q[ f ]], can be
obtained directly from their analogues in classification and regression.

A cautionary remark is necessary, however: since the class of possible feature
extractors is now significantly larger than in projection pursuit, we have to be
very careful not to pick a feature extractor f i that renders any dataset “interesting”Properties of Q
if viewed as f i(x1) f i(xm) . This means that not all Q should be used, and
in particular not the scale invariant versions of Q, since the latter render the
constraint Ω[ f ] c ineffective.

Finally, if Q is not convex, the maximum search over the extreme points does
not provide us with the best solution. Although we may still apply the algorithm,
we lose some of its good theoretical properties.
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14.5 Algorithms for Sparse KFA

We now return to sparse KFA; that is, the feature extraction algorithm that maxi-
mizes variance subject to an 1 constraint (Section 14.4.3). We focus on how to actu-
ally solve the optimization problem. Despite the superficial similarity between the
two settings in (14.35), the resulting algorithms for supervised and unsupervised
learning are quite different. This is due to the fact that one problem (the supervised
one) is usually a convex minimization problem, whereas the unsupervised problem
requires convex maximization.

14.5.1 Solution by Maximum Search

Recalling Theorem 6.10, the feasibility of the convex maximization problem de-
pends largely on the extreme points of the set F, as defined by (14.34). In other
words, the optimization problem can be solved efficiently only if the set of ex-
treme points of F is small and can be computed easily. Otherwise, only a bruteSolution on

Extreme Points force search over the extreme points of F (which can be NP hard) yields the maxi-
mum. This effectively limits the choice of practically useful constraint sets F to FLP

and Fp (where p 1). The extreme points in both sets coincide, and equal

Extreme Points (FLP) k(xi x) i [m] (14.36)

Thus, we obtain the following corollary of Theorem 6.10.

Corollary 14.3 (Vertex Solutions for Kernel Feature Analysis) If the functions f
and f generally yield the same Q value, and p 1, we haveVertices Coincide

f 1 argmax
f Fp

Q f (x1) f (xm) (14.37)

argmax
f FLP

Q f (x1) f (xm) (14.38)

argmax
f k(x1 ) k(xm )

Q( f (x1) f (xm)) (14.39)

Under the above symmetry assumption, we can limit ourselves to analyzing the
positive orthant only. See Figure 14.9 for a pictorial representation of the shapes of
unit balls corresponding to different norms.

Eq. (14.37) provides us with a simple algorithm to solve the feature extraction
problems introduced in Sections 14.4.3 and 14.4.5: simply seek the kernel function
k(xi ) with the largest value of Q(k(xi x1) k(xi xm)).

14.5.2 Sequential Decompositions

We now address how to proceed once the first direction of interest (or function) has
been found. In the following, we denote by Fi the space of directions to select from
in the ith round; in particular, F1 : F. To keep matters simple, we limit ourselves
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Figure 14.9 Several unit balls in 2. From left to right: 0 5 1 2, and . Note that the 0 5

and 1 balls have identical extreme points.

to the dot product representation of the basis functions, f (x) v Φ(x) . The
vectors spanning this space are denoted by Φi

j. We start with Φ1
j Φ(x j). Unless

stated otherwise, we focus on FLP, for which a 1-norm is taken on the coefficients.6p Ball from
Remaining
Patterns

Hence we have

Fi : w w
m

∑
j 1

i
jΦi j with

m

∑
j 1

i
j 1 (14.40)

We discuss the following three possible choices:

Removal: We might, for instance, simply remove the corresponding vector Φi
j

Φ(x j) from the set of possible directions (and keep all other directions unchanged),
so that Φi 1

j Φi
j, and repeat the proposed procedure to find the next vector vi 1.

This may lead to many very similar ’principal’ directions (each of which mightSimilar
Directions be interesting on its own), however, which implies that many such directions add

little additional information (cf. Figure 14.10). This is definitely not desirable, even
though the computational cost for subsequent calculations is very low (a simple
sorting operation), once all Q values are computed.

Unnormalized Projection: A second alternative is to require that each direction v i

be orthogonal to all previous directions, vi v j 0 for all i j. The easiest way to
achieve this is by orthogonalizing all the vectors spanning Fi 1 with respect to vi,

Φi 1
j : Φi

j
vi

vi 2 Φi
j vi (14.41)

As in the previous case, this approach also reduces the set of vectors spanning Fi 1Not a True
Subset of Fi 1 by one, since vi is chosen among Φi

j. Computation of the first p principal features
involves only p kernel functions. This is because Φi

j is a linear combination of
i images of patterns, of which i 1 are already used in the computation of the

6. Recall that p-norms with 0 p 1 lead to identical solutions on the corresponding set
F1

p .
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Figure 14.10 Contour plots of the first 4 feature extractors of sparse Kernel Feature Anal-
ysis, given that patterns are removed after being selected as interesting directions of projec-
tion. We used Gaussian RBF Kernels ( 2 0 05) for a dataset of 120 samples. The small dots
represent the data points. Note that the first three feature extractors are almost identical.

previous i 1 features.
Since Φi

j is not necessarily in F1 (the sum of the expansion coefficients is no
longer contained inside the p unit ball), we call this approach Unnormalized Kernel
Feature Analysis.

Normalized Projection: We can obtain another version of the algorithm by nor-
malizing the expansion coefficients of Φi

j to have unit p-norm. Since we do not use
this version presently, we refer to [508] for details.

Henceforth, we consider only unnormalized projection. We thus obtain an algo-
rithm for sparse KFA which requires just O(p m) operations for the computation
of p features for new data. For further detail, see [508].

Extraction of the principal directions themselves, however, is an O(m2) oper-
ation per feature extractor, as in the case of kernel PCA.7 This cost arises since
finding the direction with maximum Q value still requires computation of all dot
products between all possible directions of projection and the actual patterns to be
analyzed.

14.5.3 A Probabilistic Speedup

It is wasteful to compute all possible Q values for all directions, given that we
only choose one of these directions. This suggests that we should terminate before
completion the calculation of those directions that do not seem to be promising in
the first place. When doing this, however, we must ensure a low likelihood that
important directions are lost. In [508], Corollary 6.34 is used to derive probabilistic
bounds on the error incurred. This leads to a method for approximating calcula-
tions by only summing over half of the terms. Applying the method in a divide
and conquer fashion, similar to the Fast Fourier Transform [110]), we end up with

7. The constants, however, are significantly smaller than when computing eigenvectors of
a matrix (the latter requires several passes over the matrix Kij).
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a computational cost of O(m log m) for computing a single function; this represents
a significant improvement over the O(m2) cost of Kernel PCA.

In the next section, we describe a different way of speeding the algorithm.
Rather than approximating the sums by computing only a subset of the terms,
we instead compute only some of the sums.

14.5.4 A Quantile Trick

Rather than attempting to find the best n feature extractors, we may be content
with feature extractors that are among the best obtainable. This is a reasonableRelative

Performance
Guarantee

simplification, given that v2 and related quantities are themselves obtained by
approximation.

For instance, it might be sufficient for preprocessing purposes if each feature
were among the best 5% obtainable. This leads to another approach for avoiding
a search over all m possible directions: compute a subsample of m̃ directions, and
choose the largest Q-value among them. We can show (see Corollary 6.32) that
such a sub-sampling approach leads on average to values in the m̃

m̃ 1 quantileDistribution of
Ranks range. Moreover, Theorem 6.33 shows that a subset of size 59 is already sufficient

to obtain results in the 95% quantile range with 95% probability.
Overall, computational complexity for the extraction of a single feature is re-

duced to O(cm) rather than O(m2). The same applies to memory requirements,
since we no longer have to compute the whole matrix K beforehand. Thus unless
the best feature extractors are needed, this should be the method of choice.

14.5.5 Theoretical Analysis

Due to lack of space, we do not give a statistical analysis of the algorithm. Suffice
to say that [508] contains a brief analysis in terms of capacity concepts, such as
covering numbers (cf. Chapters 5 and 12). The basic idea is that due to the use of
regularizers such as the w 2 term, uniform convergence bounds can be given on
the reliability of the feature extractors; in other words, bounds can be derived on
how much the variance of (say) a feature extractor differs between training and
test sets.

14.6 KFA Experiments

Let us again consider the toy example of three artificial Gaussian data clusters,
which we used in Figure 14.4 in the case of Kernel PCA. The randomized quantile
version of KFA, shown in Figure 14.11, leads to rather similar feature extractors,
although it is significantly faster to compute.

The main difference lies in the first few features. For instance, KFA uses only one
basis function for the first feature (due to the built-in sparsity), which enforces a
feature extractor that resides on one of the three clusters. Kernel PCA, on the other
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Figure 14.11 The first p 16 features of sparse Kernel Feature Analysis, using the same
kernel as in Figure 14.4. Note that every additional feature only needs one more kernel
function to be computed. We used the randomized version of the algorithm, for which only
a subset of 10 features per iteration is used (leading to an average quantile of over 95%).
Note the similarity to Figure 14.4, which is an O(m2) rather than O(pm) algorithm (per
feature extractor).

hand, already has contributions from all basis functions for the first feature.
In all cases, it can be seen that the features are meaningful, in that they reveal

nontrivial structure. The first features identify the cluster structure in the data set,
while the higher order features analyze the individual clusters in more detail.KFA and

Clustering To see the effect of Sparse KFA on real data, we carried out a small experiment
on the MNIST dataset of handwritten digits (Figure 14.12). We observe that almost
all digits appear among the first 10 basis kernels, and that the various copies of
digit ‘1’ do not overlap much and are therefore approximately orthogonal when
compared with the Gaussian RBF kernel.

14.7 Summary

This chapter introduced the kernel generalization of the classical PCA algorithm.
Known as Kernel PCA, it represents an elegant way of performing PCA in high
dimensional feature spaces and getting rather good results in finite time (via a
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Figure 14.12 The 15 samples corresponding to the first fea-
tures extracted by Sparse Kernel Feature Analysis from the
NIST database of handwritten digits. Note how the algo-
rithm picks almost all digits at least once among the first
10.

simple matrix diagonalization).
We pointed out some parallels to SVMs, in terms of the regularizer that is

effectively being used, and we reported experimental results in nonlinear feature
extraction applications.

Linear PCA is used in numerous technical and scientific applications, including
noise reduction, density estimation, and image indexing and retrieval systems.
Kernel PCA can be applied to all domains where traditional PCA has so far been
used for feature extraction, and where a nonlinear extension would make sense.

There are, however, some computational issues, which make it desirable to think
of alternatives to Kernel PCA that can be applied in situations where, for instance,
the sample size is too large for the kernel matrix diagonalization to be feasible.
Motivated by this, we described KFA, a modification which utilizes a sparsity
regularizer. The solution of KFA can be found on the set of extreme points of
the constraints, provided the contrast function itself is convex. In particular, if the
constraints form a polyhedron, the extreme points can be found on the vertices.
This reduces a potentially complex optimization problem to a maximum search
over a finite set of size m. Randomized subset selection methods help to speed
up the algorithm to linear cost and constant memory requirement per feature
extractor.

We explained how both algorithms, along with classical approaches such as pro-
jection pursuit, can be understood as special cases of a general feature extraction
framework, where we maximize a contrast function under a capacity constraint.
This may be a sparsity constraint, a feature space vector length constraint, or some
other restriction, such as the size of the derivatives.

14.8 Problems

14.1 (Positive Definiteness of the Covariance Matrix ) Prove that the covariance
matrix (14.1) is positive definite, by verifying the conditions of Definition 2.4. This im-
plies that all its eigenvalues are nonnegative (Problem 2.4).

14.2 (Toy Examples ) Download the Kernel PCA Matlab code from http://www.kernel-
machines.org. Run it on two toy datasets which are related to each other by a translation
in input space. Why are the results identical?
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14.3 (Pre-Image Problem ) Unlike PCA in input space, Kernel PCA only allows the
computation of the feature values, but not explicitly the eigenvectors themselves. Discuss
the reason for this difference, and the implied differences in the applicability of the tech-
niques.

14.4 (Null Space of Kernel PCA ) How many eigenvectors with eigenvalue 0 can
Kernel PCA have in ? Discuss the difference with respect to PCA in input space.

14.5 (Centering [480] ) Derive the equations for Kernel PCA with data that does not
have zero mean in .

Hints: Given any Φ and any set of observations x1 xm, the points

Φ̃(xi) : Φ(xi)
1
m

m

∑
i 1

Φ(xi) (14.42)

are centered.

1. Expand the eigenvectors in term of the Φ̃(xi), and derive the modified eigenvalue
problem in the space of the expansion coefficients.

2. Derive the normalization condition for the coefficients to ensure the eigenvectors have
unit norm.

3. For a set of test points t1 tn , derive a matrix equation to evaluate the n feature
values corresponding to the kth centered principal component.

14.6 (Expansion of KPCA Solutions ) Argue that each solution of the eigenvalue
problem for centered data could also be expanded in terms of the original mapped patterns.
Derive the corresponding dual eigenvalue problem. How does it compare to the other one?

14.7 (Explicit PCA in Feature Space ) Consider an algorithm for nonlinear PCA
which would explicitly map all data points into a feature space via a nonlinear map
Φ, such as the mapping induced by a kernel. Discuss under which conditions on the fea-
ture space this would be preferable to the kernel approach. Argue that Kernel PCA always
effectively works in a finite dimensional subspace of , even when the dimensionality of

is infinite.

14.8 (The Kernel PCA Feature Map ) Suppose that i 0 for all i. Prove that the
feature map (2.59) satisfies

Φw
m(x) Φw

m(x ) ΦKPCA(x) ΦKPCA(x ) (14.43)

for all x x , where (cf. (14.16))

ΦKPCA : m

x
m

∑
i 1

n
i k(xi x)

i 1 m

(14.44)

Hint: note that if K UDU is K’s diagonalization, with the columns of U being the
eigenvectors of K, then K 1 2 UD 1 2U . Use this to rewrite (2.59). Argue that as
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in (11.12), the leading U can be dropped, since U is unitary. The entries of the diagonal
matrix D 1 2 equal 1 2

i , thus performing the kernel PCA normalization (14.14).
Next, argue that more generally, if i 0 is not the case for all i, the above construction

leads to a p-dimensional feature map (as in Section 14.2.1, we assume that the first p
eigenvalues are the nonzero ones)

ΦKPCA(x)
m

∑
i 1

n
i k(xi x)

i 1 p

(14.45)

satisfying

ΦKPCA(xi) ΦKPCA(x j) k(xi x j) (14.46)

for all i j [m].
Finally, argue that the last equation may be approximately satisfied by a feature map

which is even lower dimensional, by discarding all eigenvalues which are smaller than
some 0.

14.9 (VC Bounds for Kernel PCA ) Construct a VC theory of Kernel PCA; in other
words, give bounds on the variance of a Kernel PCA feature extractor on the test set in
terms of the variance on the training set, the size of the corresponding eigenvalue, and the
covering numbers of the kernel-induced function class (see Section 14.4.6).

14.10 (Connection KPCA — SVM ) From the known properties of PCA (cf. Propo-
sition 14.1), prove Proposition 14.2.

14.11 (Transformation Invariances ) Consider a transformation t, parametrized by
t, such as translation along the x-axis. To first order, the effect of a small transformation
(small t) can be studied by considering the tangent vectors Φ( txi) Φ(xi). Mathemati-
cally derive invariant feature extractors by performing PCA on the covariance matrix of the
tangent vectors (the tangent covariance matrix). Note the following problem: invariant
feature extractors should have small eigenvalues, but eigenvectors with eigenvalue 0 do
not necessarily lie in the span of the mapped examples (cf. (14.3)).

14.12 (Transformation Invariances, Part II ) Extend the previous approach by si-
multaneously aiming for invariance under t and for variance in the original Kernel PCA
directions (cf. [364]).

Hint: formulate a problem of simultaneous diagonalization.

14.13 (Singularity of the Centered Covariance Matrix ) Prove that if k is an
eigenvector, with nonzero eigenvalue, of the centered covariance matrix, then ∑i

k
i 0.

Why does this imply that the centered covariance matrix is singular?

14.14 (Primal and Dual Eigenvalue Problems [480] ) Prove that (14.12) yields all
solutions of (14.7).

Hint: show that any solution of (14.11) which does not solve (14.12) differs from a
solution of (14.12) only by a vector with the property ∑i iΦ(xi) 0.
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14.15 (Multi-Layer Support Vector Machines ) By first extracting nonlinear princi-
pal components according to (14.16), and then training a Support Vector Machine, we can
construct Support Vector type machines with additional layers. Discuss the architecture,
and the different ways of training the different layers.

14.16 (Mechanical Analogy ) Try to generalize the mechanical PCA algorithm de-
scribed in [443], which interprets PCA as an iterative spring energy minimization proce-
dure, to a feature space setting. Try to come up with mechanically inspired ways of taking
into account negative data in PCA (cf. oriented PCA, [140]).

14.17 (Kernel PCA and Locally Linear Embedding ) Suppose we approximately
represent each point of the dataset as a linear combination of its n nearest neighbors. Let
(Wn)i j, where i j [m], be the weight of point x j in the expansion of xi minimizing the
squared representation error.

1. Prove that kn(xi x j) : (1 Wn) (1 Wn) i j is a positive definite kernel on the
domain x1 xm .

2. Let be the largest eigenvalue of (1 Wn) (1 Wn). Prove that the LLE kernel
kLLE

n (xi x j) : ( 1)1 Wn Wn Wn Wn i j is positive definite on x1 xm .

3. Prove that kernel PCA using the LLE kernel provides the LLE embedding coefficients
[445] for a d-dimensional embedding as the first d coefficient eigenvectors 1

d.
Note that if the eigenvectors are normalized in , then dimension i will be scaled by 1 2

i ,
i 1 d.

4. Discuss the variant of LLE obtained using the centered Gram matrix

(1 1m) ( 1)1 Wn Wn Wn Wn (1 1m) (14.47)

(cf. (14.17)). Which space does the centering apply to?

5. Interpret the LLE kernel as a similarity measure based on the similarity of the coeffi-
cients required to represent two patterns in terms of n neighboring patterns.

14.18 (Optimal Approximation Property of PCA ) Discuss whether the solutions of
KFA satisfy the optimal approximation property of Proposition 14.1.

14.19 (Scale Invariance ) Show that the problems of Kernel PCA and Sparse Kernel
Feature Analysis are scale invariant; meaning that the solutions for Ω[ f ] c and Ω[ f ]
c for c c 0 are identical up to a scaling factor.

Show that this also applies for a rescaling of the data in Feature Space. What happens
if we rescale in input space? Analyze specific kernels such as k(x x ) x x d and
k(x x ) exp( x x 2

2 2 ).

14.20 (Contrast Functions for Projection Pursuit ) Compute for q( ) 4 the ex-
pectations under a normal distribution of unit variance. What happens if you use a differ-
ent distribution with the same variance?
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Can you find an optimal function q( ) provided that we are only dealing with densities of
zero mean and unit variance? Hint: use a Lagrangian and variational derivatives; in other
words, set up a constrained optimization problem as in (6.39), but with integrals rather
than sums in the individual constraints (see [206] for details on variational derivatives).
You need three constraints: p( ) 1, p( ) 0, and 2 p( ) 1.

14.21 (Cutting Planes and Fp ) Compute the vertices of the polyhedral set obtained
by orthogonally cutting F1 with one of the vectors Φ(xi). Can you still compute them if we
replace F1 by Fp?

Show that the number of Φ(x j) required per vertex may double per cut (until it involves
all m of the Φ(x j)).

14.22 (Pre-Image Problem ) Devise a denoising algorithm for Sparse Kernel Feature
Analysis, using the methods of Chapter 18.

14.23 (Comparison Between Kernel PCA and Sparse KFA ) Plot the variances ob-
tained from the sets of the Kernel PCA and Sparse KFA projections. Discuss similarities
and differences. Why do the variances decay more slowly (with the index of the projection)
for Sparse KFA?

14.24 (Extension to General Kernels ) Can you extend the sparse feature extrac-
tion algorithm to kernels which are not positive definite? Hint: begin with a modification
of V1. Which criterion replaces orthogonality in feature space (e.g., M

2 on X)? Does the
algorithm retain its favorable numerical properties (such as cheap diagonalization)? What
happens if you use arbitrary functions f j and ϒ fi ϒ f j as the corresponding dot product?

14.25 (Uniform Convergence Bounds ) Prove a bound for the deviation between
the expected value of Q[ f ] and its empirical estimate, P E[Q[ f ]] Q[ f ] . Hint: use
uniform convergence bounds for regression.



 

15 Kernel Fisher Discriminant

In the previous chapter, we reported experiments in which kernel PCA feature ex-
traction was applied to solve classification problems. This was done by following a
two-step approach: first, extract the features, irrespective of the classification task;
second, train a simple linear discriminative classifier on the features.

It is possible to combine both steps by constructing a so-called Kernel Fisher
Discriminant (KFD) (e.g. [363, 364, 442, 27], cf. also [490]). The idea is to solve the
problem of Fisher’s linear discriminant [171, 186] in a feature space , thereby
yielding a nonlinear discriminant in the input space.

The chapter is organized as follows. After a short introduction of the standardOverview
Fisher discriminant, we review its kernelized version, the KFD algorithm (Sec-
tion 15.2). In Section 15.3, we describe an efficient implementation using sparse
approximation techniques. Following this, we give details on how the outputs of
the KFD algorithm can be converted into conditional probabilities of class mem-
bership (Section 15.4). We conclude with some experiments.

Most of the chapter only requires knowledge of the kernel trick, as describedPrerequisites
in Chapter 1, and, in more detail, Chapter 2). To understand the connection to
SVMs, it would be helpful to have read Chapter 7. The details of the training
procedure described in Section 15.3 are relatively self-contained, but are easier to
understand after reading the background material in Section 6.5, and (optionally)
Section 16.4. Finally, Section 15.4 requires some basic knowledge of Bayesian
methods, as provided for instance in Section 16.1.

15.1 Introduction

Let us start by giving a concise summary of the Fisher discriminant algorithm,
following the treatment of [375]. For further detail, see [363].

In the linear case, Fisher’s discriminant is computed by maximizing the so-
called Rayleigh coefficient with respect to w,Rayleigh

Coefficient
J(w)

(w SBw)
(w SWw)

(15.1)

depending on the between- and within-class variances,

SB (m m )(m m ) (15.2)
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wPCA

wFisher

Figure 15.1 Illustration
of the main projections
of PCA and Fisher’s
Discriminant for a toy
data set. PCA does not
consider the labels (indi-
cated by solid and open
symbols, respectively)
and simply returns the
direction of overall max-
imum variance as the
first eigenvector. Fisher’s
discriminant, on the
other hand, returns a
projection that yields a
much better separation
between the two classes
(from [375]).

and

SW ∑
q

∑
i q

(xi mq)(xi mq) (15.3)

Here, mq and q denote the sample mean and the index set for class q, respectively.
The idea is to look for a direction such that when the patterns are projected onto
it, the class centers are far apart while the spread within each class is small — this
should cause the overlap of the two classes to be small.

Figure 15.1 gives a sketch of the projection w found by Fisher’s Discriminant.
Unlike PCA, this projection takes the class labels into account. We can show that
the Fisher discriminant finds the optimal discriminating direction between the
classes (in the sense of having minimal expected misclassification error), subject
to the assumption that the class distributions are (identical) Gaussians.

15.2 Fisher’s Discriminant in Feature Space

To formulate the problem in a feature space , we can expand w as

w ∑
i

iΦ(xi) (15.4)

as in the case of Kernel PCA (14.9). Below, we use the notation 1q to denote the
m-dimensional vector with components [1q]i equal to 1 if the pattern xi belongs
to class q, and 0 otherwise. Additionally, let m : q be the class sizes, and

q : 1
mq

K1q,

N KK ∑
q

mq q q (15.5)
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, M , and Ki j Φ(xi) Φ(x j) k(xi x j). A short calculation
shows that the optimization problem consists of maximizing [364]Rayleigh

Coefficient in
J( )

M
N

( )2

N
(15.6)

The projection of a test point onto the discriminant is computed by

w Φ(x)
m

∑
i 1

ik(xi x) (15.7)

As the dimensionality of the feature space is usually much higher than the number
of training samples m, it is advisable to use regularization. In [363], the addition of
a multiple of the identity or of the kernel matrix K to N was proposed, penalizing

2 or w 2 respectively (see also [177, 230]).
There are several equivalent ways of maximizing (15.6). We could solve the

generalized eigenvalue problem,Eigenvalue
Formulation

M N (15.8)

selecting the eigenvector with maximal eigenvalue , or compute

N 1( ) (Problem 15.2). (15.9)

Although there exist many efficient off-the-shelf eigenvalue problem solvers or
Cholesky packages which could be used to optimize (15.6), two problems remain:
for a large sample size m, the matrices N and M become large, and the solutions

are non-sparse. One way of dealing with this issue is to transform KFD into
a convex quadratic programming problem [362]. Apart from algorithmic advan-
tages, this formulation also allows for a more transparent view of the mathematical
properties of KFD, and in particular its connection to SV classifiers (Chapter 7) and
the Relevance Vector Machine ([539, 362], see Chapter 16).

Recalling that Fisher’s Discriminant tries to minimize the variance of the data
along the projection whilst maximizing the distance between the average outputs
for each class, we can state the following quadratic program:QP Formulation

minimize
b

2 CΩ( ) (15.10)

subject to K 1b y

1q 0 for q

Here, m , b C , y is the vector of class labels 1, and Ω( ) is one of the
regularizers mentioned above; that is, Ω( ) 2 or Ω( ) K . It can be
shown that this program is equivalent to (15.6). The first constraint, which can be
read as

w xi b yi i for all i 1 m (15.11)

pulls the output for each sample towards its class label. The term 2 minimizes
the variance of the error committed, while the constraints 1q 0 ensure that
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the average output for each class equals the label; in other words, for 1 labels,
the average distance of the projections is 2. The formulation in (15.10) has the
additional benefit that it lends itself to the incorporation of more general noise
models, which may be more robust than the Gaussian model [362].

Besides providing additional understanding, (15.10) allows the derivation of
more efficient algorithms. Choosing an 1-norm regularizer, Ω( ) 1, we
obtain sparse solutions: as discussed in Chapter 4, the 1-norm regularizer is aSparse Version
reasonable approximation to an 0 regularizer, which simply counts the number
of nonzero elements in .

For large datasets, solving (15.10) is not practical. It is possible, however, to ap-
proximate the solution in a greedy way. In the next section, we iteratively approxi-
mate the solution to (15.10) with as few non-zero i as possible, following [366].

15.3 Efficient Training of Kernel Fisher Discriminants

To proceed, let us rewrite (15.10), using Ω( ) 2. We define

a
b

c
m m

K y
A

m

K 1
H

m 1 K

K 1 K K C1
(15.12)

Here, m denotes the number of samples in class 1. Then (15.10) can be rewritten
using the equivalent

minimize
a

1
2

a Ha c a
m
2

(15.13)

subject to A a m 0 (15.14)

A a m 0 (15.15)

Forming the Lagrangian of (15.13) with multipliers ,

L(a )
1
2

a Ha c a (A a m ) (A a m )
m
2

(15.16)

and taking derivatives with respect to the primal variables a, we obtain the dual

maximize
a

1
2

a Ha m m
m
2

(15.17)

subject to Ha c ( A A ) 0 (15.18)

We now use the dual constraint (15.18) to solve for a,

a H 1 (c ( A A )) (15.19)

This equation is well defined if K has full rank (see (15.12)). If not, we can still
perform this step, as we approximate H 1 instead of computing it directly. Resub-
stituting (15.19) into the dual problem (which has no constraints left) yields the
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following problem in two variables and :

maximize
1
2

A H 1A A H 1 A

A H 1A A H 1 A

m c H 1A

m c H 1A

1
2

c H 1c
m
2

(15.20)

This problem can be solved analytically, yielding values for and . Substitut-
ing these into (15.19) give values for a or and b, respectively.

Of course, this problem is no easier to solve, nor does it yield a sparse solution:Sparse Greedy
Approximation H 1 is an (m 1) (m 1) matrix, and for large datasets its inversion is not

feasible, due to the requisite time and memory costs.
The following greedy approximation scheme can be used (cf. Chapter 6), how-

ever. Instead of trying to find a full set of m coefficients i for the solution (15.4),
we approximate the solution by a shorter expansion, containing only n m terms.
Starting with an empty solution n 0, we select at each iteration a new sample xi

(or an index i), and resolve the problem for the expansion (15.4) containing this
new index and all previously picked indices; we stop as soon as a suitable crite-
rion is satisfied. This approach would still be infeasible in terms of computational
cost if we had to solve the full quadratic program (15.13) anew at each iteration, or
invert H in (15.19) and (15.20). But with the derivation given above, it is possible to
find a close approximation to the solution at each iteration with a cost of O( mn2),
where is a user defined value (see below).

Writing down the quadratic program (15.10) for KFD, where the expansion for
the solution is restricted to an n element subset [m] of the training patterns,
and thus

w ∑
i

iΦ(xi) (15.21)

amounts to replacing the m m matrix K by an m n matrix Kn, where Kn
i j

k(xi x j), i 1 m and j . We can derive the formulation (15.13) in an anal-
ogous manner using the matrix Kn in (15.12). The problem is then of size n n.
Assume we already know the solution (and inverse of H) using n kernel functions.
Then H 1 for n 1 samples can be obtained by a rank one update of the previous
H 1 using only n basis functions: Eq. (10.38) tells us how. For convenience, we
repeat the statement below.

To this end, denote by Hn the matrix obtained from n basis functions, and by
Hn 1 that obtained by adding one basis function to these n functions. Note that
Hn and Hn 1 differ by only one row/column; we denote this difference by B, for
the n-vector, and C, for the diagonal entry Hn 1

n 1 n 1. We may now apply

Hn 1 1 Hn B

B C

1
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Algorithm 15.1 The Sparse Greedy Kernel Fisher Algorithm

arguments:
X x1 xm y y1 ym

OPTS
C

k
returns:

I
function (X y C k OPTS)

n 0
I

while do
[m] I

for do

a

if do

endif
end

H a
I

endwhile

(Hn) 1 ((Hn) 1B) ((Hn) 1B) ((Hn) 1B)

( ((Hn) 1B))
(15.22)

where (C B H 1B) 1. This means that we may compute the inverse of
Hn 1 by multiplying a vector with the inverse of Hn, and inverting a scalar.
This is an operation of cost O(n2). The last major problem is to pick an index
i at each iteration. Ideally we would choose the i for which we get the biggest
decrease in the primal-objective (or equivalently the dual-objective, since they
are identical for the optimal coefficients ). We would then need to compute the
update H 1 for all m n indices which are unused so far, however — again, this
is too expensive. One possible solution lies in a second approximation. Instead of
choosing the best possible index, it is usually sufficient to find an index for which,
with high probability, we achieve something close to the optimal choice. It turns
out (Chapter 6) that it can be enough to consider a small subset of indices, chosen
randomly from those remaining. According to Corollary 6.32 and the discussion
following it, a random sample of size 59 is enough to obtain an estimate that is
with probability 0 95 among the best 0 05 of all estimates.

The complete algorithm for a sparse greedy solution to the KFD problem is
schematized in Figure 15.1. It is easy to implement using a linear algebra package
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Figure 15.2 Runtime of sparse greedy KFD training. The number of samples in the train-
ing set versus the CPU time of the sparse greedy algorithm (dash dotted lines) and the QP
formulation (15.10) (solid line) are depicted. The estimates are averages over ten trials, one
for each of the ten one-against-the-rest problems in the USPS database. The three lines for
the sparse greedy KFD are generated by requiring different accuracies for the dual error
function, namely 10 a a 1 3, relative to the function value (the curves are plotted
in this order from bottom to top). There is a speed-accuracy trade-off in that for large a,
the algorithm converges more slowly. As a sanity check, the a 3 system was evaluated
on the USPS test set. Although the parameters used (kernel and regularization constant)
were those found to be optimal for the QP algorithm, the performance of the sparse greedy
algorithm is only slightly worse. In the log-log plot it can be seen that the QP algorithm
roughly scales in a cubic manner with the number of samples, while for large sample sizes,
the approximate algorithm scales with an exponent of about 3

2 .

like BLAS [316, 145], and has the potential to be easily parallelized (the matrix
update) and distributed.

In a first evaluation, we used a one-against-the-rest task constructed from theTraining Time
Experiment USPS handwritten digit data set to test the runtime behavior of our new algo-

rithm. The data are N 256 dimensional and the set contains 7291 samples. All
experiments were done with a Gaussian kernel, exp( x x 2 (0 3 N), and using
a regularization constant C 1. We compare the performance with the program
given by (15.10) with the regularizer Ω( ) 2. The results are given in Figure
15.2. It is important to keep in mind that the sparse greedy approach only needs to
store at most an n n matrix, where n is the maximal number of kernel functions
chosen before termination. In contrast, previous approaches needed to store m m
matrices.
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Figure 15.3 Class histograms of the projections onto the Fisher discriminant direction
(dashed), and estimated class-conditional densities (solid), for a task consisting of classi-
fying image patches of natural vs. man-made objects. Top row: three systems using a Fisher
Linear Discriminant (FLD) in input space. Bottom row: plots for the KFD approach. Note that
due to the high dimensionality, the histograms are more Gaussian in the KFD case, making
it easier to estimate class probabilities accurately (from [75]).

15.4 Probabilistic Outputs

We conclude this section by noting that while generalization error performance of
the KFD is comparable to an SVM (cf. Table 15.1), a crucial advantage of the Fisher
discriminant algorithm over standard SV classification1 is that the outputs of the
former can easily be transformed into conditional probabilities of the classes; in
other words, numbers that state not only whether a given test pattern belongs
to a certain class, but also the probability of this event. This is due to the empirical
observation (Figure 15.3) that in the high-dimensional feature space, the histogram
of each class of training examples as projected onto the discriminant can be closely
approximated by a Gaussian.

To obtain class probabilities, we proceed as follows. We first estimate two one-
dimensional Gaussian densities for the projections of the training points onto
the direction of discrimination. We then use Bayes’ rule to derive the conditional
probability that a test point x belongs to a given class or .

Let m and m denote the number of positive and negative examples respec-
tively, such that m m m . From the projections of the training points (cf.
(15.7)),

qj : q(xj) : w Φ(x j)
m

∑
i 1

ik(xi x j) (15.23)

1. For extensions of the SVM that produce probabilistic outputs, see [521, 486, 410].
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we can readily estimate the mean of each Gaussian,

:
1

m ∑
yi 1

qi (15.24)

and the respective variances

2 1
m 1 ∑

yi 1
(qi )2 (15.25)

Note that the 1 in the denominator renders the variance estimator unbiased (cf.
Chapter 3, and for instance [49]). The class-conditional densities take the form

p(q y 1) (2 2 )
1
2 exp

(q )2

2 2 (15.26)

In order to apply Bayes’ rule (Section 16.1.3), we need to determine prior proba-
bilities of the two classes. These could either be known for the problem at hand
(from some large set of previous observations, for example), or estimated from the
current dataset. The latter approach only makes sense if the sample composition
is representative of the problem at hand; it then amounts to setting

P(y 1)
m
m

(15.27)

To obtain the conditional probabilities of class membership y 1 given the pattern
x (sometimes called posterior probabilities), we use Bayes’ rule,Conditional

Probabilities
P(y 1 x) P(y 1 q)

p(q y 1)P(y 1)
p(q y 1)P(y 1) p(q y 1)P(y 1)

(15.28)

where q q(x) is defined as above.
Being able to estimate the conditional probabilities can be useful, for instance,

in applications where the output of a classifier needs to be merged with further
sources of information. Another recent application is to classification in the pres-
ence of noisy class labels [315]. In this case, we formulate a probabilistic model
for the label noise. During learning, an EM procedure is applied to optimize the
parameters of the noise model and of the KFD, as well as the conditional probabil-
ities for the training patterns. The procedure alternates between the estimation of
the conditional probabilities, as detailed above, and a modified estimation of the
KFD which takes into account the conditional probabilities.

In this way, a point that has been recognized as being very noisy has a smaller
influence on the final solution. In [315], this approach was applied to the segmen-
tation of images into sky and non-sky areas. A standard classification approach
would require the hand-labelling of a large number of image patches, in order to
get a sufficiently large training set. The new “noisy label” algorithm, on the other
hand, is able to learn the task from images that are merely globally labelled ac-
cording to whether they contain any sky at all. Images without sky are then used
to produce training examples (image patches) of one class, while images with sky
are used to produce noisy training examples of the second class.
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15.5 Experiments

Let us first use a toy example to illustrate the KFD algorithm (Figure 15.4). TheToy Example
three panels show the same toy data set, with the KFD algorithm run three times,
using Gaussian kernels

k(x x ) exp
x x 2

c
(15.29)

with different values of c. For large c, the induced feature space geometry resem-
bles that of the input space, and the algorithm computes an almost linear discrim-
inant function. For the problem at hand, which is not linearly separable, this is
clearly not appropriate. For a very small c, on the other hand, the kernel becomes
so local that the algorithm starts memorizing the data. For an intermediate kernel
width, a good nonlinear separation can be computed. Note that in KFD, there is no
geometrical notion of Support Vectors lying on the margin; indeed, the algorithm
does not make use of a margin.

Applications of KFD to real world data are currently rather rare. Extensive
benchmark comparisons were performed in [364], however, for a selection ofBenchmark

Results binary classification problems available from [36]. As shown in Table 15.1, KFD
performs very well, even when compared to state-of-the-art classifiers such as
AdaBoost [174] and SVMs (Chapter 7). Performance comparisons on the USPS
handwritten digit recognition task can be found in Table 7.4.

Figure 15.4 KFD toy example. In all three cases, a linear Fisher discriminant was com-
puted based on the data points mapped into the feature space induced by a kernel. We
used a Gaussian kernel (see text) in all cases, with different values of the kernel width. On
the left, a rather small width was used, leading to data memorization. On the right, a wide
kernel was used, with the effect that the decision boundary is almost linear; again, this is not
appropriate for the given task. For an intermediate kernel size (middle), a good nonlinear
separation is obtained. In all panels, the solid black line gives the actual decision boundary,
while the dashed lines depict the areas corresponding to the two hyperplanes in feature
space that, when projected on the direction of discrimination, fall on the means of the two
classes.
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Table 15.1 Comparison [364] between Support Vector Machines (Chapter 7), the Kernel
Fisher Discriminant (KFD), a single radial basis function classifier (RBF), AdaBoost (AB,
[174]), and regularized AdaBoost (ABR, [428]) on 13 different benchmark datasets (see text).
The best result in boldface, the second best in italics.

SVM KFD RBF AB ABR

Banana 11.5 0.07 10.8 0.05 10.8 0.06 12.3 0.07 10.9 0.04
Breast Cancer 26.0 0.47 25.8 0.46 27.6 0.47 30.4 0.47 26.5 0.45
Diabetes 23.5 0.17 23.2 0.16 24.3 0.19 26.5 0.23 23.8 0.18
German 23.6 0.21 23.7 0.22 24.7 0.24 27.5 0.25 24.3 0.21
Heart 16.0 0.33 16.1 0.34 17.6 0.33 20.3 0.34 16.5 0.35
Image 3.0 0.06 3.3 0.06 3.3 0.06 2.7 0.07 2.7 0.06
Ringnorm 1.7 0.01 1.5 0.01 1.7 0.02 1.9 0.03 1.6 0.01
F. Sonar 32.4 0.18 33.2 0.17 34.4 0.20 35.7 0.18 34.2 0.22
Splice 10.9 0.07 10.5 0.06 10.0 0.10 10.1 0.05 9.5 0.07
Thyroid 4.8 0.22 4.2 0.21 4.5 0.21 4.4 0.22 4.6 0.22
Titanic 22.4 0.10 23.2 0.20 23.3 0.13 22.6 0.12 22.6 0.12
Twonorm 3.0 0.02 2.6 0.02 2.9 0.03 3.0 0.03 2.7 0.02
Waveform 9.9 0.04 9.9 0.04 10.7 0.11 10.8 0.06 9.8 0.08

15.6 Summary

Kernel Fisher Discriminant (KFD) analysis can be considered a merge of SVM
classifiers and Kernel PCA. As with any classifier, it takes into account the labels yi

of the data; as in PCA, it finds an “interesting” direction in a dataset by maximizing
a criterion involving variances. Finally, KFD analysis resembles both SVMs and
Kernel PCA by operating in a feature space induced by a kernel function.

The result is an algorithm which performs just as well as SVM classifiers; on
some problems, it is actually slightly better, but it would be premature to draw
any far-reaching conclusions from this. Its largest disadvantage compared with
SVMs is that training procedures for KFD are not yet as well developed as those
for SVMs. Until recently, KFD was only applicable to fairly small problems, as it
required m m matrices to be stored. In Section 15.3, we described new techniques
which go some way in closing the gap between SVM training and KFD training;
for very large datasets, however, it is an open question whether KFD analysis is
competitive with sophisticated SVM training methods (Chapter 10).

On the other hand, KFD has the advantage that it lends itself to a probabilistic
interpretation, since its outputs can readily be transformed into conditional proba-
bilities of class membership. If we care only about the final classification, this may
not be of interest; however, there are applications where we are interested not only
in a class assignment, but also in a probability to go with it. Judging from present
day training methodologies, KFD should excel in medium sized problems of this
type (m 25000, say), which are large enough that Bayesian techniques such as
the Relevance Vector Machine (Section 16.6) are too expensive to train.
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15.7 Problems

15.1 (Dual Eigenvalue Problem for KFD ) Derive (15.6) from the Rayleigh coeffi-
cient.

15.2 (Fisher Direction of Discriminination ) Prove that the solution of the dual
Fisher problem satisfies N 1( ).

15.3 (Quadratic Program for KFD [364, 362] ) Derive (15.10).

15.4 (Fisher Loss Function ) Discuss the differences between the Fisher loss function
and the SVM loss function, comparing the quadratic programs (7.35) and (15.10). Also
compare to the loss employed in [532].

15.5 (Relationship between KFD and SVM ) Study the SVM training algorithm
of Pérez-Cruz et al. [407], and show that within the working set, it computes the KFD
solution. Argue that the difference between SVM and KFD thus lies in the working set
selection.

15.6 (Optimality of Fisher Discriminant ) Prove that the KFD algorithm gives a
decision boundary with the lowest possible error rate if the two classes are normally
distributed with equal covariance matrices in feature space and the sample estimates of
the covariance matrices are perfect.

15.7 (Scale Invariance ) Prove that the KFD decision boundary does not change if
some direction of feature space is scaled by c 0. Hint: you do not need to worry about
kernels. Just prove that the statement is true in a vector space. Note that it is sufficient to
consider finite-dimensional vector spaces, as the data lie in a finite-dimensional subset of
feature space.

Argue that this invariance property does not hold true for (kernel) PCA.

15.8 (KFD performs Regularized Regression on the Class Labels ) Prove that
a least-mean-squares regression (in feature space) on the class labels yields the same direc-
tion of discrimination as KFD (for the case of standard Fisher Discriminant Analysis, cf.
[49], for example; see also [609]).

Discuss the role of regularization as described in Section 15.2. To what kind of regular-
ization does regression on the labels correspond?

15.9 (Conditional Class Probabilities vs. Probit ) Discuss the connections between
probit (see (16.5)) and the method for estimating conditional probabilities described in Sec-
tion 15.4.

15.10 (Multi-Class KFD [171, 186, 442] ) Generalize the KFD algorithm to deal with
M classes of patterns. In that case, there is no longer a one-dimensional direction of
discrimination. Instead, the algorithm provides a projection on a M 1-dimensional
subspace of .



 

16 Bayesian Kernel Methods

The Bayesian approach to learning exhibits some fundamental differences with re-
spect to the framework of risk minimization, which was the leitmotif of this book.
The key distinction is that the former allows for a very intuitive incorporation of
prior knowledge into the process of estimation. Moreover, it is possible, within
the Bayesian framework, to obtain estimates of the confidence and reliability of
the estimation process itself. These estimates can be computed easily, unlike the
uniform convergence type bounds we encountered in Chapters 5 and 12.

Surprisingly enough, the Bayesian approach leads to algorithms much akin to
those developed within the framework of risk minimization. This allows us to pro-
vide new insight into kernel algorithms, such as SV classification and regression.
In addition, these similarities help us design Bayesian counterparts for risk min-
imization algorithms (such as Laplacian Processes (Section 16.5)), or vice versa
(Section 16.6). In other words, we can tap into the knowledge from both worlds
and combine it to create better algorithms.

We begin in Section 16.1 with an overview of the basic assumptions underlyingOverview
Bayesian estimation. We explain the notion of prior distributions, which encode
our prior belief concerning the likelihood of obtaining a certain estimate, and
the concept of the posterior probability, which quantifies how plausible functions
appear after we observe some data. Section 16.2 then shows how inference is
performed, and how certain numerical problems that arise can be alleviated by
various types of Maximum-a-Posteriori (MAP) estimation.

Once the basic tools are introduced, we analyze the specific properties of
Bayesian estimators for three different types of prior probabilities: Gaussian Pro-
cesses (Section 16.3 describes the theory and Section 16.4 the implementation),
which rely on the assumption that adjacent coefficients are correlated, Laplacian
Processes (Section 16.5), which assume that estimates can be expanded into a
sparse linear combination of kernel functions, and therefore favor such hypothe-
ses, and Relevance Vector Machines (Section 16.6), which assume that the contri-
bution of each kernel function is governed by a normal distribution with its own
variance.

Readers interested in a quick overview of the principles underlying Bayesian
statistics will find the introduction sufficient. We recommend that the reader focus
first on Sections 16.1 and 16.3. The subsequent sections are ordered in increasing
technical difficulty, and decreasing bearing on the core issues of Bayesian estima-
tion with kernels.
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16.6 Relevance
Vector Machines

16.5 Laplacian
Processes

16.3 Gaussian
Processes

Approximation
16.4.1 Laplace

16.4.3 Approximate
Sparse Regression

16.2 Approximate
Inference Methods

16.2.3 Connection
Regularized Risk

16.1 Bayesian
Inference

This chapter is intended for readers who are already familiar with the basic con-Prerequisites
cepts of classification and regression, as explained in the introduction (Chapter 1),
and with the ideas underlying regularization (Chapter 4); in particular, the reg-
ularized risk functional in Section 4.1. Knowledge of Maximum Likelihood (as
in Section 3.3.1) is also required. The treatment of Gaussian Processes assumes
knowledge of regularization operators and Reproducing Kernel Hilbert Spaces
(Section 2.2.2). Details of the implementation of Gaussian Processes require knowl-
edge of optimization (Chapter 6), especially Newton’s method (Section 6.2) and
sparse greedy methods (Section 6.5).

16.1 Bayesics

The central characteristic of Bayesian estimation is that we assume certain prior
knowledge or beliefs about the data generating process, and the functional de-
pendencies we might encounter. Let us begin with the data generation process.
The discussion following is closely connected to the reasoning we put forward
in Section 3.3.1 to explain maximum likelihood estimation. Unless stated other-
wise, we observe an m-sample X : x1 xm and Y : y1 ym , based on
which we will carry out inference. For notational convenience we sometimes use
Z : (x1 y1) (xm ym) instead of X Y. We begin with an overview over the
fundamental ideas (see also [49, 338, 383, 486, 432] for more details).

16.1.1 Likelihood

Assume that we are given a hypothesis f and information about the process
that maps x into y. We can formalize the latter via the distribution P(y x f (x)),
and if a density exists, via p(y x f (x)). The key difference to the reasoning so
far is that we assume the distribution P(y x f (x)) is known (in Section 16.1.4, we
relax this assumption to the knowledge of a parametric family through the use of
hyperparameters).
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For instance, f (x) could be the true wind speed at a location x, and y the observed
speed, where the observation is corrupted by errors in the measurement process
(imprecision of instruments, improper handling, etc.). In other words, we do not
observe f (x) but rather f (x) , where with corresponding P( ) is a random
variable modelling the noise process. In this case, we obtain

y f (x) and P(y x f (x)) P(y f (x)) (16.1)

Likewise, y and f (x) could be binary variables, such as black and white pixels
on an image. Thus, consider the case where f (x) is the color of the pixel at location
x, and y the color of this pixel on a copy of the image received by a (noisy) fax
transmission. In this case, we need only consider the probabilities

P(y f (x)) where y f (x) 1 i.e., P(1 1) P(1 1) P( 1 1) P( 1 1) (16.2)

We might want to model the probability that a patient develops cancer, P(y
cancer x), based on a set of medical observations x. We observe only the outcomes
y “cancer” or y “no cancer”, however. One way of solving this problem is
to use a functional dependency f (x) which can be transformed into P(y x) via a
transfer function

We give three examples of such transfer functions below.

Logistic Transfer Function: this is given by

P(y 1 x f (x)) :
exp( f (x))

1 exp( f (x))
(16.3)

Note that logistic regression with (16.3) is equivalent to modelling

f (x) ln
p(y 1 f (x))

p(y 1 f (x))
(16.4)

since p(y 1 f (x)) 1 p(y 1 f (x)). Solving (16.4) for p(y 1 f (x)) yields
(16.3).

Probit: we might also assume that y is given by the sign of f , but corrupted by
Gaussian noise (see for instance [395, 396, 486]); thus, y sgn ( f (x) ) where

(0 ). In this case, we have

p(y f (x))
sgn (y f (x) ) 1

2
p( )d (16.5)

1

2 2 y f (x)
exp

2

2 2 d Φ
y f (x)

(16.6)

Here Φ is the distribution function of the normal distribution.

Label Noise: finally, we might want to do classification in the presence of random
label noise (possibly in addition to the noise model p0(y t) discussed previously).
In this case, a label is randomly assigned to observations with probability 2 (note
that this is the same as randomly flipping with probability ). We then write

p(y f (x)) (1 2 )p0(y f (x)) (16.7)
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Recall that in the (important) special case of iid generated data, the likelihood
factorizes (3.18), and we obtainFactorizing

Likelihood
P(Y X f )

m

∏
i 1

P(yi xi f (xi)) (16.8)

As long as P(yi xi f (xi)) is indeed the underlying distribution, P(Y X f ) tells us
how likely it is that the sample X Y was generated by f . In the following discus-
sion, we use Bayes’ rule to turn this connection around, and consider how likely it
is that f explains the data X Y. Before we address this issue, however, we have to
specify our assumptions about the hypotheses f that can be used.

16.1.2 Prior Distributions

When solving a practical estimation problem, we usually have some prior knowl-
edge about the outcome we expect, be it a desire for smooth estimates, preference
for a specific parametric form, or preferred correlations between certain dimen-
sions of the inputs xi or between the predictions at different locations. In short, we
may have a (possibly vague) idea of the distribution of hypotheses f , P( f ), that we
expect to observe. Before we proceed with the technical details, let us review some
examples.

We may know that f is a linear combination of sin x cos x sin 2x, and cos 2x, and
that the coefficients are chosen from the interval [ 1 1]. In this case, we can write
the density p( f ) asParametric Prior

p( f )
1

16 if f 1 sin x 2 cos x 3 sin 2x 4 cos 2x with i [ 1 1]

0 otherwise

This is a parametric prior on f

We may not know much more about f than that its values f (xi) are correlated
and are distributed according to a Gaussian distribution with zero mean and
covariance matrix K. For three values (we use fi as a shorthand), this leads toPrior on Function

Values
p( f1 f2 f3)

1

(2 )3 det K
exp

1
2

( f1 f2 f3) K 1( f1 f2 f3) (16.9)

The larger the off diagonal elements Ki j, the more the corresponding function
values f (xi) and f (x j) are correlated. The main diagonal elements Kii provide the
variance of fi, and the off diagonal elements the covariance between pairs f i and
f j. Note that in this case we do not specify a prior assumption about the function
f , but only about its values f (xi) at some previously specified locations.
The choice of K as a name for the covariance is deliberate. As we will see in
Section 16.3, K is identical to the kernel matrix used in Reproducing Kernel Hilbert
Spaces and regularization theory. The idea is that observations are generated by a
stochastic process with a given covariance structure.
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Figure 16.1 Two functions (left) on [ 1 1] and their derivatives (right). Even though
the top and bottom functions closely resemble each other, the top function has a higher
prior probability of occurrence according to (16.10), since its value of f is smaller.

Finally, we may only have the abstract knowledge that smooth functions with
small values are more likely to occur. Figure 16.1 is a pictorial example of such an
assumption. One possible way of quantifying such a relation is to posit that the
prior probability of a function occurring depends only on its L2 norm and the L2

norm of its first derivative. This leads to expressions of the formNonparametric
Prior

ln p( f ) c f 2
x f 2 (16.10)

In other words, non-smooth functions with large values of x f 2 and large func-
tions are less likely to occur.

Eq. (16.10) is an example of a nonparametric prior on f . As in the previous ex-
ample, we will see that (16.10) leads to Gaussian Processes (Section 16.3). Further-
more, we will point out the connection to regularization operators.1

Now that we have stated our assumptions as to the probability of certain hy-
potheses occurring, we will study the likelihood that a given hypothesis is respon-
sible for a particular sample X Y.

1. As we shall see, the connection with regularization is that ln p( f ) Ω[ f ] c.
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16.1.3 Bayes’ Rule and Inference

We begin with Bayes’ rule. In the previous two sections, we gave expressions for
p(Y f X) and p( f ). Let us further assume that p( f ) and p(X) are independent.2

We may simply combine the conditional probability with the prior probability to
obtain

p(Y f X)p( f ) p(Y f X) (16.11)

On the other hand, we might also condition f on Y, and decompose p(Y f X) into

p( f Y X)p(Y) p(Y f X) (16.12)

By combination of (16.11) and (16.12), we obtain Bayes’ rule, which allows us
to solve for p( f X Y). The latter probability quantifies the evidence that f is the
underlying function for X Y. More formally, this reads as follows:

p(Y f X)p( f ) p( f X Y)p(Y) and thus p( f X Y)
p(Y f X)p( f )

p(Y)
(16.13)

Since f does not enter into p(Y), we may drop the latter from (16.13), leading to

p( f X Y) p(Y f X)p( f ) (16.14)

Consequently, in order to assess which hypothesis f is more likely to occur, it is
sufficient to analyze p(Y f X)p( f ). Furthermore, we may recover p(Y) by comput-
ing the normalization factor on the right hand side of (16.14). Finally, p( f X Y)
also enables us to predict y at a new location x, using

p(y X Y x) p(y f x)p( f X Y)d f (16.15)

The quantity p(y X Y x) tells us what observation we are likely to make at location
x, given the previous observations X Y. For instance, we could compute the
expected value of the observation y(x) via

ŷ(x) : E y(x) Z (16.16)

and specify the confidence in the estimate. One way of computing the latter is via
tail-bounds on the probability of large deviations from the expectation,

P y(x) E[y(x) Z] Z (16.17)

Unfortunately, evaluation of (16.17) can be expensive, and cannot be carried out
analytically in most cases. Instead, we use approximation methods, which will be
described in Section 16.2.

In some cases, it is more natural for inference purposes to analyze p(y Y) (in par-
ticular, if the dependency on x can be absorbed in a corresponding prior probabil-

2. In the absence of this assumption, we would have to find expressions for p(X Y f ),
which would lead to an analogous result.
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ity over (y Y)). Since p(y Y) p(y Y)p(Y), however, we may easily obtain p(y Y)
once we know the normalizing factor p(Y). The latter is obtained by integration
over y,

p(Y) p(y Y)dy and thus p(y Y)
p(y Y)
p(Y)

p(y Y)
p(y Y)dy

(16.18)

This process is called marginalization.

16.1.4 Hyperparameters

Consider (16.10). We might question whether the trade-off between f 2 and
x f 2 is correct. Thus, rather than (16.10), we might instead write ln p( f )

c f 2
x f 2 for some 0, effectively changing the scale of our flatness

assumption. Likewise, we may not always know the exact form of the likelihood
function, but we might instead have a rough idea about the amount of additive
noise involved in the process of obtaining y from f (x). Consequently, we need a
device to encode our uncertainty about the hyperparameters used in the specifica-
tion of the likelihood and prior probabilities.

It is only natural to extend the Bayesian reasoning to these parameters by
assuming a prior distribution on the hyperparameters themselves, and making
the latter variables of the inference procedure. Generalizing from the previous
example, we denote by the vector of all hyperparameters needed in a particular
situation. We obtain

p( f ) p( f )p( ) and thus p( f ) p( f )d p( f )p( )d (16.19)

We call p( ) a hyperprior, since it is a prior assumption on the prior p( f ) (orHyperprior
p(Y f X)) itself. In theory, we could integrate out the hypotheses f to obtain the
posterior distribution over the hyperparameters ,

p( Z) p(Z )p( ) p( ) p(Z f )p( f )d f (16.20)

and use the latter to obtain

p( f Z) p( f Z)p( Z)d (16.21)

Again, as in (16.15), an analytic solution of the integral is unlikely to be feasible,
and we must resort to approximations (see Section 16.2.2).

16.2 Inference Methods

In this section we describe techniques useful for inference with Bayesian kernel
methods, and relate these to algorithms used in the risk minimization framework.
Readers interested in the connection with statistical learning theory are encour-
aged to read Section 12.3 on PAC-Bayesian bounds.
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Figure 16.2 Left: The mode and mean of the distribution coincide, hence the MAP ap-
proximation is satisfied. Right: For multimodal distributions, the MAP approximation can
be arbitrarily bad.

Methods other than those described below may also be suitable for this task;
for the sake of brevity, however, we focus on techniques currently in common
use. Other important techniques not covered here include Markov Chain Monte
Carlo (MCMC) [426, 383, 384], and the Expectation Maximization (EM) algorithm
[135, 275, 610, 193, 260].

16.2.1 Maximum a Posteriori Approximation

In most cases, integrals over p( f X Y), such as the expectation of f in (16.15), are
computationally intractable. This means that we have to use approximate tech-
niques to make predictions. A popular approximation is to replace the integral
over p( f X Y) by the value of the integrand at the mode of the posterior distribu-
tion, where p( f X Y) is maximal. The hope is that p( f X Y) is concentrated around
its mode, and that mode and mean will approximately coincide. We thus approxi-
mate (16.15) by

p(y X Y x) p(y fMAP x) where fMAP argmax
f

p( f X Y) (16.22)

We call fMAP the maximum a posteriori (MAP) estimate since it maximizes the
posterior distribution p( f X Y) over the hypotheses f . In practice we obtain fMAP

by minimizing the negative log posterior,Maximum a
Posteriori
Estimate fMAP argmin

f
ln p( f Z) argmin

f
ln p(Z f ) ln p( f ) (16.23)

The additional advantage of this method is that we completely avoid the issue of
normalization, since (16.23) does not depend on p(Z). This approximation is justi-
fied, for instance, if all distributions involved happen to be Gaussian, since mean
and mode then coincide. See Figure 16.2 for an example where this assumption
holds, and also for a counterexample.
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We may also require an approximation in the integral over the hyperparameter
due to the hyperprior p( ). This situation occurs more frequently than the

need to compute a MAP estimate, since a complicated prior distribution p( f )
stemming from an integration over will probably render any subsequent steps
of integration intractable. Thus, we pick according toMAP2 Estimate

MAP argmax p( Z) (16.24)

In order to compute p( Z), we apply Bayes’ rule. We then obtain

MAP argmax
p(Z )p( )

p(Z)
argmin ln p(Z ) ln p( ) (16.25)

This procedure is sometimes referred to as the MAP2 estimate. A practical example
of the use of hyperparameters is automatic relevance determination [383]. This
addresses the proper scaling of observations, and the removal of inputs that prove
to be irrelevant to the problem at hand.

Remark 16.1 (Automatic Relevance Determination) Denote by n the dimensional-
ity of x, by : diag( 1 n) a diagonal scaling matrix, and by

p( )
n

∏
i 1

p( i) (16.26)

a factorizing prior on the hyperparameters i 0, possibly with p( ) p( ) if
(this facilitates the elimination of irrelevant parameters). Assume moreover that we already
have a prior p( f ) over hypotheses f . We can then form a prior distribution conditioned on
a hyperprior by letting

p( f ) : p( f ( 1 )) (16.27)

In other words, functions f ( ) have the same prior distribution conditioned on the
hyperparameter as their un-scaled counterparts f ( ), with respect to the prior p( f ). This
scaling is particularly useful to weed out unwanted inputs and to find the right scaling
parameters for the remainder. See [338, 383] for more detail.

Another advantage (beyond the computational aspect) of the MAP2 approxima-
tion is that it obviates any problems with unnormalized or improper priors p( )
on ; in other words, functions p( ) with integrals that do not amount to 1, or
which are not integrable at all (see [539] or Section 16.6 for an example of a (log-
scale) flat prior over a hyperparameter, where p(ln ) const ).Improper Priors

This convenience comes at a price, however: Estimates obtained using improper
priors no longer derive from true probability distributions, and much of the mo-
tivation for Bayesian techniques cannot then be justified. Nonetheless, these tech-
niques work well in practice. We give an example of such a situation in Sec-
tion 16.6.
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16.2.2 Parametric Approximation of the Posterior Distribution

Instead of replacing p( f Z) by its mode, we may want to resort to slightly more
sophisticated approximations. A first improvement is to use a normal distribution

( ), with a mean coincides with the mode of p( f Z), and to use the second
derivative of ln p( fMAP Z) for the variance . This is often referred to as the
Gaussian Approximation. In practice, we set (see for instance [338])Gaussian

Approximation
f Z (E[ f Z] Σ 1) where Σ 2

f ln p( f Z) E[ f Z] (16.28)

The advantage of such a procedure is that the integrals remain tractable. This is
also one of the reasons why normal distributions enjoy a high degree of popularity
in Bayesian methods. Besides, the normal distribution is the least informative
distribution (largest entropy) among all distributions with bounded variance.

As Figure 16.2 indicates, a single Gaussian may not always be sufficient to cap-
ture the important properties of p(y X Y x). A more elaborate parametric model
q ( f ) of p( f X Y), such as a mixture of Gaussian densities, can then be used to im-
prove the approximation of (16.15). A common strategy is to resort to variationalVariational

Approximation methods. The details are rather technical and go beyond the scope of this section.
The interested reader is referred to [274] for an overview, and to [53] for an ap-
plication to the Relevance Vector Machine of Section 16.6. The following theorem
describes the basic idea.

Theorem 16.2 (Variational Approximation of Densities) Denote by f y random
variables with corresponding densities p( f y) p( f y), and p( f ). Then for any density
q( f ), the following bound holds;

ln p(y)
f
ln

p( f y)
q( f )

q( f )d f
f
ln

p( f y)
q( f )

q( f )d f
f
ln

p( f y)
q( f )

q( f )d f (16.29)

Proof We begin with the first equality of (16.29). Since p( f y) p( f y)p(y), we
may decompose

p( f y)
q( f )

ln p(y) ln
p( f y)
q( f )

(16.30)

Additionally, f ln p( f y)
q( f ) q( f )d f KL(p( f y) q( f )) is the Kullback-Leibler diver-

gence between p( f y) and q( f ) [114]. The latter is a nonnegative quantity which
proves the second part of (16.29).

The true posterior distribution is usually p( f y), and q( f ) an approximation of it.
The practical advantage of (16.29) is that L : ln p( f y)

q( f ) q( f )d f can often be computed
more easily, at least for simple enough q( f ). Furthermore, by maximizing L via a
suitable choice of q, we maximize a lower bound on ln p(y).
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16.2.3 Connection to Regularized Risk Functionals

A second glance at (16.23) reveals similarities between the log posterior ln p( f Z)
and the regularized risk functional Rreg[ f ] of (4.1). Both expressions are sums of
two terms: One depending on f and Z (Remp[ f ] and ln p(Z f )), and the other
independent of Z ( Ω[ f ] and ln p( f )). In particular, if we formally setBayesian

Interpretation of
Regularized Risk mRemp[ f ]

m

∑
i 1

c(xi yi f (xi)) ln p(Z f ) (16.31)

Ω[ f ] ln p( f ) (16.32)

we may obtain a Bayesian interpretation of regularized risk minimization as MAP
estimation, and vice versa. We next discuss the interpretation of (16.31) and (16.32).

In the case of (16.31), recall that in Section 3.3.1 we assume that we are deal-
ing with iid (independent and identically distributed) data, and that we know the
dependency between the hypothesis f and the observations (xi yi). As a conse-
quence, we can write p(Z f ) as a product involving one pair of observations (xi yi)
at a time. Finally, Remark 3.6 shows that if we set c(x y f (x)) ln p(yi xi f ), we
obtain direct correspondence in the data dependent part.
As described in Chapter 3, this means that the loss function in the regularizedLikelihood and

Loss Function risk functional is the equivalent of the negative log likelihood in the probabilistic
setting. For instance, squared loss corresponds to the assumption that normal
noise is added to the data. Similar conclusions can be drawn for classification, with
certain known caveats due to non-normalizability of some of the loss functions
commonly used in the risk functional context [521].

The correspondence Ω[ f ] ln p( f ) in (16.32) shows that the choice of the
regularizer influences the choice of the final estimate to the same extent as a
prior over a function class. For instance, the choice of a particular feature space
when using kernel methods acts in the same way as a prior over the class of
possible functions in Bayesian estimation. This is an important fact to keep inPrior and

Regularizer mind when dealing with “distribution free” and “nonparametric” estimators. In
effect, through a particular choice of regularization, and the consequent imposition
of a partial order (roughly speaking, a ranking) on the set of possible solutions,
we are selecting a particular prior. The only difference is that we do not use
the probabilistic part of ln p( f ) when dealing with Ω[ f ] but merely compare
different f f by the corresponding size of Ω[ f ].

Bear in mind that the correspondence between regularized risk minimization
and Bayesian methods only works for algorithms maximizing the log posterior
to obtain a MAP solution. The reasoning does not go beyond this point, and in
particular the risk functional approach has no equivalent of the averaging process
involved in obtaining the mean, rather than the mode, of a distribution.
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Risk Functionals Bayesian Methods

Empirical Risk
m

∑
i 1

c(xi yi f (xi)) neg. log-likelihood
m

∑
i 1

ln p(yi f (xi))

Regularization Ω[ f ] neg. log-prior ln p( f )
Regularized Risk Remp[ f ] Ω[ f ] neg. log-posterior ln p(Z f ) ln p( f )
Risk Minimizer MAP Estimate

16.2.4 Translating Notations

For the sake of clarity, we present a table which puts corresponding quantities
from Bayesian estimation and the risk functional approach side by side. Needless
to say, the table is a gross oversimplification of the deeper connections, but it still
may be useful for “decoding” scientific literature using a different framework.

16.3 Gaussian Processes

Gaussian Processes are based on the “prior” assumption that adjacent observa-
tions should convey information about each other. In particular, it is assumed that
the observed variables are normal, and that the coupling between them takes place
by means of the covariance matrix of a normal distribution. Eq. (16.9) is an exam-
ple of such a coupling; the entries of the matrix Ki j tell us the correlation between
the observations fi and f j.

It turns out that this is a convenient way of extending Bayesian modelling of
linear estimators to nonlinear situations (cf. [601, 596, 486]). Furthermore, it repre-
sents the counterpart of the “kernel trick” in methods minimizing the regularized
risk. We now present the basic ideas, and relegate details on efficient implementa-
tion of the optimization procedure required for inference to Section 16.4.

16.3.1 Correlated Observations

Assume we are observing function values f (xi) at locations xi, as in (16.9). It is only
natural to assume that these values are correlated, depending on their location
xi. Indeed, if this were not the case, we would not be able to perform inference,
since by definition, independent random variables f (xi) do not depend on other
observations f (xj).

In fact, we make a stringent assumption regarding the distribution of the f (xi),
namely that they form a normal distribution with mean and covariance ma-
trix K. We could of course assume any arbitrary distribution; most other settings,
however, result in inference problems that are rather expensive to compute. Fur-
thermore, as Theorem 16.9 will show, there exists a large class of assumptions on
the distribution of f (xi) that have a normal distribution as their limit.

We begin with two observations, f (x1) and f (x2), for which we assume zero



16.3 Gaussian Processes 481

mean (0 0) and covariance K
1 3 4

3 4 3 4
. Figure 16.3 shows the corre-

sponding density of the random variables f (x1) and f (x2). Now assume that we
observe f (x1). This gives us further information about f (x2), which allows us to
state the conditional density3

p( f (x2) f (x1))
p( f (x1) f (x2))

p( f (x1))
(16.33)

Once the conditional density is known, the mean of f (x2) need no longer be 0,
and the variance of f (x2) is decreased. In the example above, the latter becomes 3

16
instead of 3

4 — we have performed inference from the observation f (x1) to obtain
possible values of f (x2).

In a similar fashion, we may infer the distribution of f (xi) based on more
than two variables, provided we know the corresponding mean and covariance
matrix K. This means that K determines how closely the prediction relates to the
previous observations f (xi). In the following section, we formalize the concepts
presented here and show how such matrices K can be generated efficiently.

16.3.2 Definitions and Basic Notions

Assume we are given a distribution over observations ti at the points x1 xm.
Rather than directly specifying that the observations ti are generated from an
underlying functional dependency, we simply assume that they are generated by
a Gaussian Process.4 Loosely speaking, Gaussian processes allow us to extend the
notion of a set of random variables to random functions. More formally, we have
the following definition:

Definition 16.3 (Gaussian Process) Denote by t(x) a stochastic process parametrized
by x ( is an arbitrary index set). Then t(x) is a Gaussian process if for any m
and x1 xm , the random variables (t(x1) t(xm)) are normally distributed.

We denote by k(x x ) the function generating the covariance matrix

K : cov t(x1) t(xm) (16.34)

and by the mean of the distribution. We also write Ki j k(xi x j). This leads toCovariance
Function

(t(x1) t(xm)) ( K) where m (16.35)

3. A convenient trick to obtain p( f (x2) f (x1)) for normal distributions is to consider
p( f (x1) f (x2)) as a function only of f (x2), while keeping f (x1) fixed at its observed value.
The linear and quadratic terms then completely determine the normal distribution in f (x2).
4. We use ti for the random variables of the Gaussian process, since they are not the labels
or target values yi that we observe at locations xi. Instead, ti are corrupted by noise i to
yield the observed random variables yi.
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Figure 16.3 Normal distribution with two variables. Top left: normal density
p( f (x1) f (x2)) with zero mean and covariance K; Top right: contour plot of p( f (x1) f (x2));
Bottom left: Conditional density of f (x2) when f (x1) 1; Bottom left: Conditional density
of f (x2) when f (x1) 2. Note that in the last two plots, f (x2) is normally distributed, but
with nonzero mean.

Remark 16.4 (Gaussian Processes and Positive Definite Matrices) The function
k(x x ) is well defined, symmetric, and the matrix K is positive definite (cf. Definition 2.4).

Proof We first show that k(x x ) is well defined. By definition,

cov t(x1) t(xm) i j cov t(xi) t(x j) (16.36)

Consequently, Ki j is only a function of two arguments (xi and x j), which shows that
k(x x ) is well defined.Gaussian

Processes and
Mercer Kernels

It follows directly from the definition of the covariance that k is symmetric.
Finally, to show that K is positive definite, we have to prove for any m that
the inequality K 0 holds. This follows from

0 Var
m

∑
i 1

it(xi) cov t(xi) t(x j) K (16.37)

Thus K is positive definite and the function k is an admissible kernel.
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Note that even if k happens to be a smooth function (this turns out to be a reason-
able assumption), the actual realizations t(x), as drawn from the Gaussian process,
need not be smooth at all. In fact, they may be even pointwise discontinuous.

Let us have a closer look at the prior distribution resulting from these assump-
tions. The standard setting is 0, which implies that we have no prior knowl-
edge about the particular value of the estimate, but assume that small values are
preferred. Then, for a given set of (t(x1) t(xm)) : t, the prior density function
p(t) is given by

p(t) (2 )
m
2 (det K)

1
2 exp

1
2

t K 1t (16.38)

In most cases, we try to avoid inverting K. By a simple substitution,

t K (16.39)

we have (0 K 1), and consequentlyRKHS
Regularization

p( ) (2 )
m
2 (det K)

1
2 exp

1
2

K (16.40)

Taking logs, we see that this term is identical to Ω[ f ] from the regularization
framework (4.80). This result thus connects Gaussian process priors and estimators
using the Reproducing Kernel Hilbert Space framework: Kernels favoring smooth
functions, as described in Chapters 2, 4, 11, and 13, translate immediately into
covariance kernels with similar properties in a Bayesian context.

16.3.3 Simple Hypotheses

Let us analyze in more detail which functions are considered simple by a Gaussian
process prior. As we know, hypotheses of low complexity correspond to vectors
y for which y K 1y is small. This is in particular the case for the (normalized)
eigenvectors vi of K with large eigenvalues i, since

Kvi ivi yields vi K 1vi
1

i (16.41)

In other words, the estimator is biased towards solutions with small 1
i . This

means that the spectrum and eigensystem of K represent a practical means of
actually viewing the effect a certain prior has on the degree of smoothness of the
estimates.

Let us consider a practical example: For a Gaussian covariance kernel (see also
(2.68)),

k(x x ) exp
x x 2

2 2 (16.42)

where 1, and under the assumption of a uniform distribution on [ 5 5], we
obtain the functions depicted in Figure 16.4 as simple base hypotheses for our
estimator. Note the similarity to a Fourier decomposition: This means that the
kernel has a strong preference for slowly oscillating functions.
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Figure 16.4 Hypotheses corresponding to the first eigenvectors of a Gaussian kernel of
width 1 over a uniform distribution on the interval [ 5 5]. From top to bottom and from
left to right: The functions corresponding to the first eight eigenvectors of K. Lower right:
the first 20 eigenvalues of K. Note that most of the information about K is contained in the
first 10 eigenvalues. The plots were obtained by computing K for an equidistant grid of
200 points on [ 5 5]. We then computed the eigenvectors e of K, and plotted them as the
corresponding function values (this is possible since for e we have K ).

16.3.4 Regression

Let us put the previous discussion to practical use. For the sake of simplicity, we
begin with regression (we analyze classification in Section 16.3.5). For regression
estimation, we usually assume additive noise on top of the process generating
t(xi); that is, rather than observing t(xi) directly, we observe t(xi) corrupted by
noise,

yi : t(xi) i and thus i yi t(xi) (16.43)

where i are independent random variables with zero mean. In order to keepAdditive Noise
our notation simple, however, we assume that all i are drawn from the same
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distribution5, p( ). This allows us to state the likelihood p(y t(x)) as

p(yi t(xi)) p(yi t(xi)) (16.44)

In other words, we eliminate the random variable i via (16.43). The posterior
distribution is then given by

p(t y) p(y t)p(t) (16.45)

∏
i

p(yi t(xi))
1

(2 )m det K
exp

1
2

t K 1t

To perform inference, we have to specify the distribution connecting t and y. We
could use any possible distribution, such as those in Table 3.1.

A popular choice in Gaussian Process regression is to assume additive normal
noise, i (0 ). This has several advantages. First, all the distributions involved
in the process of inference remain normal, which allows us to compute exact so-
lutions. Second, as we will show below, we may find the mode of the distribution
by a simple matrix inversion. After substituting t K , taking logarithms, and
ignoring terms independent of , we obtain

ln p( y)
1

2 2 y K 2 1
2

K c (16.46)

This is clearly a normal distribution, thus the mode and mean coincide, and the
MAP approximation (16.22) becomes exact. The latter is obtained by maximizing
(16.46) for , which yields

(K 21) 1y (16.47)

Knowing allows us to predict y at a new location x. The Bayesian reasoning,
however, also allows us to associate a level of confidence with the estimate. For
normal distributions it suffices to know the variance.

One way to obtain this information is to write (16.45) for an m 1 dimensional
system where ym 1 is unknown and compute the variance of ym 1. There exists a
more elegant way of obtaining the variance Var ym 1 for additive Gaussian noise,
however. Since y is a sum of two Gaussian random variables, its covariance is
given by (K 21), and thusConditioning on

observed y
p(y ym 1) (16.48)

exp
1
2

y

ym 1

K 21 k

k k(xm 1 xm 1) 2

1
y

ym 1

Here K is an m m matrix and k [k(x1 xm 1) k(xm xm 1)]. Since we already
know y, we can obtain the variance of ym 1 in p(y y) by computing the lower right

5. This assumption is made for computational convenience only. We would otherwise have
to consider different pi( i) for 1 i m. The likelihood still factorizes in this case, but the
observations can no longer be treated equally.
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entry of the square matrix in (16.48). We can check (see for instance [337]) that this
is given by

Var ym 1 k(xm 1 xm 1) 2 k (K 21) 1k (16.49)

From (16.49) and (16.47), we conclude that y(x m 1) is normally distributed with

y(xm 1) (K(K 21) 1y k(xm 1 xm 1) 2 k (K 21) 1k) (16.50)

In most other cases, such as for round-off noise, Laplacian noise, etc. , an exact
solution for the posterior probability is not possible, and we have to make do with
approximations. While we do not discuss this subject further in the current section
(see [486] for more detail), we return to the issue of approximating a posterior
distribution in Sections 16.5 and 16.6, where the form of the prior distribution
makes an exact computation of p( f X Y) difficult.

16.3.5 Classification

For the sake of simplicity we limit ourselves to the case of two classes; that
is, to binary classification (see for instance [486, 600] for details on multi-class
discrimination). Rather than attempting to predict the labels yi 1 directly,
we use logistic regression. Hence we try to model the conditional probabilities
P(y 1 x) and P(y 1 x) alike. A popular choice is to posit a functional form for
the link between f (x) and y, such as (16.3), (16.5), or (16.7).

Matters are slightly easier for classification than for regression: provided we are
able to find a hypothesis f (or a distribution over such hypotheses), we immediately
know the confidence of the estimate. Thus, P(y 1 x) not only tells us whether
the estimator classifies x as 1 or 1, but also the probability of obtaining these
labels. Therefore, calculations regarding the variation of f are not as important as
they were in Section 16.3.4 (16.49).

Let us proceed with a formal statement of a Gaussian process classification
model. The posterior density is given by

p( f Z) p(Y X t) (16.51)
m

∏
i 1

p(yi t(xi)) exp
1
2

t K 1t (16.52)

where t : (t(x1) t(xm)). With the transformation t K , and thus

t(x)
m

∑
j 1

jk(x j x) (16.53)

the negative logarithm of the posterior density becomesLog-Posterior

ln p( f X Y)
m

∑
i 1

ln p(yi t(xi))
1
2

K (16.54)

If we adopt the MAP (maximum a posterior) methodology of Section 16.2.1,
inference is carried out by searching the mode of the density p( f X Y). Therefore,
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the estimation problem can be reduced to a nonlinear function minimization
problem, as in the regression case 16.3.4. We give examples of such techniques
in Section 16.4.

16.3.6 Adjusting Hyperparameters for Gaussian Processes

More often than not, we will not know beforehand the exact amount of additive
noise, or the specific form of the covariance kernel. To address this problem, the
hyperparameter formalism of Section 16.1.4 is needed. To avoid technicalities, we
only discuss the application of the MAP2 estimate (16.24) for the special case of
regression with additive Gaussian noise, and refer the reader to [600, 193, 151, 426]
and the references therein for integration methods based on Markov Chain Monte
Carlo approximations (see also [486] for a more recent overview).

We denote by the set of hyperparameters we would like to adjust. In more
compact notation, (16.48) becomes (now conditioned on )

p(y )
1

(2 )m det(K 21)
exp

1
2

y (K 2) 1y (16.55)

where K are functions of . In other words, (16.55) tells us how likely it is that
we observe y, if we know .

Recall that the basic idea of the MAP2 estimate (16.24) is to maximize p( y)
by maximizing p(y )p( ). In practice, this is achieved by gradient ascent (see
Section 6.2.2) or second order methods (see Section 6.2.1 for Newton’s method)
on p(y )p( ). Both cases require information about the gradient of (16.55) with
respect to . We give an explicit expression for the gradient below.

Since the logarithm is monotonic, we can equivalently minimize the negative
log posterior, ln p(y )p( ). With the shorthand Q : K 21, we obtainGradient wrt.

Hyperparame-
ters ln p(y )p( )

1
2

(ln det Q)
1
2

y Q 1y ln p( ) (16.56)

1
2

tr Q 1 Q
1
2

y Q 1 ( Q) Q 1y ln p( ) (16.57)

Here (16.57) follows from (16.56) via standard matrix algebra [337]. Likewise, we
could compute the Hessian of ln p(y )p( ) with respect to and use a second
order optimization method.6

If we assume a flat hyperprior (p( ) const ), optimization over simplyFlat Hyperprior
becomes gradient descent in ln p(y ); in other words, the term depending
on p( ) vanishes. Computing (16.57) is still very expensive numerically since it
involves the inversion of Q, which is an m m matrix.

There exist numerous techniques, such as sparse greedy approximation meth-

6. This is rather technical, and the reader is encouraged to consult the literature for further
detail [339, 426, 383, 197].
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ods, to alleviate this problem. We present a selection of these techniques in the
following section. Further detail on the topic of hyperparameter optimization can
be found in Section 16.6, where hyperparameters play a crucial role in determining
the sparsity of an estimate.

16.4 Implementation of Gaussian Processes

In this section, we discuss various methods to perform inference in the case
of Gaussian process classification or regression. We begin with a general pur-
pose technique, the Laplace approximation, which is essentially an application of
Newton’s method (Section 6.2.1) to the problem of minimizing the negative log-
posterior density. Since it is a second order method, it is applicable as long as the
log-densities have second order derivatives. Readers interested only in the basic
ideas of Gaussian process estimation may skip the present section.

For classification with the logistic transfer function we present a variational
method (Section 16.4.2), due to Jaakkola and Jordan [260], and Gibbs and MacKay
[197, 198], a linear system of equations for optimization purposes.

Finally, the special case of regression in the presence of normal noise admits
very efficient optimization algorithms based on the approximate minimization of
quadratic forms (Section 16.4.3). We subsequently discuss the scaling behavior and
approximation bounds for these algorithms.

16.4.1 Laplace Approximation

In general the negative log posterior (16.54), which is minimized to obtain the
MAP estimate, is not quadratic, hence the minimum cannot be found analytically
(compare with (16.47), where the minimizer can be stated explicitly). A possible
solution is to make successive quadratic approximations of the negative log poste-
rior, and minimize the latter iteratively. This strategy is referred to as the Laplace
approximation7 [525, 600, 486]; the Newton-Raphson method, in numerical analy-
sis (see [530, 423]); or the Fisher scoring method, in statistics.

A necessary condition for the minimum of a differentiable function g is that its
first derivative be 0. For convex functions, this requirement is also sufficient. We
approximate g linearly by

g (x Δx) g (x) Δxg (x) and hence Δx
g (x)
g (x)

(16.58)

7. Strictly speaking, the Laplace approximation refers only to the fact that we approximate
the mode of the posterior by a Gaussian distribution. We already use the Gaussian approxi-
mation in the second order method, however, in order to maximize the posterior. Hence, for
all practical purposes, the two approximations just represent two different points of view
on the same subject.
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Substituting ln p( f X Y) into (16.58) and using the definitionsTaylor Expansion

c : t(x1) ln p(y1 t(x1)) t(xm) ln p(ym t(xm)) (16.59)

C : diag 2
t(x1) ln p(y1 t(x1)) 2

t(xm) ln p(ym t(xm)) (16.60)

we obtain the following update rule for (see also Problem 16.12),

new (KC 1) 1(KC old c) (16.61)

While (16.61) is usually an efficient way of finding a maximizer of the log posterior,
it is far from clear that this update rule is always convergent (to prove the latter, we
would need to show that the initial guess of lies within the radius of attraction;
see Problem 16.11). Nonetheless, this approximation turns out to work in practice,
and the implementation of the update rule is relatively simple.

The major stumbling block if we want to apply (16.61) to large problems is
that the update rule requires the inversion of an m m matrix. This is costly,
and effectively precludes efficient exact solutions for problems of size 5000 and
beyond, due to memory and computational requirements. If we are able to provide
a low rank approximation of K by

K̃ U KsubU where U n m and Ksub
n n (16.62)

with n m, however, we may compute (16.61) much more efficiently. Prob-
lem 16.15 covers the computation of U given Ksub. It follows immediately from
the Sherman-Woodbury-Morrison formula [207],Sherman

Woodbury
Morrison
Formula

(V RHR ) 1 V 1 V 1R(H 1 R V 1R) 1 R V 1 (16.63)

that we obtain the following update rule for K̃,

new 1 U K 1
sub UCU

1
UC (U KsubUC old c) (16.64)

In particular, the number of operations required to solve (16.61) is O(mn2 n3)
rather than O(m3).

There are several ways to obtain a good approximation of (16.62). One way is to
project k(xi x) on a random subset of dimensions, and express the missing terms
as a linear combination of the resulting sub-matrix (this is the Nyström method
proposed by Seeger and Williams [603]). We might also construct a randomized
sparse greedy algorithm to select the dimensions (see Section 10.2 for more de-
tails), or resort to a positive diagonal pivoting strategy [169].

An approximation of K by its leading principal components, as often done in
machine learning, is usually undesirable, since the computation of the eigensys-
tem would still be costly, and the time required for prediction would still rise with
the number of observations (since we cannot expect the leading eigenvectors of K
to contain a significant number of zero coefficients).
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Figure 16.5 Variational Approximation for 0 5. Note that the quality of the
approximation varies widely, depending on the value of f (x).

16.4.2 Variational Methods

In the case of logistic regression, Jaakkola and Jordan [260] compute upper and
lower bounds on the logistic (1 e t) 1, by exploiting the log-concavity of (3.5):
A convex function can be bounded from below by its tangent at any point, and
from above by a quadratic with sufficiently large curvature (provided the maxi-
mum curvature of the original function is bounded). These bounds are (see also
exercise 16.13)

p(y 1 t)
1

1 e
exp

(t )
2

( )(t2 2) (16.65)

p(y 1 t) exp ( t H( )) (16.66)

where [0 1] and ( ) (1 e ) 1 1 2
2 . Furthermore, H( ) is the binary entropyQuadratic

Approximation function,

H( ) ln (1 ) ln(1 ) (16.67)

Likewise, bounds for p(y 1 t) follow directly from p(y 1 t) 1 p(y 1 t).
Equations (16.66) and (16.65) can be calculated quite easily, since they are linear
or quadratic functions in t. This means that for fixed parameters and , we
can optimize an upper and a lower bound on the log posterior using the same
techniques as in Gaussian process regression (Section 16.3).
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Approximations (16.66) and (16.65) are only tight, however, if are chosen
suitably. Therefore we have to adapt these parameters at every iteration (or after
each exact solution), for instance by gradient descent. See [198, 196] for details. AsValidity of

Approximation in the previous section, we could use the Sherman-Woodbury-Morrison formula
to invert the quadratic terms more efficiently. The implementation is analogous
to the application of this result in the previous section, hence we will not go into
further detail.

16.4.3 Approximate Solutions for Gaussian Process Regression

The approximations of Section 16.4.1 indicate that one of the more efficient ways
of implementing Gaussian process estimation on large amounts of data is to
find a low rank approximation8 of the matrix K. Such an approximation is very
much needed in practice, since (16.45) and (16.51) show that exact solutions of
Gaussian Processes can be hard to come by. Even if is computed beforehand
(see Table 16.1 for the scaling behavior), prediction of the mean at a new location
still requires O(m) operations. In particular, memory requirements are O(m2) to
store K, and CPU time for matrix inversions, as are typically required for second
order methods, scales with O(m3).

Let us limit ourselves to an approximation of the MAP solution. One of the crite-
ria to impose is that the posterior probability at the approximate solution be close
to the maximum of the posterior probability. Note that this requirement is different
from the requirement of closeness in the approximation itself, as represented forProximity in

p( f X Y)
Proximity in f

instance by the expansion coefficients (the latter requirement was used by Gibbs
and Mackay [197]). Proximity in the coefficients, however, is not what we want,
since it does not take into account the importance of the individual variables. For
instance, it is not invariant under transformations of scale in the parameters.

For the remainder of the current section, we consider only additive normal
noise. Here, the log posterior takes a quadratic form, given by (16.46). The follow-
ing theorem, which uses an idea from [197], gives a bound on the approximation
quality of minima of quadratic forms and is thus applicable to (16.46).

Theorem 16.5 (Approximation Bounds for Quadratic Forms [503]) Denote by K
m m a symmetric positive definite matrix, y m , and define the two quadratic forms

Q( ) : y K
1
2

( 2K K K) (16.68)

Q ( ) : y
1
2

( 21 K) (16.69)

8. Tresp [546] devised an efficient way of estimating f (x) if the test set is known at the
time of training. He proceeds by projecting the estimators on the subspace spanned by the
functions k(x̃i ), where x̃i are the training data. Likewise, Csató and Opper [128] design
an iterative algorithm that performs gradient descent on partial posterior distributions and
simultaneously projects the estimates onto a subspace.
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Suppose Q and Q have minima Qmin and Qmin. Then for all m we have

Q( ) Qmin
1
2

y 2 2 Q ( ) (16.70)

Q ( ) Qmin
2 1

2
y 2 Q( ) (16.71)

with equalities throughout when Q( ) Qmin and Q ( ) Qmin.

Hence, by minimizing Q in addition to Q, we can bound Q’s closeness to the
optimum and vice versa.

Proof The minimum of Q( ) is obtained for opt (K 21) 1y (which also
minimizes Q ),9 hence

Qmin
1
2

y K(K 21) 1y and Qmin
1
2

y (K 21) 1y (16.72)

This allows us to combine Qmin and Qmin to Qmin
2 Qmin

1
2 y 2. Since by

definition Q( ) Qmin for all (and likewise Q ( ) Qmin for all ), we may
solve Qmin

2Qmin for either Q or Q to obtain lower bounds for each of the two
quantities. This proves (16.70) and (16.71).

Equation (16.70) is useful for computing an approximation to the MAP solution
(the objective function is identical to Q( ), ignoring constant terms independent
of ), whereas (16.71) can be used to obtain error bars on the estimate. To see this,
note that in calculating the variance (16.49), the expensive quantity to compute is

k (K 21) 1k. This can be found as

k (K 21) 1k 2 min
m

k 1
2

21 K (16.73)

however. A close look reveals that the expression inside the parentheses is Q ( )
with y k (see (16.69)). Consequently, an approximate minimizer of (16.73) gives
an upper bound on the error bars, and lower bounds can be obtained from (16.71).
In practice, we use the relative discrepancy between the upper and lower bounds,

Relative Gap Size
between Upper
and Lower
Bound

gap( ) :
2(Q( ) 2 Q ( ) 1

2 y 2)
Q( ) 2Q ( ) 1

2 y 2
(16.74)

to determine how much further the approximation has to proceed.

16.4.4 Solutions on Subspaces

The central idea of the algorithm below is that improvements in speed can be
achieved by a reduction in the number of free variables. Denote by P m n with
m n and m n an extension matrix (in other words, P is a projection), with

9. If K does not have full rank, Q( ) still attains its minimum value for opt. There will
then be additional that minimize Q( ), however.
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Table 16.1 Computational Cost of Various Optimization Methods. Note that n m, and
that different values of n are used in Conjugate Gradient, Sparse Decomposition, and
Sparse Greedy Approximation methods: nCG nSD nSGA, since the search spaces are
progressively more restricted. Near-optimal results are obtained when 60.

Exact Conjugate Sparse Sparse Greedy
Solution Gradient [197] Decomposition Approximation

Memory O(m2) O(m2) O(nm) O(nm)
Initialization O(m3) O(nm2) O(n2m) O( n2m)
(= Training)
Prediction:
Mean O(m) O(m) O(n) O(n)
Error Bars O(m2) O(nm2) O(n2m) or O(n2) O( n2m) or O(n2)

P P 1. We make the ansatz

P : P where n (16.75)

and find solutions such that Q( P) (or Q ( P)) is minimized. The solution isRestricted
Solution

opt P 2K K K P
1

P K y (16.76)

If P is of rank m, this is also the solution of (16.46) (the minimum negative log
posterior for all m ). In all other cases, however, it is an approximation.

For a given P m n , let us analyze the computational cost involved in comput-
ing (16.76). We need O(nm) operations to evaluate P Ky, O(n2m) operations for
(KP) (KP), and O(n3) operations for the inversion of an n n matrix. This brings
the total cost to O(n2m). Predictions require k , which entails O(n) operations.
Likewise, we may use P to minimize Q (P ), which is needed to upper-bound
the log posterior. The latter costs no more than O(n3).

To compute the posterior variance, we have to approximately minimize (16.73),
which can done for P at cost O(n3) . If we compute (PKP ) 1 beforehand,
the cost becomes O(n2), and likewise for upper bounds. In addition to this, weApproximation

of Posterior
Variance

have to minimize k KP 1
2 P ( 2K K K)P , which again costs O(n2m)

(once the inverse matrices have been computed, however, we may also use them to
compute error bars at different locations, thus limiting the cost to O(n2)). Accurate
lower bounds on the error bars are not especially crucial, since a bad estimate leads
at worst to overly conservative confidence intervals, and has no further negative
effect. Finally, note that we need only compute and store KP — that is, the m n
sub-matrix of K — and not K itself. Table 16.1 summarizes the scaling behavior of
several optimization algorithms.

This leads us to the question of how to choose P for optimum efficiency. Possi-Choosing P
bilities include using the principal components of K [602], performing conjugate
gradient descent to minimize Q [197], performing symmetric diagonal pivoting
[169], or applying a sparse greedy approximation to K directly [513]. Yet these
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methods have the disadvantage that they either do not take the specific form of
y into account [602, 513, 169], or lead to expansions that cost O(m) for prediction,
and require computation and storage of the full matrix [602, 197].

By contrast to these methods, we use a data adaptive version of a sparse greedy
approximation algorithm. We may then only consider matrices P that are a collec-
tion of unit vectors ei (here (ei) j i j), since these only select a number of rows of
K equal to the rank of P. The details follow the algorithmic template described in
Section 6.5.3.

First, for n 1, we choose P ei such that Q(P ) is minimal. In this case we
could permit ourselves to consider all possible indices i 1 m and find the
best one by trying all of them.Greedy Selection

Strategy Next, assume that we found a good solution P , where P contains n columns.
In order to improve this solution, we expand P into the matrix Pnew : [Pold ei]

m (n 1) and seek the best ei such that Pnew minimizes min Q(Pnew ).

Note that this method is very similar to Matching Pursuit [342] and to iterative
reduced set Support Vector algorithms (see Section 18.5 and [474]), with the differ-
ence that the target to be approximated (the full solution ) is only given implicitly
via Q( ).

Recently Zhang [613] proved lower bounds on the rate of sparse approximation
schemes. In particular, he shows that most subspace projection algorithms enjoy
at least an O(n 1) rate of convergence. See also [614] for details on further greedy
approximation methods.

16.4.5 Implementation Issues

Performing a full search over all possible n 1 of m indices is excessively costly.
Even a full search over all m n remaining indices to select the next basis function
can be prohibitively expensive. Here Theorem 6.33 comes to our aid — it states that
with high probability, a small subset of size 59, chosen at random, guarantees
near optimal performance. Hence, if we are satisfied with finding a relatively good
index rather than the best index, we may resort to selecting only a random subset.Random Subset

Selection It is now crucial to obtain the values of Q(P opt) cheaply (with P [Pold ei]),
assuming that we found Pold previously. From (16.76) we can see that we need
only do a rank-1 update on the inverse. We now show that this can be obtainedRank-1 update
in O(mn) operations, provided the inverse of the smaller subsystem is known.
Expressing the relevant terms using Pold and ki, we obtain

P K y [Pold ei] K y (PoldK y ki y) (16.77)

P K K 2K P
Pold K K 2K Pold Pold K 21 ki

ki (K 21)Pold ki ki
2Kii

(16.78)



16.4 Implementation of Gaussian Processes 495

Algorithm 16.1 Sparse Greedy Quadratic Minimization.

Require: Training data X x1 xm , Targets y, Noise 2, Precision , corresponding
quadratic forms Q and Q .
Initialize index sets I I 1 m ; S S .
repeat

Choose M I, M I .
Find argmin i M Q [P ei] opt , arg mini M Q [P ei ] opt .
Move i from I to S, i from I to S .
Set P : [P ei], P : [P ei ].

until Q(P opt) 2Q (P opt)
1
2 y 2

2 ( Q(P opt) 2Q (P opt)
1
2 y 2

Output: Set of indices S, opt, (P KP) 1, and (P (K K 2K)P) 1.

Thus computation of the terms costs only O(nm) once we know Pold. Further-
more, we can write the inverse of a strictly positive definite matrix as

A B

B C

1
A 1 (A 1B) (A 1B) (A 1B)

( (A 1B))
(16.79)

where : (C B A 1B) 1. Hence, inversion of P K K 2K P costs only
O(n2). Thus, to find the matrix P of size m n takes O( n2m) time. For the error
bars, (P KP) 1 is generally a good starting value for the minimization of (16.73),
so the typical cost for (16.73) is O( mn) for some n, rather than O(mn2).

If additional numerical stability is required, we might want to replace (16.79) by
a rank-1 update rule for Cholesky decompositions of the corresponding positiveStability
definite matrix. Furthermore, we may want to add the kernel function chosen by
positive diagonal pivoting [169] to the selected subset, in order to ensure that the
n n submatrix remains invertible. See numerical mathematics textbooks, such as
[247], for more detail on update rules.

16.4.6 Hardness and Approximation Results

It is worthwhile to study the theoretical guarantees on the performance of the
algorithm (as described in Algorithm 16.1). It turns out that our technique closely
resembles a Sparse Linear Approximation problem studied by Natarajan [381]:

Given A m n , b m , and 0, find x n with minimal number of nonzero
entries such that Ax b 2 . If we define

A 2K K K
1
2

and b : A 1Ky (16.80)

we may write

Q( )
1
2

b A 2 c (16.81)

where c is a constant independent of . Thus the problem of sparse approximate
minimization of Q( ) is a special case of Natarajan’s problem (where the matrix
A is square, and strictly positive definite). In addition, the algorithm considered
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in [381] involves sequentially choosing columns of A to maximally decrease AxSparse Solution
of Linear
Systems

b . This is equivalent to the algorithm described above and we may apply the
following result to our sparse greedy Gaussian process algorithm.

Theorem 16.6 (Natarajan, 1995 [381]) A sparse greedy algorithm to approximately
solve the problem

minimize y Ax (16.82)

needs at most

n 18n ( ) A 2
2 ln

y
2

(16.83)

non-zero components, where n ( ) is the minimum number of nonzero components in
vectors for which y Ax , and A is the matrix obtained from A by normalizing
its columns to unit length.

Corollary 16.7 (Approximation Rate for Gaussian Processes) Algorithm 16.1 sat-
isfies Q( ) Q( opt) 2 when has

n
18n ( )

2 ln
A 1Ky

2
(16.84)

non-zero components, where n ( ) is the minimum number of nonzero components in
vectors for which Q( ) Q( opt) 2, A ( 2K K K)1 2, and is the smallest
magnitude of the singular values of A, the matrix obtained by normalizing the columns of
A.

Moreover, we can also show NP-hardness of sparse approximation of Gaussian
process regression. The following theorem holds:

Theorem 16.8 (NP-Hardness of Approximate GP Regression) There exist kernels
K and labels y such that the problem of finding the minimal set of indices to minimize a
corresponding quadratic function Q( ) with precision is NP-hard.

Proof We use the hardness result [381, Theorem 1] for Natarajan’s quadratic
approximation problem in terms of A and b. More specifically, we have to proceed
in the opposite direction to (16.80) and (16.81) and show that for every A and b,
there exist K and y for an equivalent optimization problem.

Since Ax b 2 x (A A)x 2(b A)x b 2, the value of A enters only via
A A, which means that we have to find K in (16.68) such that

A A K K 2 K (16.85)

We can check that it is possible to find a suitable positive definite K for any A,
by using identical eigensystems for A A and K, and subsequently solving the
equations ai

2
i

2
i for the respective eigenvalues ai and i of A A and K.

Furthermore, we have to satisfy

y K bA (16.86)
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Figure 16.6 Speed of Convergence. We plot the size of the gap between upper and lower
bound of the log posterior (gap( )), for the first 4000 samples from the Abalone dataset
( 2 0 1 and 2 2 10). From top to bottom: Subsets of size 1, 2, 5, 10, 20, 50, 100, 200. The
results were averaged over 10 runs. The relative variance of the gap size is less than 10%.
We can see that subsets of size 50 and above ensure rapid convergence.

To see this, recall that bA is a linear combination of the nonzero eigenvectors of
A A; and since K has the same rank and image as A A, the vector bA can also
be represented by y K. Thus for every A b there exists an equivalent Q, which
proves NP-hardness by reduction.

This shows that the sparse greedy algorithm is an efficient approximate solution
of an NP-hard problem.

16.4.7 Experimental Evidence

We conclude this section with a brief experimental demonstration of the efficiency
of sparse greedy approximation methods, using the Abalone dataset. Specifically,
we used Gaussian covariance kernels, and we split the data into 4000 training and
177 test examples to assess training speed (to assess generalization performance, a
3000 training and 1177 test set split was used).
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Table 16.2 Performance of sparse greedy approximation vs. explicit solution of the full
learning problem. In these experiments, the Abalone dataset was split into 3000 training
and 1177 test samples. To obtain more reliable estimates, the algorithm was run over 10
random splits of the whole dataset.

Generalization Error Log Posterior
Optimal Solution 1 782 0 33 1 571 105(1 0 005)
Sparse Greedy Approximation 1 785 0 32 1 572 105(1 0 005)

Table 16.3 Number of basis functions needed to minimize the log posterior on the
Abalone dataset (4000 training samples), for various kernel widths . Also given is the
number of basis functions required to approximate k (K 21) 1k, which is needed to
compute the error bars. Results were averaged over the 177 test samples.

Kernel width 1 2 5 10 20 50
Kernels for log-posterior 373 287 255 257 251 270
Kernels for error bars 79 61 49 43 26 27 17 16 12 9 8 5

For the optimal parameters (2 2 0 1 and 2 2 10, chosen after [513]), the
average test error of the sparse greedy approximation trained until gap( )
0 025 is indistinguishable from the corresponding error obtained by an exact so-Precision

Requirements lution of the full system. The same applies for the log posterior. See Table 16.2 for
details. Consequently for all practical purposes, full inversion of the covariance
matrix and the sparse greedy approximation have comparable generalization per-
formance.

A more important quantity in practice is the number basis functions needed to
minimize the log posterior to a sufficiently high precision. Table 16.3 shows this
number for a precision of gap( ) 0 025, and its variation as a function of the
kernel width ; the latter dependency is observed since the number of kernels
determines time and memory needed for prediction and training. In all cases,
less than 10% of the kernel functions suffice to find a good minimizer of the log
posterior; less than 2% are sufficient to compute the error bars. This is a significant
improvement over a direct minimization approach.

A similar result can be obtained on larger datasets. To illustrate, we generated
a synthetic data set of size 10.000 in 20 by adding normal noise with variance

2 0 1 to a function consisting of 200 randomly chosen Gaussians of width
2 2 40 and with normally distributed expansion coefficients and centers.

To avoid trivial sparse expansions, we deliberately used an inadequate Gaussian
process prior (but correct noise level) consisting of Gaussians with width 2 2

10. After 500 iterations (thus, after using 5% of all basis functions), the size of
gap( ) was less than 0 023. This demonstrates the feasibility of the sparse
greedy approach on larger datasets.
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16.5 Laplacian Processes

All the prior distributions considered so far are data independent priors; in other
words, p( f ) does not depend on X at all. This may not always be the most desirable
choice, thus we now consider data dependent priors distributions, p( f X). This goes
slightly beyond the commonly used concepts in Bayesian estimation.

Before we go into the technical details, let us give some motivation as to why
the complexity of an estimate can depend on the locations where data occurs, since
we are effectively updating our prior assumptions about f after observing the data
placement. Note that we do not modify our prior assumptions based on the targets
yi, but rather as a result of the distribution of patterns xi: Different input distribu-
tion densities might for instance correspond to different assumptions regarding
the smoothness of the function class to be estimated. For example, it might be
be advisable to favor smooth functions in areas where data are scarce, and allow
more complicated functions where observations abound. We might not care about
smoothness at all in regions where there is little or no chance of patterns occurring:
In the problem of handwritten digit recognition, we do not (and should not) care
about the behavior of the estimator on inputs x looking like faces.

Finally, we might assume a specific distribution of the coefficients of a function
via a data-dependent function expansion; in other words, an expansion of f into
the span of Φ : 1 M , where i are functions of the observed data X and
of x. We focus henceforth on the case where M m and i(x) : k(xi x).

The specific benefit of this strategy is that it provides us with a correspondence
between linear programming regularization (Section 4.9.2) and weight decay reg-
ularizers (Section 4.9.1), and Bayesian priors over function spaces, by analogy to
regularization in Reproducing Kernel Hilbert Spaces and Gaussian Processes.10

16.5.1 Data Dependent Priors

Recall the reasoning of Section 16.1.3. We obtained (16.11) under the assumption
that X and f are independent random variables. In the following, we repeat the
derivation without this restriction, and obtain

p(Y f X)p( f X) p(Y f X) (16.87)

and likewise,

p( f Y X)p(Y X) p(Y f X) (16.88)

Combining these two equations provides us with a modified version of Bayes’
rule, which after solving for p( f Y X), reads

p(Y f X)p( f X) p( f X Y)p(Y X) (16.89)

10. We thank Carl Magnus Rasmussen for discussions and suggestions.
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and thus,

p( f X Y)
p(Y f X)p( f X)

p(Y X)
(16.90)

Since p(Y X) is independent of f , we may treat p(Y X) as a mere normalization
factor, and focus on p(Y f X)p( f X) for inference purposes. Let us now study a
specific class of such priors, which are best formulated in coefficient space. We
have

p( f X)
1

exp
m

∑
i 1

( i) where f (x)
m

∑
i 1

ik(xi x) (16.91)

Prior on
Coefficients Here is the corresponding normalization term and xi X. Examples of priors

that depend on the locations xi include
Coding of
Coefficients ( ) 1 ep with p 0 (feature selection prior), (16.92)

( ) 2 (weight decay prior), (16.93)

( ) (Laplacian prior). (16.94)

The prior given by (16.92) was introduced in [70, 187] and is concave. While the
latter characteristic is unfavorable in general, since the corresponding optimiza-
tion problem exhibits many local minima, the regularized risk functional becomes
strictly concave if we choose linear loss functions (such as the L1 loss or the soft
margin). According to Theorem 6.12, this means that the optimum occurs at one
of the extreme points, which makes optimization more feasible.

Eq. (16.93) describes the popular weight decay prior used in Bayesian Neural Net-
works [338, 382, 383]. It assumes that the coefficients are independently normally
distributed. We relax the assumption of a common normal distribution in Sec-
tion 16.6 and introduce individual (hyper)parameters si. The resulting prior,Relevance Vector

Machines Prior

p( f X s) (2 )
m
2

m

∏
i 1

si

1
2

exp
1
2

m

∑
i 1

si
2
i (16.95)

leads to the construction of the Relevance Vector Machine [539] and very sparse
function expansions.

Finally, the assumption underlying the Laplacian prior (16.94) is that only very
few basis functions will be nonzero. The specific form of the prior is why we will
call such estimators Laplacian Processes. This prior has two significant advantages
over (16.92): It leads to convex optimization problems, and the integral p( )d isSparse Coding
finite and thus allows normalization (this is not the case for (16.92), which is why
we call the latter an improper prior).

The Laplacian prior corresponds to the regularization functional employed in
sparse coding approaches, such as wavelet dictionaries [104], coding of natural
images [389], independent component analysis [327], and linear programming
regression [502, 517].
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In the following, we focus on (16.94). It is straightforward to see that the MAP
estimate can be obtained by minimizing the negative log posterior, which is given
(up to constant terms) by

m

∑
i 1

ln p(yi f (xi) xi)
m

∑
i 1

i (16.96)

Laplacian Prior
Depending on ln p(yi f (xi) xi), we may formulate (16.96) as a linear or quadratic
program.

16.5.2 Samples from the Prior

In order to illustrate our reasoning, and to show that such priors correspond
to useful classes of functions, we generate samples from the prior distribution.
As in Gaussian processes, smooth kernels k correspond to smooth priors. This
is not surprising: As we show in the next section (Theorem 16.9), there exists a
corresponding Gaussian process for every kernel k and every distribution p(x).

The obvious advantage, however, is that we do not have to worry about Mer-
cer’s condition for k but can take any arbitrary function k(x x ) to generate a Lapla-
cian process. We draw samples from the following three kernels,

k(x x ) e
x x 2

2 2 Gaussian RBF kernel, (16.97)

k(x x ) e
x x

Laplacian RBF kernel, (16.98)

k(x x ) tanh( x x ) Neural Networks kernel. (16.99)

While (16.97) and (16.98) are also valid kernels for Gaussian Process estimation,Wide Class of
Kernels (16.99) does not satisfy Mercer’s condition (see Section 4.6 for details) and thus

cannot be used in Gaussian processes11. Figure 16.7 gives sample realizations from
the corresponding process. The use of (16.99) is impossible for GP priors, unless
we diagonalize the matrix K explicitly and render it positive definite by replacing

i with i . This is a very costly procedure (see also [480, 210]) as it involves
computing the eigensystem of K.

16.5.3 Prediction

Since one of the aims of using a Laplacian prior on the coefficients i is to achieve
sparsity of the expansion, it does not appear sensible to use a Bayesian averaging
scheme (as in Section 16.1.3) to compute the mean of the posterior distribution,
since such a scheme leads to mostly nonzero coefficients. Instead we seek to obtain
the mode of the distribution (the MAP estimate), as described in Section 16.2.1.MAP

Approximation

11. The covariance matrix K has to be positive definite at all times. An analogous applica-
tion of the theory of conditionally positive definite kernels would be possible as well, as
pointed out in Section 2.4. We would simply assume a Gaussian Process prior on a linear
subspace of the yi.
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Figure 16.7 Left Column: Grayscale plots of the realizations of several Laplacian Pro-
cesses. The black dots represent data points. Right Column: 3D plots of the same samples of
the process. We used 400 data points sampled at random from [0 1]2 using a uniform distri-
bution. Top to bottom: Gaussian kernel (16.97) ( 2 0 1), Laplacian kernel (16.98) ( 0 1),
and Neural Networks kernel (16.99) ( 10 1). Note that the Laplacian kernel is sig-
nificantly less smooth than the Gaussian kernel, as with a Gaussian Process with Laplacian
kernels. Moreover, observe that the Neural Networks kernel corresponds to a nonstationary
process; that is, its covariance properties are not translation invariant.
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Unlike in Gaussian Process regression, this does not give an exact solution of
the problem of finding the mean, since mode and mean do not coincide for Lapla-
cian regularization (recall Figure 16.2). Nonetheless, the MAP estimate is compu-
tationally attractive, since if both ln p( i) and ( i) are convex, the optimization
problem has a unique minimum.

The method closely follows our reasoning in the case of Gaussian Processes.
Recall that the posterior probability of a hypothesis (16.23) is proportional to

p( f X Y) p(Y f X)p( f X) (16.100)
m

∏
i 1

p(yi f (xi)) p( f X) (16.101)

m

∏
i 1

p yi

m

∑
j 1

jk(x j xi) e ( i) (16.102)

To obtain (16.101), we exploit the deterministic dependency ti f (xi). The latter
allows us to state p(Y f X) explicitly by integrating out the random variables

i yi ti.12 To carry out inference we write the problem of finding the MAP
estimate of (16.100) as an optimization problem and obtainConstrained

Optimization
Problem minimize

m

∑
i 1

ln p( i)
m

∑
i 1

( i)

subject to K y
(16.103)

where m and Ki j k(xi x j) as usual. For p( i) i and ( i) i , this
leads to a linear program (see Section 4.9.2), and the solution can be readily used as
a MAP estimate for Laplacian processes (a similar reasoning holds for soft margin
loss functions). Likewise for Gaussian noise, we obtain a quadratic program with a
simple objective function but a dense set of constraints, by analogy to Basis Pursuit
[104]. The derivation is straightforward; see also Problem 16.17 for details.

16.5.4 Confidence Intervals for Gaussian Noise

One of the key advantages of Bayesian modelling is that we can obtain explicit
confidence intervals for the predictions, provided the assumptions made regard-
ing the priors and distribution are satisfied. Even for Gaussian noise, however,
no explicit meaningful expansion using the MAP estimate MAP is possible, since

( i) i is non-differentiable at 0 (otherwise we could make a quadratic ap-
proximation at i 0). Nonetheless, a slight modification permits computation-
ally efficient approximation of such error bounds.Ignoring all

i 0 The modification consists of dropping all variables i for which MAP i 0 from
the expansion (this renders the distribution flatter and thereby overestimates the

12. For the purpose of minimizing (16.100), it is sometimes convenient to keep the i, which
then serve as slack variables in the convex optimization problem.
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error), and replacing all remaining variables by linear approximations (we replace
i by sgn ( MAP i) i).
In other words, we assume that variables with zero coefficients do not influence

the expansion, and that the signs of the remaining variables do not change. This is
a sensible approximation since for large sample sizes, which Laplacian processes
are designed to address, the posterior is strongly peaked around its mode [519].
Thus the contribution of 1 around MAP can be considered to be approximately
linear.Laplace

Approximation
in i 0

Denote by M the vector of nonzero variables, obtained by deleting all entries
where MAP i 0, by s the vector with elements 1 such that MAP 1 s M,
and by KM the matrix generated from K by removing the columns corresponding
to MAP i 0. Then the posterior (now written in terms of for convenience) can
be approximated as

p( M Z) exp
1

2 2

m

∑
i 1

(yi KM M)2 exp s M (16.104)

Collecting linear and quadratic terms, we see that

M ( MAP (KMKM) 1) where MAP (KMKM) 1(KMy 2s) (16.105)

The equation for MAP follows from the conditions on the optimal solution of the
quadratic programming problem (16.103), or directly from maximizing (16.100)
(after s is fixed). Hence predictions at a new point x are approximately normally
distributed, with

y(x) kM M
2 kM KMKM

1
kM (16.106)

where kM : (k(x1 x) k(xM x)) and only xi with nonzero MAP i are considered
(thus M m). The additional 2 stems from the fact that we have additive Gaus-
sian noise of variance 2 in addition to the Laplacian process. Equation (16.106)
is still expensive to compute, but it is much cheaper to invert ΣMΣM than a dense
square matrix Σ (since MAP may be very sparse). In addition, greedy approxi-
mation methods (as described for instance in Section 16.4.4) or column generation
techniques [39] could be used to render the computation of (16.106) numerically
more efficient.

16.5.5 Data Independent Formulation

While (16.91) gives a very natural description of the behavior of the estimator, it is
possible in the case of (16.91) to find an equivalent, albeit much less elegant, data
independent formulation. Denote by K the standard kernel matrix (Ki j k(xi x j))
and by [K 1y]i the ith entry of the vector K 1y. Then we may write p( f X) asSparse Coding

via Norms
p(y)

1
exp

m

∑
i 1

K 1y i (16.107)
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This can be seen as follows: if K has full rank, setting y K yields K 1y
K 1K .

As an aside, note that some priors, such as (16.94) and (16.93), can also be
interpreted as changes in the metric given by Gaussian processes. Recall that the
latter can be stated as

p(y) exp
1
2

K
1
2 y 2

2 (16.108)

By changing the metric tensor from K
1
2 to K 1, we recover (16.93). Replacing the

2 norm by 1 yields (16.94). This formulation no longer depends explicitly on
x. Nonetheless, the data dependent notation is much more natural and providesChanging Norms
more insight into the inner workings of the estimator.

16.5.6 An Equivalent Gaussian Process

We conclude this section with a proof that in the large sample size limit, there
exists a Gaussian Process for each kernel expansion with a prior on the coefficients

i. For the purpose of the proof, we have to slightly modify the normalization
condition on f : That is, we assume

y(x) 1 m
m

∑
i 1

ik(xi x) (16.109)

where i exp( ( )). In the limit m , the following theorem holds.

Theorem 16.9 (Convergence to Gaussian Process) Denote by i independent ran-
dom variables (we do not require identical distributions on i) with unit variance and
zero mean. Furthermore, assume that there exists a distribution p(x) on according to
which a sample x1 xm is drawn, and that k(x x ) is bounded on . Then the
random variable y(x) given by (16.109) converges for m to a Gaussian process with
zero mean and covariance functionDistribution

Dependent
Kernel k̃(x x ) k(x x̄)k(x x̄)p(x̄)dx̄ (16.110)

This means that instead of a Laplacian process prior, we could use any other
factorizing prior on the expansion coefficients i and in the limit still obtain an
equivalent stochastic process.

Proof To prove the first part, we need only check is that y(x) and any linear
combination ∑ j y(x j) (for arbitrary x j ) converge to a normal distribution. By
application of a theorem of Cramér [118], this is sufficient to prove that y(x) is
distributed according to a Gaussian Process.

The random variable y(x) is a sum of m independent random variables with
bounded variance (since k(x x ) is bounded on ). Therefore in the limit m

, by virtue of the Central Limit Theorem (e.g., [118]), we have y(x) (0 2(x))Central Limit
Theorem for some 2(x) . For arbitrary x j , linear combinations of y(xj) also have
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Gaussian distributions since
n

∑
j 1

i y(x j)
1
m

m

∑
i 1

i

n

∑
j 1

ik(xi x j) (16.111)

which allows the application of the Central Limit Theorem to the sum since
the inner sum ∑n

j 1 ik(xi x j) is bounded for any xi. This theorem also implies
∑n

j 1 j y(x j) (0 2) for m and some 2 , which proves that y(x) is
distributed according to a Gaussian Process.

To show (16.110), first note that y(x) has zero mean. Thus the covariance function
for finite m can be found as expectation with respect to the random variables i,

E[y(x)y(x )] E
1
m

m

∑
i j 1

i jk(xi x)k(x j x )
1
m

m

∑
i 1

k(xi x)k(x j x ) (16.112)

since the i are independent and have zero mean. This expression, however,
converges to the Riemann integral over with the density p(x) as m . Thus

E[y(x)y(x )]
m

k(x x̄)k(x x̄)p(x̄)dx̄ (16.113)

which completes the proof.

16.6 Relevance Vector Machines

Recently, Tipping [539] proposed a method to obtain sparse solutions for regres-
sion and classification while maintaining their Bayesian interpretability. The basic
idea is to make extensive use of hyperparameters in determining the priors p( i)
on the individual expansion coefficients i.

In particular, we assume a normal distribution over i with adjustable variance.
The latter is then determined with a hyperparameter that has its most likely value
at 0; this leads to a concentration of the distribution of i around 0. This prior is
expressed analytically as

p( i si)
si

2
exp

1
2

si
2
i (16.114)

where si 0 plays the role of a hyperparameter with corresponding hyperprior

p(si)
1
si

(this is a flat hyperprior on a log scale: p(ln si) const.), or (16.115)

p(si) Γ(si a b) (16.116)

The Gamma distribution is given byGamma
Distribution

Γ(si a b) :
sa 1

i baexp( sib)
Γ(a)

for si 0 (16.117)

For non-informative (flat) priors, we typically choose a b 10 4 (see [539]). Note
that (16.117) is heavily peaked for si 0. For regression, a similar assumption is
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made concerning the amount of additive Gaussian noise 2; thus p( ¯ 2) 1 ¯ 2 or
p( ¯ 2) Γ( ¯ 2 c d) where typically c d 10 4. Note that the priors are imposed
on the inverse of and ¯ .

To explain the method in more detail, we begin with a description of the steps re-
quired for regression estimation. The corresponding reasoning for classification is
relegated to Section 16.6.4, since it uses methods similar to those already described
in previous sections.

16.6.1 Regression with Hyperparameters

For the sake of simplicity, we assume additive Gaussian noise. Hence, given a
kernel expansion t K , we haveAdditive

Gaussian Noise
p(y 2) (2 2)

m
2 exp

1
2 2 y K 2 (16.118)

With the definition S : diag(s1 sm), we obtainNormal
Distribution of i

p( s) (2 )
m
2 S

1
2 exp

1
2

S (16.119)

from (16.114). Since p(y 2) and p( s) are both Gaussian, we may integrate out
to s (for proper normalizations) and obtain explicit expressions for the condi-

tional distributions of and s. In particular, since p( t s 2) p(t 2)p( s),
then using (16.119) we get

p( y s 2) (2 )
m
2 Σ

1
2 exp

1
2

( ) Σ 1( ) (16.120)

Conditional
Distributions where

Σ ( 2K K S) 1 and 2ΣKy (16.121)

Additionally, note that p(y s 2) is a convolution of two normal distributions,
namely p(y 2) and p( s), hence the corresponding variances add up and we
obtain

p(y s 2) p(y 2)p( s)d (16.122)

(2 )
m
2 Σ̄

1
2 exp

1
2

y Σ̄ 1y (16.123)

where Σ̄ 21 KS 1K . Eq. (16.123) is useful since it allows us to maximize the
posterior probability of s provided we know y and 2. This leads to

p(s y 2) p(y s 2)p(s) (16.124)

In order to carry out Bayesian inference, we would have to compute

p(y y) p(y s 2)p( s 2 y)d dsd 2 (16.125)
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In most cases, however, this integral is intractable. Under the assumption that
p(y s 2)p(s)p( 2) is peaked around its mode, we may use the MAP2 approxi-MAP2

Approximation mation (16.24) and obtain

p(y y) p(y sMAP
2
MAP)p( y sMAP

2
MAP)d (16.126)

We cover the issue of finding optimal hyperparameters in the next section. For the
moment, however, let us assume that we know the values of sMAP and 2

MAP.
Since the integral in (16.126) can be seen as the convolution of two normal

distributions, we may solve the equations explicitly to obtain

p(y y sMAP
2
MAP) (y 2) (16.127)

where, using the definition of Σ (16.121),

y 2
MAPk ΣKy and 2 2

MAP k Σk (16.128)

Note the similarity of (16.128) to (16.49) for Gaussian Processes.

16.6.2 Finding Optimal Hyperparameters

According to [539], the optimal parameters s and 2 cannot be obtained in closed
form from

(sMAP
2
MAP) argmin

(s 2)
ln p(y s 2) ln p(s) ln p( 2) (16.129)

A possible solution, however, is to perform gradient descent on the objective
function (16.129). Taking logs of the Gamma distribution (16.117) and substituting
the explicit terms for p(y s 2) yields the following expression for the argument of
(16.129);

ln p(y s 2) ln p(s) ln p( 2) (16.130)
1
2

ln 21 KSK y 21 KSK
1

y

m

∑
i 1

(a ln si bsi) c ln 2 d 2 (16.131)

Of course, if we set a b c d 0 (flat prior) the terms in (16.131) vanish.
Note the similarity to logarithmic barrier methods in constrained optimization,
for which constrained minimization problems are transformed into unconstrained
problems by adding logarithms of the constraints to the initial objective func-Barrier Methods
tion (see Chapter 6, and in particular (6.90), for more detail). In other words, the
Gamma distribution can be viewed as a positivity constraint on the hyperparam-
eters si and 2.
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Differentiating (16.131) and setting the corresponding terms to 0 leads to the
update rules (see [539] and Problem 16.20 for more details)

si
1 siΣii

2
i

(16.132)

where we use the definitions in (16.121). The quantity 1 siΣii is a measure of the
degree to which the corresponding parameter i is “determined” by the data [338].
Likewise we obtain

2 y K 2

m
∑

i 1
siΣii

(16.133)

Handling
Divergences It turns out that many of the parameters si tend to infinity during the optimization

process. This means that the corresponding distribution of i is strongly peaked
around 0, and we may drop these variables from the optimization process. This
speeds up the process as the minimization progresses.

It seems wasteful to first consider the full set of possible functions k(xi x), and
only then weed out the functions not needed for prediction. We could instead
use a greedy method for building up predictors, similar to the greedy strategy
employed in Gaussian Processes (Section 16.4.4). This is the approach in [539],
which proposes the following algorithm. After initializing the predictor with a
single basis function (the bias, for example), we test whether each new basisGreedy Updates
function yields an improvement. This is done by guessing a large initial value si,
and performing one update step. If (16.132) leads to an increase of s i, we reject the
corresponding basis function, otherwise we retain it in the optimization process.

16.6.3 Explicit Priors by Integration

A second way to perform inference while circumventing the MAP2 estimate is
to integrate out the hyperparameters si and then deal with p( i) in a standard
fashion. In the present case, integration can be carried out in closed form over the
hyperprior. We obtainExplicit Prior

p( i) p( i si)p(si a b)dsi b
2
i

2

a 1
2

(16.134)

which is a Student-t distribution over i. In other words, the effective prior on i

is given by (16.91) with

( i) a
1
2

ln b
2
i

2
(16.135)

or after reparametrization ( i) a ln(1 b 2
i ) for suitably chosen a b 0.

This connects the Relevance Vector Machine to other methods that encode priors
directly in coefficient space without the aid of a hyperparameter. We can see that
(16.135) is heavily peaked at i 0, which explains why most of the parameters
are 0.
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Unfortunately (16.135) proves to be unsuited to implementation, since the poste-
rior probability exhibits “horribly” [539] many local minima. Hence, estimates de-
rived from the optimization of the log posterior are not particularly meaningful.Connection to

Gaussian
Processes

Nonetheless, this alternative representation demonstrates a connection between
Gaussian Processes and Relevance Vector Machines, based on Theorem 16.9: In
the large sample size limit, Relevance Vector Machines converge to a Gaussian
Process with kernel given by (16.110).

16.6.4 Classification

For classification, we follow a scheme similar to that in Section 16.3.5. In order to
keep matters simple, we only consider the binary classification case. Specifically,
we carry out logistic regression by using (16.3) as a model for the distribution of
labels yi 1 . As in regression, we use a kernel expansion, this time for the
latent variables t K . The negative log posterior is given by

ln p( y s)
m

∑
i 1

ln p(yi t(xi))
m

∑
i 1

ln p( i si) const (16.136)

Unlike in regression, however, we cannot minimize (16.136) explicitly and have
to resort to approximate methods, such as the Laplace approximation (see Sec-Laplace

Approximation tion 16.4.1). Computing the first and second derivatives of (16.136) and using the
definitions (16.59) and (16.60) yields

ln p( y s) Kc S (16.137)
2 ln p( y s) K CK S (16.138)

This allows us to obtain a MAP estimate of p( y s) by iterative application of
(16.58), and we obtain an update rule for in a manner analogous to (16.61);

new old (K CK S) 1(Kc S old) (K CK S) 1K(CK old c) (16.139)

If the iteration scheme converges, it will converge to the minimum of the negative
log posterior. We next have to provide an iterative method for updating the hy-
perparameters s (note that we do not need 2). Since we cannot integrate out
explicitly (we had to resort to an iterative method even to obtain the mode of the
distribution), it is best to use the Gaussian approximation obtained from (16.138).Adjusting Hy-

perparameters This gives an approximation of the value of the posterior distribution p(s y) and
allows us to apply the update rules developed for regression in classification. Set-
ting MAP and Σ (K CK S) 1, we can use (16.132) to optimize si. See [539]
for further detail and motivation.

16.6.5 Toy Example and Discussion

We conclude this brief description of RVMs with a toy example (Figure 16.8),
taken from [539], in which regression is performed on a noisy sinc function (cf.
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Figure 16.8 Support (left) and Relevance (right) Vector approximations to sinc (x), based
on 100 noisy samples. The estimated functions are drawn as solid lines, the true function in
gray, and Support/Relevance Vectors are circled.

Chapter 9) using RV and SV estimators. In both cases, a linear spline kernel [572],

K(x x ) xx xx min x x
x x

2
(min x x )2 (min x x )3

3
(16.140)

was used. The noise, added to the y-values, was uniformly distributed over
[ 0 2 0 2].

In the SV case, all points with a distance (not shown) become SVs; this
leads to an expansion that is not particularly sparse. The RVM, on the other hand,
constructs a solution which is not constrained to use these points, and delivers a
much sparser solution.

It should be noted that similarly sparse solutions can be obtained for SVMs by
using “reduced set” post-processing (Chapter 18). Although this step adds to the
training time, SVMs train far more quickly than RVMs on large data sets (of the
order of thousands of examples), and the added post-processing time is then often
negligible. Nevertheless, it is fair to say that the RVM is an elegant and principled
Bayesian alternative to SVMs.

16.7 Summary

In this chapter, we presented an overview over some of the more common tech-
niques of Bayesian estimation, namely Gaussian Processes and the Relevance Vec-
tor Machine, and a novel method: Laplacian Processes. Due to the wealth of ex-
isting concepts and algorithms developed in Bayesian statistics, it is impossible to
give a comprehensive treatment in a single chapter. Such a treatise would easily
fill a whole book in its own right.
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16.7.1 Topics We Left Out

We did not discuss Markov-Chain Monte Carlo methods and their application
to Bayesian Estimation [382, 426] as an alternate way of performing Bayesian
inference. These work by sampling from the posterior distribution rather than
computing an approximation of the mode.

On the model side, the maximum entropy discrimination paradigm [499, 114,
261] is a worthy concept in its own right, powerful enough to spawn a whole fam-
ily of new inference algorithms both with [261] and without [263] kernels. The
main idea underlying this concept is to seek the least informative estimate for pre-
diction purposes. In addition, rather than requiring that a specific function satisfy
certain constraints, we require only that the distribution satisfy the constraints on
average.

Methods such as the Bayes-Point machine [239] and Kernel Billiard [450, 451]
can also be used for estimation purposes. The idea behind these methods is to
“play billiard” in version space (see Problem 7.21) and average over the existing
trajectories. The version space is the set of all w for which the empirical risk
Remp[w] vanishes or is bounded by some previously chosen constant. Proponents
of this strategy claim rapid convergence due to the good mixing properties of the
dynamical system.

Finally, we left the field of graphical models (see for instance [525, 260, 274, 273]
and the references therein) completely untouched. These algorithms model the de-
pendency structure between different random variables in a rather explicit fashion
and use efficient approximate inference techniques to solve the optimization prob-
lems. To date it is not clear how such methods can be combined with kernels.

16.7.2 Key Issues

Topics covered in the chapter include deterministic and approximate methods
for Bayesian inference, with an emphasis on the Maximum a Posteriori (MAP)
estimate and the treatment of hyperparameters. As a side-effect, we observe that
the minimization of regularized risk is closely related to approximate Bayesian
estimation.

One of the first consequences of this link is the connection between Gaussian
Processes and Support Vector Machines. While the former are defined in terms
of correlations between random variables, the latter are derived from smoothness
assumptions regarding the estimate and feature space considerations. This con-
nection also allows us to exchange uniform convergence statements and Bayesian
error bounds between both types of reasoning.

As a side effect, this connection also gives rise to a new class of prior, namely
those corresponding to 1 regularization and linear programming machines. Since
the coefficients i then follow a Laplacian distribution, we name the correspond-
ing stochastic process a Laplacian Process. This new point of view allows the deriva-
tion of error bars for the estimates in a way that is not easily possible in a statistical
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learning theory framework. It turns out that this leads to a data dependent prior
on the function space.

Finally, the Relevance Vector Machine introduces individual hyperparameters
for the distributions of the coefficients i. This makes certain optimization prob-
lems tractable (matrix inversion) that otherwise would have remained infeasible
(MAP estimate with the Student-t distribution as a prior). We expect that the tech-
nique of representing complex distributions by a normal distribution cum hyper-
prior is also a promising approach for other estimation problems.

Taking a more abstract view, we expect a convergence between different estima-
tion algorithms and inference principles derived from risk minimization, Bayesian
estimation, and Minimum Description Length concepts. Laplacian Processes and
the Relevance Vector Machine are two examples of such convergence. We hope
that more such methods will follow in the next few years.

16.8 Problems

16.1 (Prior Distributions ) Compute the log prior probability according to (16.10) for
the following functions: sin x, sin x 0 1 sin10x, sin x 0 01 sin100x, and more gener-
ally, fn(x) : sin x 1

n sin nx on [ ]. Show that the series fn converges to sin x, yet
that fn(x) does not converge to cos x. Interpret this result in terms of prior distributions
(Hint: What can you say about functions where the prior probability also converges).

16.2 (Hypothesis Testing and Tail Bounds ) Assume we want to test whether a
coin produces equal numbers of heads and tails. Compute the likelihood that among m
trials we observe mh heads and mt m mh tails, given a probability h that a head is
observed (Hint: Use the binomial distribution and, if necessary, its approximation with a
normal distribution).

Next, compute the posterior probability for the following two prior assumptions on the
possible values of h:

p( h) 1 (flat prior) (16.141)

p( h) 12 h(1 h) (16.142)

Give an interpretation of (16.141) and (16.142). What is the minimum number of coins
we need to toss (assuming that we get an equal number of heads and tails) in order to state
that the probability of heads equals that of tails within precision with 1 probability?

How many tosses do you need on average to detect a faulty coin that generates heads
with probability h?

16.3 (Label Noise ) Assume that we have a random variable y with P(y 1) p, and
consequently P(y 1) 1 p. What is the probability of observing y 1 if we flip
each label with probability ? What is P(y 1) if we randomly assign a label for all y
with probability ?
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16.4 (Projected Normal Distributions ) Assume that we have two clouds of points,
one belonging to class 1 and a second belonging to class 1, and both normally distributed
with unit variance.

Show that for any projection onto a line, the distributions of the points on the line is
a mixture of two normal distributions. What happens to the means and the variances?
Formulate the likelihood that an arbitrary point on the line belongs to class 1 or 1.

16.5 (Entropic Priors ) Assume we have an experiment with n possible outcomes where
we would like to estimate the probabilities 1 n with which these outcomes occur. We
use the following prior distribution p( 1 n),

ln p( 1 n) H( 1 n) c
n

∑
i 1

i ln i c (16.143)

where c is a normalization constant and H denotes the entropy of the probabilities
1 n.
Show that (16.143) describes a proper prior distribution. Compute the likelihood of

observing the outcomes 1 n at times m1 mn (see Problem 16.2). Derive the value
of the log posterior distribution (use Gaussian approximation). Does the normalization
constant c matter? What happens if we rescale (16.143) by a constant s? How does the
log posterior change? Give examples of how s can be adjusted automatically (automatic
relevance determination) and formulate the MAP2 estimate ( ).

16.6 (Inference and Variance ) For a normal distribution in two variables with

K
1 0 75

0 75 0 75
(16.144)

as covariance and zero mean, compute the variance in terms of the first variable if the
second one is observed, and vice versa.

16.7 (Samples from a Gaussian Process Prior ) Draw a sample X at random from
the uniform distribution on [0 1]2 and compute the corresponding covariance matrix
K. Use for instance the linear kernel k(x x ) x x and the Gaussian RBF kernel
k(x x ) exp( 1

2 2 x x 2).
Write a program which draws samples uniformly from the normal distribution (0 K)

(Hint: Compute the eigenvectors of K first). What difference do you observe when using
different kernels?

16.8 (Time Series and Autocorrelation ) Assume a time series of normally distributed
random variables t drawn from a stationary distribution. Why is the autocorrelation func-
tion independent of time? Show that the random variables t follow a Gaussian Process.
What is the covariance kernel?

16.9 (Gaussian Processes with Roundoff Noise ) Give an expression for the poste-
rior probability of a Gaussian Process with covariance function k(x x ) in the presence of
roundoff noise (see (16.45)).
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16.10 (Hyperparameter Updates ) Assume that k(x x ) also depends on a parame-
ter . Compute the derivative of the log posterior for GP regression with respect to (see
[197, 198] for details).

Can you adapt the sparse greedy approximation scheme (Section 16.4.4) to maximize
the log posterior with respect to the hyperparameters ( )?

16.11 (Convergence of Laplace Approximation ) Find a lower bound on the ra-
dius of convergence of the Laplace Approximation (Section 16.4.1). Hint: show that the
iteration step of the Laplace approximation is a contraction.

16.12 (Laplace Approximation in Function Space ) Instead of formulating the
Newton approximation steps in coefficient space, as done in (16.61), we may also de-
rive the update rule in function space, which promises better convergence properties and
a numerically less expensive implementation (see Section 10.6.1).

Hint: Compute the gradient and the Hessian (Note: This is an operator in the present
case) for the log posterior p( f X Y) of a Gaussian Process. Show that we can still invert
the Hessian efficiently since it is simply a projection operator on the subspace spanned by
k(xi ). State the update rule.

16.13 (Upper and Lower Bounds on Convex Functionals ) Prove (16.65) and
(16.66). Hint: For the lower bound, exploit convexity of the logistic function and con-
struct a tangent. For the upper bound, construct a quadratic function with curvature
larger than the logistic.

Show that (16.65) and (16.66) are tight. What can you say in more general quadratic
cases? See [264] for a detailed derivation.

16.14 (Eigenfunctions of k )

How do the eigenfunctions of Figure 16.4 change if changes? What happens to the
eigenvalues? Confirm this behavior using numerical simulations.

What do you expect if the dimensionality of x increases? What if it increases signifi-
cantly? What happens if we replace the Gaussian kernel by a Laplacian kernel?

Design an approximate training algorithm for Gaussian Processes using the fact that
you can approximately represent K by a lower rank system ( ).

How do these findings relate to Kernel Principal Component Analysis (Chapter 14)?

16.15 (Low-rank approximations of K ) Denote by an RKHS with kernel k.
Given a set of basis functions S̃ : k(x̃1 ) k(x̃n ) , compute the optimal approxi-
mation of k(x ) in terms of S̃ with respect to the norm induced by .

Now assume that we want to approximate functions from a larger set, say S :
k(x1 ) k(xm ) . Show that this leads to the approximation of the matrix K with

Ki j : k(xi x j) by a low rank matrix K̃.
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16.16 (Sparse Greedy [503] and Random Approximation [602] ) Experimentally
compare the settings where basis functions are selected purely at random (Nyström
method) with the case where they are selected in a sparse greedy fashion.

16.17 (Optimization Problems for Laplacian Process ) Derive the optimization
problem for regression with a Laplacian process prior under the assumption of additive
Gaussian noise. Hint: What is the posterior probability of an estimator f under the cur-
rent assumptions? Compute the dual optimization problem. Is the latter easier to deal
with?

Now assume additive Laplacian noise. How does the optimization problem change?

16.18 (Confidence Intervals for Laplacian Noise ) Derive confidence intervals
for Laplacian Noise and a Gaussian Process or Laplacian regularizer. Is there a closed-
form expansion? Can you find an efficient sampling scheme ( )?

16.19 (Efficient Computation of Confidence Terms ) Using sparse greedy approx-
imation, devise an algorithm for computing (16.106), and in particular k M(KMKM) 1kM,
more efficiently. Hint: Use a variant of Theorem 16.5 and a rank-one update method.

16.20 (Hyperparameter Updates for Relevance Vector Machines ) Derive the
update rules for the hyperparameters (16.132) and (16.133). Hint: See [338] for details.

16.21 (Parameter Coding for Relevance Vector Machines ) Denote by p( i) a
prior on the coefficients i of a kernel expansion. Can you find a deconvolution function
p(si) such that

p( i) (2 si)
1
2 e

1
2 si

2
i p(si)dsi? (16.145)

Hint: Use the Fourier transformation. What does this mean when encoding sparse priors
such as p( i) 1

2 e i ? Can you construct alternative training algorithms for Laplacian
Processes?

16.22 (RVM and Generative Topographic Mapping ) Apply the RVM method as
a prior to the Generative Topographic Mapping described in Section 17.4.2; in other words,
instead of using ∑i

2
i as the negative log prior probability on the weights of the individual

nodes.
Can you find an incremental approach? (Hint: Use the method described in [539])



 

17 Regularized Principal Manifolds

In Chapter 14, which covered Kernel Principal Component Analysis and Kernel
Feature Analysis, we viewed the problem of unsupervised learning as a problem
of finding good feature extractors. This is not the only possible way of extracting
information from data, however.

For instance, we could determine the properties that best describe the data; in
other words, that represent the data in an optimal compact fashion. This is useful
for the purpose of data visualization, and to test whether new data is generated
using the same distribution as the training set. Inevitably, this leads to a (possibly
quite crude) model of the underlying probability distribution. Generative models
such as Principal Curves [231], the Generative Topographic Mapping [52], several
linear Gaussian models [444], and vector quantizers [21] are examples thereof.

The present chapter covers data descriptive models. We first introduce theOutline
quantization functional [509] (see Section 17.1), which plays the role of the risk
R[ f ] commonly used in supervised learning (see Chapter 3). This allows us to use
techniques from regularization theory in unsupervised learning. In particular, it
leads to a natural generalization (to higher dimensionality and different criteria of
regularity) of the principal curves algorithm with a length constraint [292], which
is presented in Section 17.2, together with an efficient algorithm (Section 17.3).

In addition, we show that regularized quantization functionals can be seen in
the context of robust coding; that is, optimal coding in the presence of a noisy chan-
nel. The regularized quantization error approach also lends itself to a comparison
with Bayesian techniques based on generative models. Connections to other algo-
rithms are pointed out in Section 17.4. The regularization framework allows us to
present a modified version of the Generative Topographic Mapping (GTM) [52]
(Section 17.4.2), using recent developments in Gaussian Processes (Section 16.3).

Finally, the quantization functional approach also provides a versatile tool to
find uniform convergence bounds. In Section 17.5, we derive bounds on the quan-
tization error and on the rate of convergence that subsume several existing results
as special cases. This is possible due to the use of functional analytic tools.

Readers mainly interested in the core algorithm are best served by reading thePriorities and
Prerequisites first three sections and possibly the experimental part (Section 17.6). Chapters 3

and 4 are useful to understand the formulation of regularized quantization func-
tionals. Section 17.4 is mainly relevant to readers interested in Bayesian alterna-
tives, such as the Generative Topographic Mapping. Clearly, knowledge of the ba-
sic Bayesian concepts presented in Section 16.1 will be useful. Finally, Section 17.5
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requires an understanding of uniform convergence bounds and operator theoretic
methods in learning theory (Section 12.4).

17.1 A Coding Framework

The basic idea of the quantization error approach is that we should be able to
learn something about data by learning how to efficiently compress or encode it as a
simpler yet still meaningful object. The quality of the encoding is assessed by the
reconstruction error (the quantization error) it causes (in other words, how close
the reconstructions come to the initial data), and the simplicity of the device that
generates the code. The latter is important, since the coding device then contains
the information we seek to extract.

Unlike most engineering applications,1 we also allow for continuous codes. Prac-
tical encoding schemes, on the other hand, concern themselves with the numberLearning by

Compression of bits needed to code an object. This reflects our emphasis on information extrac-
tion by learning the coding device itself. As we will see in Section 17.4.3, however,
constraints on the simplicity of the coding device are crucial to avoid overfitting
for real valued continuous codes.

17.1.1 Quantization Error

Let us begin with the usual definitions: denote by a (possibly compact subset
of a) vector space, and by X : x1 xm a dataset drawn iid from an
unknown underlying probability distribution P(x). The observations are members
of . Additionally, we define the index sets , maps f : , and classes of such
maps (with f ). Here is the domain of our code, and the map f is intended
to describe certain basic properties of P(x). In particular, we seek f such that the
so-called quantization error,Expected

Quantization
Error R[ f ] : min

z
c(x f (z))dP(x) (17.1)

is minimized. In this setting, c(x f (z)) is the loss function determining the error of
reconstruction. We very often set c(x f (z)) x f (z) 2, where denotes the
Euclidean distance. Unfortunately, the problem of minimizing R[ f ] is insolvable,

1. Consider the task of displaying an image with 24 bit color depth on an 8 bit display
with color lookup table (CLUT), meaning that the 256 possible colors may be chosen
from a 24 bit color-space. Simply keeping the most significant bits of each color is not a
promising strategy: images of a forest benefit from an allocation of many colors in the green
color-space, whereas images of the sky typically benefit from a dominance of white and
blue colors in the CLUT. Consequently, the colors chosen in the CLUT provide us with
information about the image.
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1
(x, y)

Figure 17.1 Sample Mean in 2. The observations are mapped to one codebook vector,
denoted by the triplet (1 x y). Decoding is done by mapping the codebook vector back to
(x y). Obviously, the coding error is given by the average deviations between the sample
mean and the data.

as P is generally unknown. Hence we replace P using the empirical density

Pm(x) :
1
m

m

∑
i 1

(x xi) (17.2)

and instead of (17.1) we analyze the empirical quantization errorEmpirical
Quantization
Error Remp[ f ] : min

z
c(x f (z))dPm(x)

1
m

m

∑
i 1

min
z

c(xi f (z)) (17.3)

The general problem of minimizing (17.3) is ill posed [538, 370]. Even worse, with
no further restrictions on , small values of Remp[ f ] fail to guarantee small values
of R[ f ].

Many problems in unsupervised learning can be cast in the form of finding a
minimizer of (17.1) or (17.3). Let us consider some practical examples.

17.1.2 Examples with Finite Codes

We begin with cases where is a finite set; we can then encode f by a table of all
its possible values.

Example 17.1 (Sample Mean) Define : 1 , to be the set of all constant functions,
and f (1) . In addition, set c(x f (z)) x f (z) 2. Then the minimum of

R[ f ] : x f 2dP(x) and Remp[ f ]
1
m

m

∑
i 1

f (1) xi
2 (17.4)

yields the variance of the data. The minimizers of the quantization functionals can in this
case be determined analytically,

argmin
f

R[ f ] xdP(x) and argmin
f

Remp[ f ]
1
m

m

∑
i 1

xi (17.5)

Variance as
Quantization
Error

This is the (empirical) sample mean (see also Figure 17.1).

Example 17.2 (k-means Vector Quantization) Define : [k] and f : i fi with fi

, and denote by the set of all such functions. If we again use c(x f (z)) x f (z) 2,
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1
(x1, y1)

2 3
(x2, y2) (x3, y3)

Figure 17.2 k-means clustering in 2 (in this figure, k 3). The observations are mapped to
one of the codebook vectors, denoted by the triplet (i xi yi). Decoding is done by mapping
the codebook vectors back to (xi yi).

then

R[ f ] : min
z [k]

x fz
2dP(x) (17.6)

denotes the canonical distortion error of a vector quantizer. In practice, we can use the
k-means algorithm [332] to find a set of vectors f1 fk minimizing Remp[ f ] (see
Figure 17.2). Furthermore there exist proofs of the convergence properties of the minimizerIntra-Cluster

Variance as
Quantization
Error

of Remp[ f ] to one of the minimizer(s) of R[ f ] (see [21]).

Note that in this case, minimization of the empirical quantization error leads to
local minima, a problem quite common in this type of setting. A different choice
of loss functions c leads to a clustering algorithm proposed in [73].

Example 17.3 (k-median and Robust Vector Quantization) Beginning with the def-
initions of the previous example, and choosing c(x f (z)) : x f (z) 1 we obtain the
k-median problem. Recall that 1 is the city-block metric. In this case,Robust

Clustering
R[ f ] : min

z [k]
x fz 1dP(x) (17.7)

This setting is robust against outliers, since the maximum influence of each pattern is
bounded. An intermediate setting can be derived from Huber’s robust loss function [251]
(see also Table 3.1). Here, we define

c(x f (z)) :
1

2 x f (z) 2 for x f (z)

x f (z) 2 otherwise,
(17.8)

for suitably chosen . Eq. (17.8) behaves like a k-means vector quantizer for small xi, but
with the built-in safeguard of a limit on the influence of each individual pattern.

17.1.3 Examples with Infinite Codes

Instead of discrete quantization, we can also consider a mapping onto a manifold
of dimensionality lower than that of the input space. PCA (see also Sections 14.1
and 14.4.1) can be viewed in the following way [231]:
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Example 17.4 (Principal Components) Define : , f : z f0 z f1 with f0 f1

, f1 1, and to be the set of all such line segments. Moreover, let c(x f (z)) :
x f (z) 2. Then the minimizer ofProximity to a

Line Segment
R[ f ] : min

z [0 1]
x f0 z f1

2dP(x) (17.9)

over f yields a line parallel to the direction of largest variance in P(x) (see [231] and
Section 14.1).

A slight modification results in simultaneous diagonalization of the covariance
matrix with respect to an additional metric tensor.

Example 17.5 (Transformed Loss Metrics) Denote by D a strictly positive definite
matrix. With the definitions above and the loss function

c(x f (z)) : (x f (z)) D 1(x f (z)) (17.10)
Simultaneous
Diagonalization the minimizer of the empirical quantization can be found by simultaneous diagonalization

of D and the covariance matrix cov(x).

This can be seen as follows: We replace x by x̃ : D
1
2 x and f by f̃ : D

1
2 f .

Now c(x f (z)) x̃ f̃ (z) 2, hence we have reduced the problem to one of finding
principal components for the covariance matrix D

1
2 cov(x)D

1
2 . This, however, is

equivalent to simultaneous diagonalization of D and cov(x), which completes the
proof.

Further choices of c, such as the 1 metric or Huber’s robust loss function, lead
to algorithms that are less prone to instabilities caused by outliers than standard
PCA.

A combination of k-means clustering and principal components leads to the k-
planes clustering algorithm proposed in [72] (also known as Local PCA by Kamb-
hatla & Leen [276, 277]).2 Here, clustering is carried out with respect to k planesk-Planes

Clustering instead of k cluster points. After assigning the data points to the planes, the latter
are re-estimated using PCA (thus, the directions with smallest variance are elimi-
nated). Both Kambhatla & Leen [277] and Bradley & Mangasarian [72] show that
this can improve results on certain datasets.

Hastie & Stuetzle [231] extended PCA in a different direction by allowing f (z)
to be other than a linear function.

2. While [277] introduces the problem by considering local linear versions of Principal
Component Analysis and takes a Neural Networks perspective, [73] treats the task mainly
as an optimization problem for which convergence to a local minimum in a finite number
of steps is proven. While the resulting algorithm is identical, the motivation in the two cases
differs significantly. In particular, the ansatz in [73] makes it easier for us to formulate the
problem as one of minimizing a quantization functional.
The original local linear Vector Quantization formulation put forward in [276] also allows
us to give a quantization formulation for local PCA. To achieve this, we simply consider
linear subspaces together with their enclosing Voronoi cells.
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Figure 17.3 Projection of points x onto a manifold f ( ), in this case with minimum
Euclidean distance.

Example 17.6 (Principal Curves and Surfaces) We define : [0 1]d (with d
and d 1 for principal surfaces), f : z f (z), with f a class of continuous d -
valued continuous functions (possibly with further restrictions), and again c(x f (z)) :

x f (z) 2. The minimizer ofProjection on
Manifolds

R[ f ] : min
z [0 1]d

x f (z) 2dP(x) (17.11)

is not well defined, unless is a compact set. Moreover, even the minimizer of Remp[ f ] is
generally not well defined either. In fact, it is an ill posed problem in the sense of Arsenin
and Tikhonov [538]. Until recently [292], no uniform convergence properties of Remp[ f ]
to R[ f ] could be stated.

Kégl et al. [292] modified the original principal curves algorithm in order to prove
bounds on R[ f ] in terms of Remp[ f ] and to show that the resulting estimate is
well defined. The changes imply a restriction of to polygonal lines with a fixed
number of knots, and most importantly, fixed length L.3Principal Curves

with a Length
Constraint

This is essentially equivalent to using a regularization operator. Instead of a
length constraint, which as we will show in section 17.2.2, corresponds to a par-
ticular regularization operator, we now consider more general smoothness con-
straints on the estimated curve f (x).

17.2 A Regularized Quantization Functional

What we would essentially like to have are estimates that not only yield small
expected quantization error but are smooth curves (or manifolds) as well. The
latter property is independent of the parametrization of the curve. It is difficult
to compute such a quantity in practice, however. An easier task is to provide
a measure of the smoothness of f depending on the parametrization of f (z). A
wide range of regularizers from supervised learning can readily be used for this
purpose. As a side effect, we also obtain a smooth parametrization.

3. In practice, Kégl et al. use a constraint on the angles of the polygonal curves, rather than
the actual length constraint, to achieve sample complexity rates on the training time of the
algorithm. For the uniform convergence part, however, the length constraint is used.
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Table 17.1 Comparison of the three basic learning problems considered in this book: su-
pervised learning, quantization, and feature extraction. Note that the optimization prob-
lems for supervised learning and quantization can also be transformed into the problem of
maximizing Remp[ f ] subject to the constraint Ω[ f ] Λ.

Supervised Learning Quantization Feature Extraction

Data X x1 xm X x1 xm X x1 xm

Y y1 ym

Objective minimize Test Error minimize Coding Error max. Interestingness

R[ f ] E c(x y f (x)) R[ f ] E min
z

c(x f (z)) R[ f ] E q( f (x))

Typical c(x y f (x)) (y f (x)2 c(x f (z)) x f (z) 2
2 q( f (x)) f (x)2

Examples c(x y f (x)) y f (x) c(x f (z)) x f (z) 1 q( f (x)) f (x)4

Loss Mismatch between Approximation Anomality of
f (x) and y of x by f (z(x)) f (x) via q( f (x))

Empirical Training Error Approximation Error Contrast

Quantity Remp[ f ]
m

∑
i 1

c(xi yi f (xi)) Remp[ f ]
m

∑
i 1

min
z

c(xi f (z)) Q[ f ]
m

∑
i 1

q( f (xi))

Regularizer Ω[ f ]
Problem minimize minimize maximize

Remp[ f ] Ω[ f ] Remp[ f ] Ω[ f ] Q[ f ] subj. to Ω[ f ] Λ

We now propose a variant to minimizing the empirical quantization functional,
which seeks hypotheses from certain classes of smooth curves, leads to an algo-
rithm that is readily implemented, and is amenable to the analysis of sample com-
plexity via uniform convergence techniques. We will make use of a regularized
version of the empirical quantization functional. Let

Rreg[ f ] : Remp[ f ] Ω[ f ] (17.12)

where Ω[ f ] is a convex nonnegative regularization term, and 0 is a trade-
off constant determining how much simple functions f should be favored over
functions with low empirical quantization error. We now consider some possible
choices of Q. This setting is very similar to those of supervised learning (4.1) and
the feature extraction framework (14.35). Table 17.1 gives an overview. In all three
cases we have the following three step procedure:General

Regularization
Strategy (i) Start with a measure of optimality (expected risk, quantization error, criterion

of interestingness of the estimate f on the data) with respect to a distribution P(x)

(ii) Replace the integration over P(x) by a sum over samples drawn iid from P(x)

(iii) To ensure numerical stability and guarantee smooth estimates, add a regular-
ization term (usually quadratic or linear)
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17.2.1 Quadratic Regularizers

As we have seen several times (see Chapter 4), quadratic functionals [538] are a
very popular choice of regularizer, and in the present case we can make use of the
whole toolbox of regularization functionals, regularization operators, and Repro-
ducing Kernel Hilbert Spaces. This illustrates how the simple transformation of a
problem into a known framework can make life much easier, and it allows us to
assemble new algorithms from readily available building blocks.

In the present case, Ω[ f ] f 2 , these building blocks are kernels, and we may
expand f as

f (z) f0

M

∑
i 1

ik(zi z) with zi i and k : 2 (17.13)

given previously chosen nodes z1 zM (of which we take as many as we can
afford in terms of computational loss). It can be shown (see Problem 17.2) that
the back-projections of the observations xi onto f are in fact the most suitable
expansion points.4 Consequently, the regularization term can be written asKernel

Expansion
f 2

M

∑
i j 1

i j k(zi z j) (17.14)

This is the functional form of f 2 needed to to derive efficient algorithms.

17.2.2 Examples of Regularization Operators

In our first example, we consider the equivalence between principal curves with a
length constraint and minimizing the regularized quantization functional.

Example 17.7 (Regularizers with a Length Constraint) By choosing the differentia-
tion operator ϒ : z, ϒ f 2 becomes an integral over the squared “speed” of the curve.
Re-parametrizing f to constant speed leaves the empirical quantization error unchanged,
whereas the regularization term is minimized. This can be seen as follows: By construction,

[0 1] z f (z) dz does not depend on the (re-)parametrization. The variance, however, is
minimal for a constant function, hence z f (z) has to be constant over the interval [0 1].
Thus, ϒ f 2 equals the squared length L2 of the curve at the solution.

Minimizing the sum of the empirical quantization error and a regularizer, how-
ever, is equivalent to minimizing the empirical quantization error for a fixed value
of the regularization term (when is suitably adjusted).5 Hence the proposed algo-

4. In practice, however, such expansions tend to become unstable during the optimization
procedure. Hence, a set of zi chosen a priori, for instance on a grid, is the default choice.
5. The reasoning is not completely true for the case of a finite number of basis functions
— f cannot then be completely re-parametrized to constant speed. The basic properties still
hold, however, provided the number of kernels is sufficiently high.
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Figure 17.4 Two-dimensional periodic structures in 3. Left: unit sphere, which can be
mapped to [0 ] 2 ; right: toroid, which is generated from [0 2 ]2.

rithm is equivalent to finding the optimal curve with a length constraint; in other
words, it is equivalent to the algorithm proposed in [292].

As experimental and theoretical evidence from regression indicates, it may be
beneficial to choose a kernel that also enforces higher degrees of smoothness in
higher derivatives of the estimate. Hence, we could just as well use Gaussian RBF
kernels (2.68),

k(x x ) exp x x 2

2 2 (17.15)

This corresponds to a regularizer penalizing all derivatives simultaneously (see
Section 4.4.2 for details, and Section 17.6 for experimental results with this kernel).

The use of periodical kernels (see Section 4.4.4) has interesting consequencesPeriodical
Kernels in the context of describing manifolds. Such kernels allow us to model circular

structures in , hence we can find good approximations to objects such as the
surface of balls or “donut”-shaped distributions (see Figure 17.4). Nonetheless,
we have to keep in mind that this requires the spatial connectivity structure to be
known (which we may not always assume).

The appealing property of this formulation is that it is completely independent
of the dimensionality and of any particular structure of .

17.2.3 Linear Programming Regularizers

It may not always be desirable to find expansions of f ∑M
i 1 ik(zi ) in terms of

many basis functions k(xi x). Instead, it is often better to obtain an estimate of f
with just a few basis functions (but usually of almost equal quality). This can be
achieved via a regularizer that enforces sparsity (see Section 4.9.2), for example by
setting Ω[ f ] : ∑M

i 1 i . For i
d , we useHomogeneous 1

Norm
Ω[ f ]

M

∑
i 1

i 1

M

∑
i 1

d

∑
j 1

i j (17.16)



526 Regularized Principal Manifolds

instead. It is shown in [509] that by using an argument similar to that in [505], this
setting also allows efficient capacity control.

In several cases, (17.16) may not be exactly what we are looking for. In particular,
even if i j were nonzero for only one dimension j, we would still have to evaluate
the corresponding kernel function. The regularizerMixed 1–

Norm
Ω[ f ] i 1

M

∑
i 1

max
j [d]

i j (17.17)

overcomes this limitation. The emphasis in this instance is on the maximum
weight of i j for a given i. It is possible to show that regularizers of type (17.17)
can also be cast in a linear or quadratic programming setting, provided the loss
function c is only linear or quadratic (see Problem 17.4).

17.3 An Algorithm for Minimizing Rreg[ f ]

In this section, we present an algorithm that approximately minimizes Rreg[ f ] via
coordinate descent.6 We certainly do not claim it is the best algorithm for this
task — our goal is simply to find an algorithm consistent with our framework
(which is amenable to sample complexity theory), and which works in practice.
Furthermore, commonly known training algorithms for the special cases in Section
17.1.2, such as k-means algorithms and the k-planes algorithm of Section 17.1.3, are
special cases of the algorithm we propose.

In the following, we assume the data to be centered and therefore drop the term
f0 in the kernel expansion (17.13) of f . This greatly simplifies the notation (the
extension is straightforward). We further assume, for the sake of practicability, thatFinite Term

Expansion the ansatz for f can be written in terms of a finite number of parameters 1 M

(see the representer theorem for regularized principal manifolds in Problem 17.2),
and that likewise the regularizer Ω[ f ] can also be expressed as a function of

1 M. This allows us to rephrase the problem of minimizing the regularized
quantization functional as

min
1 M
1 m

1
m

m

∑
i 1

c(xi f
1 M

( i)) Q( 1 M) (17.18)

This minimization is achieved in an iterative fashion by coordinate descent over
and , in a manner analogous to the EM (expectation maximization) algorithmCoordinate

Descent and EM [135]. Recall that the aim of the latter procedure is to find the distribution P(x), or at
least the parameters of a distribution P (x l), where x are observations and l are
latent variables. Keeping fixed, we first accomplish the E-step by maximizing

6. Coordinate descent means that to minimize a function f (x1 xn) of several (possibly
vector valued) variables x1 xn, we minimize f only with respect to one variable at a
time while keeping the others fixed.
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P (x l) with respect to l; the M-step then consists of maximizing P (x l) with
respect to . These two steps are repeated until no further improvement can be
achieved.

Likewise, to solve (17.18), we alternate between minimizing with respect to
1 m , which is equivalent to the E-step (projection), and with respect to
1 M , corresponding to the M-step (adaptation). This procedure is re-

peated until convergence; or, in practice, until the regularized quantization func-
tional stops decreasing significantly. Let us now have a closer look at the individ-
ual phases of the algorithm.

17.3.1 Projection

For each i [m], choose i : argmin c(xi f ( )); thus for squared loss, i :

argmin xi f ( ) 2. Clearly, for fixed i, the resulting i minimize the loss
term in (17.18), which itself is equal to Rreg[ f ] for given i and X. Hence Rreg[ f ] is
decreased while keeping Ω[ f ] fixed (since the variables i do not change). In prac-Projecting onto

the Manifold tice we use standard low dimensional nonlinear function minimization algorithms
(see Section 6.2 and [423] for details and references) to achieve this goal.

The computational complexity is O(m M) since the minimization step has to
be carried out for each sample separately. In addition, each function evaluation
(the number of which we assume to be approximately constant per minimization)
scales linearly with the number of basis functions M.

17.3.2 Adaptation

Next, the parameters i are fixed, and i is adapted such that Rreg[ f ] decreases
further. The design of practical algorithms to decrease Rreg[ f ] is closely connected
with the particular forms taken by the loss function c(x f (z)) and the regularizer
Ω[ f ]. We restrict ourselves to squared loss in this section (c(x f (z)) x f (z) 2),
and to the quadratic or linear regularization terms described in section 17.2. We
thus assume that f (z) ∑M

i 1 ik(xi x) for some kernel k, which matches the regu-
larization operator ϒ in the quadratic case.

Quadratic Regularizers The problem to be solved in this case is to minimize

1
m

m

∑
i 1

xi

M

∑
j 1

jk(z j i)
2

2

M

∑
i j 1

i j k(zi z j) (17.19)

Adaptation Step
as Regression
Problem

with respect to . This is equivalent to a multivariate regression problem where i

are the patterns and xi the target values. Differentiation of (17.19) with respect to i

yields

m
2

Kz K K K X and hence
m
2

Kz K K
1

K X (17.20)
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where (Kz)i j : k(zi z j) is an M M matrix and (K )i j : k( i z j) is m M. More-
over, with slight abuse of notation, , and X denote the matrices of all parameters
and samples, respectively.
The computational complexity of the adaptation step is O(M2 m) for the matrix
computation, and O(M3) for the computation of the parameters i. Assuming ter-
mination of the overall algorithm in a finite number of steps, the overall complex-
ity of the proposed algorithm is O(M3) O(M2 m); thus, it scales linearly in the
number of samples (but cubic in the number of parameters).7

Linear Regularizers In this case, the adaptation step can be solved via a quadratic
optimization problem. The trick is to break up the 1 norms (that is, the city-block
metric) of the coefficient vectors i into pairs of nonnegative variables i i ,
thus replacing i 1 by i 1 i 1 . Consequently we have to minimize

1
m

m

∑
i 1

xi

M

∑
j 1

( j j )k(z j i)
2 M

∑
i 1

i i 1 (17.21)

with the constraint that i i belong to the positive orthant in . Here 1 denotes
the vector of ones in d . Optimization is carried out using standard quadratic
programming codes (see Chapters 6 and 10, and [380, 253, 556]). Depending on
the particular implementation of the algorithm, this has an order of complexity
similar to a matrix inversion, this is the same number of calculations needed to
solve the unconstrained quadratic optimization problem described previously.

An algorithm alternating between the projection and adaptation step, as described
above, generally decreases the regularized risk term and eventually converges to
a local minimum of the optimization problem (see Problem 17.6). What remains is
to find good starting values.

17.3.3 Initialization

The idea is to choose the coefficients i such that the initial guess of f approxi-
mately points in the directions of the first D principal components given by the
matrix V : (v1 vD). This is done in a manner analogous to the initialization
in the generative topographic mapping (eq. (2.20) of [52]);Initialization as

Principal
Hyperplane min

1 M

1
M

M

∑
i 1

c V(zi z0) f 1 M(zi) Ω[ f ] (17.22)

Hence for squared loss and quadratic regularizers, is given by the solution of

2 1 Kz V(Z Z0), where Z denotes the matrix of zi, z0 the mean of zi, and
Z0 the matrix of m identical copies of z0. If we are not dealing with centered data
as assumed, f0 is set to the sample mean, f0

1
m ∑m

i 1 xi.

7. Note that the memory requirements are also at least O(M m), and that for optimal
performance M should increase with increasing m.
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17.4 Connections to Other Algorithms

There exists a strong connection between Regularized Principal Manifolds (RPM)
and Generative Models, and in particular to the Generative Topographic Map
(GTM). The main difference is that the latter attempts to estimate the density of the
data, whereas the quantization functional is mainly concerned with approximat-
ing the observations X. In a nutshell, the relation to Generative Models is similar
to the connection between classification or regression estimates and Maximum a
Posteriori estimates (see Chapter 16) in supervised learning: the prior probability
over different generative models, in our case decoders such as manifolds and finite
sets, plays the role of a regularization term.

17.4.1 Generative Models

Let us begin with the basic setting of a generative model8 in Bayesian estima-
tion (for the basic properties see Chapter 16). We present a simplified version
here. Denote by P a distribution parametrized by , and by P( ) a prior prob-
ability distribution over all possible values of , which encodes our prior beliefs
as to which distributions P are more likely to occur. Then, by Bayes’ rule (Sec-
tion 16.1.3), the posterior probability of a distribution P given the observations
X x1 xm is given byPosterior

Probability
P( X)

P(X )P( )
P(X)

(17.23)

Since we cannot compute P(X), it is usually ignored, and later reintroduced as a
normalization factor. We exploit the iid assumption on X to obtain

P(X )
m

∏
i 1

P (xi) (17.24)

Taking the log (17.23) and substituting in (17.24) yields the log posterior probabil-
ity,

ln P( X)
m

∑
i 1

ln P (xi) ln P( ) c (17.25)

Here c is the obligatory additive constant we got by ignoring P(X). As with super-
vised learning, (17.23) is very similar to the regularized quantization functional, ifFormal

Connection to
Quantization
Functionals

we formally identify P (xi) with the negative quantization error incurred by en-
coding xi and ln P( ) with the regularizer.

8. The term generative model is just a synonym for density model. The generative part comes
from the fact that, given a density model, we can draw (=generate) data from this model,
which will then be distributed similarly to the original data.
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The difference lies in the form of P (xi). Whereas the quantization functional
approach assumes optimal encoding via (17.1), the generative model approach
essentially assumes stochastic encoding via latent variables. For convenience, we
denote the latter by . In general, P(xi ) takes on a relatively simple form, such
as a normal distribution around some f ( ) with variance 2. In this case, we set

P(x ) (2 2)
n
2 exp

f ( ) x 2

2 2 (17.26)

Integration over P( ) yields

P(x ) P(x )dP( ) (17.27)

The problem is that P( ) itself is unknown and must be estimated as well. Further-
more, we would like to find a P( ) such that P(X ) is maximized. In fact, thereEM Algorithm
exists an algorithm to iteratively improve P(X ) — the EM algorithm [135] (we
already encountered a similar method in Section 17.3).

Without going into further detail (for the special case of the GTM, see [52, 51]),
the algorithm works by iteratively estimating Pr( ) via Bayes’ rule,

P( x )
P(x )

∑x P(x )
(17.28)

and subsequently maximizing the log posterior under the assumption that P( )
is fixed. This process is repeated until convergence occurs. The latent variables
play a role similar to the projections back onto the manifold in the RPM algorithm.
Let us now have a closer look at an example: Generative Topographic Mappings.

17.4.2 The Generative Topographic Mapping

The specific form of P( ) f , and P(x ) in the GTM is as follows: P(x ) is taken
from (17.26), and is assumed to belong to a low dimensional grid; for instance,

[1 p]d, where d is the dimensionality of the manifold. Hence, a finite number
of “nodes” i may be “responsible” for having generated a particular data-point
xi. This is done in order to render the integral over d and the computation of
P( x ) practically feasible (see Figure 17.5). Moreover, f ( ) is the usual kernel
expansion; in other words, for some i we haveFinite Number of

Nodes
f ( ) ∑

i
ik( i ) (17.29)

Bishop et al. [52] choose Gaussian RBF kernels (17.15) for (17.29).
Finally, we need a prior over the class of mappings f . In the initial version [52],

a Gaussian prior over the weights i was chosen,Spherical Normal
Distribution

P( ) ∏
i

(2 2)
n
2 exp i

2

2 2 (17.30)

Here denotes the variance of the coefficients and n is the dimensionality of and
i. Unfortunately, this setting depends heavily on the number of basis functions
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x
ζ

f

Figure 17.5 The function f ( ) describes the mapping from the space of latent variables
into . Around each f ( i) we have a normal distribution with variance 2 (after [52]).

k( i ). Hence, in order to overcome this problem, [51] introduced a Gaussian
Process prior (see Section 16.3); thusGaussian Process

Prior
P( ) (2 )

n
2 K

1
2 exp ∑

i j
i j K( i j) (17.31)

Due to the Representer Theorem (Th. 4.2), we only need as many basis functions
as we have i, and in particular, the centers may coincide (see Problem 17.9).

Many of the existing extensions in the regularization framework (e.g., semipara-
metric settings) and recent developments in Bayesian methods (Relevance Vector
Priors and Laplacian Priors) could also be applied to the GTM (see Chapter 4, Sec-
tions 16.5 and 16.6, and Problems 17.10 and 17.11 for more details).

17.4.3 Robust Coding and Regularized Quantization

From a mere coding point of view, it might not seem too obvious at first glance
that we need very smooth curves. In fact, one could construct a space-filling curve
(see Figure 17.6). This would allow us to achieve zero empirical and expected
quantization error, by exploiting the fact that codewords may be specified toPeano Curve
arbitrary precision. The codebook in this setting would have to be exact, however,
and the resulting estimate f would be quite useless for any practical purpose.

The subsequent reasoning explains why such a solution f is also undesirable
from a learning theory point of view. Let us modify the situation slightly and
introduce a noisy channel; that is, the reconstruction does not occur forNoisy

Reconstruction
(x) argmin c(x f ( )) (17.32)

but for the random variable ˆ (x) with

ˆ (x) : argmin c(x f ( )) (17.33)

Here is a symmetrically distributed random variable drawn according to P( ),
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Figure 17.6 The Peano curve as an example of a space filling curve. We observe that with
increasing order, the maximum distance between any point and the curve decreases as
2 (n 1) .

with zero mean and variance 2. In this case, we have to minimize a slightly
different risk functional given byQuantization

with Noise
Rnoise[ f ] : c x f argmin

z
c(x f (z)) dP(x)dP( ) (17.34)

This modified setting rules out space-filling curves such as the Peano curve, since
the deviation in the encoding could then vary significantly. Eq. (17.34) is inspired
by the problem of robust vector quantization [195], and Bishop’s proof [50] that
in supervised learning training with noise is equivalent to Tikhonov regulariza-
tion. We use an adaptation of the techniques of [50] to derive a similar result in
unsupervised learning.

Assume now that c(x f ( )) is the squared loss (x f ( ))2. If the overall influence
of is small, the moments of order higher than two are essentially negligible,
and if f is twice differentiable, we may expand f as a Taylor expansion with
f ( ) f ( ) f ( )

2

2 f ( ). Using the reasoning in [50], we arrive atTaylor Expansion
in the Noise

Rnoise[ f ] R[ f ] 2 2dP( ) f ( ) 2 1
2

f ( ) x f ( ) dP(x)

R[ f ] 2 2 f ( ) 2 1
2

f ( ) x f ( ) dP(x) (17.35)

where is defined as in (17.32). Finally we expand f at the unbiased solution f0

(for which 0) in terms of 2. Since the second term in (17.35) inside the integral
is O( 2), its overall contribution is only O( 4), and thus it can be neglected. What
remains is

Rnoise[ f ] R[ f ] 2 2 f ( ) 2dP(x) with (x) argmin x f ( ) 2 (17.36)

Except for fact that the integral is with respect to x (and hence with respect to some
complicated measure with respect to ), the second term is a regularizer enforcing
smoothness by penalizing the first derivative, as discussed in section 4.4. Hence
we recover Principal Curves with a length constraint as a by-product of robust
coding.
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We chose not to use the discrete sample size setting as in [50], since it appears
not to be very practicable to use a training-with-input-noise scheme as in super-
vised learning for the problem of principal manifolds. The discretization of R[ f ],
meaning its approximation by the empirical risk functional, is independent of thisTraining with

Noise and
Annealing

reasoning, however. It might be of practical interest, though, to use a probabilistic
projection of samples onto the curve for algorithmic stability (as done for instance
in simulated annealing for the k-means algorithm).

17.5 Uniform Convergence Bounds

We next need a bound on the sample size sufficient to ensure that the above algo-
rithm finds an f close to the best possible; or, less ambitiously, to bring the empiri-
cal quantization error Remp[ f ] close to the expected quantization error R[ f ]. This is
achieved by methods which are very similar to those in [292], and are based on uni-
form (over a class of functions) convergence of empirical risk functionals to their
expected value. The basic probabilistic tools we need are given in section 17.5.2. In
section 17.5.3, we state bounds on the relevant covering numbers for the classes ofBounding the

Deviation
Between Remp[ f ]
and R[ f ]

functions induced by our regularization operators,

Λ : f : Ω[ f ] Λ (17.37)

Recall that Ω[ f ] 1
2 ϒ f 2, where ϒ f 2 is given by (17.14). Since bounding cover-

ing numbers can be technically intricate, we only state the results and basic tech-
niques in the main body and relegate the proofs and more detailed considerations
to the appendix. Section 17.5.4 gives overall sample complexity rates.

In order to avoid several technical requirements arising from unbounded loss
functions (like boundedness of some moments of the distribution P(x) [559]),
we assume that there exists some r 0 such that the probability measure of
a ball of radius r is 1; that is, P(Ur) 1. Kégl et al. [292] showed that under
these assumptions, the principal manifold f is also contained in Ur, hence the
quantization error is no larger than ec : maxx x Ur c(x x ) for all x. For squared
loss we have ec 4r2.

17.5.1 Metrics and Covering Numbers

In order to derive bounds on the deviation between the empirical quantization
error Remp[ f ] and the expected quantization error R[ f ] (in other words, to derive
uniform convergence bounds), let us introduce the notion of a (bracket) -cover
[415] of the loss function induced class

c : (x z) c(x f (z)) f (17.38)
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on Ur. A metric on c is defined by letting

d( fc fc) : sup
z x Ur

c(x f (z)) c(x f (z)) (17.39)

where f f . Whilst d is the metric we are interested in, it is quite hard to di-
rectly compute covering numbers with respect to it. By an argument from [606, 14],
however, it is possible to upper bound these quantities in terms of correspond-
ing entropy numbers of the class of functions itself if c is Lipschitz continu-Lipschitz

Continuous c ous. Denote by lc 0 a constant for which c(x x ) c(x x ) lc x x 2 for all
x x x Ur. In this case,

d( fc fc) lc sup
z

f (z) f (z) 2 (17.40)

hence all we have to do is compute the L ( d
2) covering numbers of to obtain the

corresponding covering numbers of c, with the norm on defined as

f L ( d
2) : sup

z
f (z) d

2
(17.41)

The metric is induced by the norm in the usual fashion. For the polynomial loss
c(x f (z)) : x f (z) p

2 , we obtain lc p(2r)p 1. Given a metric and a set ,
the covering number of , written ( ) (also wherever the dependency
is obvious), is the smallest number of -balls of radius of which the union
contains . With the above definitions, we can see immediately that ( c d)Equivalent

Covering
Number

lc L ( d
2) .

17.5.2 Upper and Lower Bounds

The next two results are similar in their flavor to the bounds obtained in [292].
They are slightly streamlined since they are independent of certain technical con-
ditions on used in [292].

Proposition 17.8 (L ( d
2) bounds for Principal Manifolds) Denote by a class of

continuous functions from into Ur, and let P(x) be a distribution over . If m
points are drawn iid from P(x), then for all 0 (0 2),

P sup
f

Rm
emp[ f ] R[ f ] 2 2lc

L ( d
2) e 2m( )2 ec (17.42)

Proof By the definition of Rm
emp[ f ] 1

m

m
∑

i 1
minz f (z) xi

2, the empirical quanti-

zation functional is an average over m iid random variables that are each bounded
by ec. Hence we may apply Hoeffding’s inequality (Theorem 5.1) to obtainBracket Covers

on f
P Rm

emp[ f ] R[ f ] 2e 2m 2 ec (17.43)

The next step is to discretize c by a 2 cover (that is, by a 2lc
cover) with

respect to the metric d: for every fc c there exists some fi in the cover such
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that R[ f ] R[ fi] 2 and Remp[ f ] Remp[ fi] 2 . Consequently,

P Rm
emp[ f ] R[ f ] P Rm

emp[ fi] R[ fi] (17.44)

Substituting (17.44) into (17.43) and taking the union bound over the 2 cover of c

gives the desired result.

This result is useful to assess the quality of an empirically found manifold. In order
to obtain rates of convergence, we also need a result connecting the expected
quantization error of the principal manifold femp minimizing Rm

emp[ f ] and the
manifold f with minimal quantization error R[ f ].

Proposition 17.9 (Rates of Convergence for Optimal Estimates) Suppose is com-
pact (thus femp and f exist as defined). With the definitions of Proposition 17.8,

P sup
f

R[ femp] R[ f ] 2 lc
L ( d

2) 1 e
m( )2

2ec (17.45)

The proof is similar to that of proposition 17.8, and can be found in Section A.2

17.5.3 Bounding Covering Numbers

Following propositions 17.8 and 17.9, the missing ingredient in the uniform con-
vergence bounds is a bound on the covering number ( ).

Before going into detail, let us briefly review what already exists in terms of
bounds on the covering number for L ( d

2) metrics. Kégl et al. [292] essentially
show that

ln ( ) O( 1 ) (17.46)

under the following assumptions: They consider polygonal curves f ( ) of length
L in the ball Ur . The distance measure (no metric!) for ( ) is defined asCovering

Numbers for
Polygonal
Curves

supx Ur
Δ(x f ) Δ(x f ) . Here Δ(x f ) is the minimum distance between a

curve f ( ) and x Ur.
By using functional analytic tools developed in [606] (see Chapter 12) we can

obtain results for more general regularization operators, which can then be used
in place of (17.46) to obtain bounds on the expected quantization error.

While it is not essential to the understanding of the main results to introduce
entropy numbers directly (they are essentially the functional inverse of the cover-
ing numbers ( ), and are dealt with in more detail in Chapter 12 and [509]),
we need to define ways of characterizing the simplicity of the class of functions
via the regularization term under consideration.

From Mercer’s Theorem (Theorem 2.10), we know that every kernel may be
written as a dot product in some feature space,

k(x x ) ∑
i

i i(x) i(x ) (17.47)
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The eigenvalues i determine the shape of the data mapped into feature space (cf.
Figure 2.3). Roughly speaking, if the i decay rapidly, the possibly infinite expan-
sion in (17.47) can be approximated with high precision by a low-dimensional
space which means that we are effectively dealing only with simple functions.

Recall that in Section 12.4, and specifically in Section 12.4.6, we stated that for a
Mercer kernel with j O(e jp

) for some p 0,

ln ( ) O log
p 1

p 1 (17.48)

Moreover if k is a Mercer kernel with j O( j 1) for some 0, thenAlmost Finite
Dimensional
Spaces ln ( ) O 2 (17.49)

for any (0 2). The rates obtained in (17.48) and (17.49) are quite strong. In
particular, recall that for compact sets in finite dimensional spaces of dimension
d, the covering number is ( ) O( d) (see Problem 17.7 and [90]). In view
of (17.48), this means that even though we are dealing with a nonparametric
estimator, it behaves almost as if it were a finite dimensional estimator.

All that is left is to substitute (17.48) and (17.49) into the uniform convergence
results to obtain bounds on the performance of our learning algorithm. Due to the
slow growth in ( ), we are able to prove good rates of convergence below.

17.5.4 Rates of Convergence

Another property of interest is the sample complexity of learning Principal Mani-
folds. Kégl et al. [292] showed a O(m 1 3) rate of convergence for principal curves
(d 1) with a length constraint regularizer. We prove that by utilizing a more pow-
erful regularizer (as is possible using our algorithm), we may obtain a bound of
the form O(m 2( 1) ) for polynomial rates of decay of the eigenvalues of k ( 1 is
the rate of decay), or O(m 1 2 ) for exponential rates of decay ( is an arbitrary
positive constant). It would be surprising if we could do any better, given that su-
pervised learning rates are typically no better than O(m 1 2). In the following, we
assume that Λ is compact; this is true of all the specific Λ considered above.

Proposition 17.10 (Learning Rates for Principal Manifolds) Suppose Λ is com-Almost Optimal
Rates pact. Define femp f Λ as in Proposition 17.9.

1. If ln ( c d) O(ln 1 ) for some 0, then

R[ femp] R[ f ] O(m 1 2 ln 2 m) O(m 1 2 ) (17.50)

for any 0

2. If ln ( c d) O( ) for some 0, then

R[ femp] R[ f ] O(m
1

2 ) (17.51)

The proof can be found in Section A.2. A restatement of the optimal learning rates
in terms of the spectrum of the kernel leads to the following corollary:
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Corollary 17.11 (Learning Rates for given Spectra) Suppose that Λ is compact,
femp f Λ are as before, and j are the eigenvalues of the kernel k inducing Λ (sorted
in decreasing order). If j e c j , thenRates are Kernel

Dependent
R[ femp] R[ f ] O m 1 2 ln

1
2 m (17.52)

If j O( j ) for quadratic regularizers, or j O( j 2) for linear regularizers, then

R[ femp] R[ f ] O m
1

2 (17.53)

Interestingly, the above result is slightly weaker than the result in [292] for the
case of length constraints, as the latter corresponds to the differentiation operator,
thus to polynomial eigenvalue decay of order 2, and therefore to a rate of 1

4 (Kégl
et al. [292] obtain 1

3 ). For a linear regularizer, though, we obtain a rate of 3
8 . It isTightness of

Bounds unclear whether this is due to our bound on the entropy numbers induced by k
(possibly) not being optimal, or the fact that our results are stated in terms of the
(stronger) L ( d

2) metric. This weakness, yet to be fully understood, should not
detract from the fact that we can get better rates by using stronger regularizers,
and our algorithm can utilize such regularizers.

17.6 Experiments

In order to show that the algorithm proposed in section 17.3 is sound, we ran
several experiments (cf. Figure 17.7, 17.9). In all cases, Gaussian RBF kernels (2.68)
were used. First, we generated different data sets in 2 and 3 dimensions from
1 or 2 dimensional parametrizations. We then applied our algorithm, using the
prior knowledge about the original parametrization dimension of the data set inRobust

Parameterization choosing the size of the latent variable space. For almost any parameter setting
(comprising our choice of , M, and the width of the basis functions) we obtained
good results, which means that the parametrization is well behaved.
We found that for a suitable choice of the regularization factor , a very close
match to the original distribution can be achieved. Although the number and
width of the basis functions also affect the solution, their influence on its basic
characteristics is quite small. Figure 17.8 shows the convergence properties of the
algorithm. We observe that the overall regularized quantization error clearly de-
creases for each step, while both the regularization term and the quantization error
term are free to vary. This empirically demonstrates that the algorithm strictly de-
creases Rreg[ f ] at every step, and eventually converges to a (local) minimum.9

9. Rreg[ f ] is bounded from below by 0, hence any decreasing series of Rreg[ fi], where fi

denotes the estimate at step i, has a limit that is either a global or (more likely) a local
minimum. Note that this does not guarantee we will reach the minimum in a finite number
of steps.
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Figure 17.7 Upper 4 images: We generated a dataset (small dots) by adding noise to a
distribution depicted by the dotted line. The resulting manifold generated by our approach
is given by the solid line (over a parameter range of [ 1 1]). From left to right, the
results are plotted for the regularization parameter values 0 1 0 5 1 4. The width
and number of basis functions were held constant at 1 and 10, respectively. Lower 4
images: We generated a dataset by sampling (with noise) from a distribution depicted in
the leftmost image (the small dots are the sampled data). The remaining three images show
the manifold obtained by our approach, for 0 001 0 1 1, plotted over the parameter
space [ 1 1]2 . The width and number of basis functions were again constant (at 1 and
36, respectively).
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Figure 17.8 Left: regularization term, middle: empirical quantization error, right: regular-
ized quantization error vs. number of iterations.

Given the close relationship to the GTM, we also applied Regularized Principal
Manifolds to the oil flow data set used in [52]. This data set consists of 1000
samples from 12 , organized into 3 classes. The goal is to visualize these samples,
so we chose the latent space to be [ 1 1]2 (with the exception of Figure 17.10,
where we embedded the data in 3 dimensions). We then generated the principal
manifold and plotted the distribution of the latent variables for each sample (see
Figure 17.9). For comparison purposes, the same strategy was applied to principal
component analysis (PCA). The result achieved using principal manifolds reveals
much more of the structure intrinsic to the data set than a simple search for
directions with high variance. The algorithm output is competitive with [52].
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Figure 17.9 Organization of the latent variable space for the oil flow data set. The left
hand plot depicts the result obtained using using principal manifolds, with 49 nodes, kernel
width 1, and regularization 0 01. The right hand plot represents the output of principal
component analysis. The lower dimensional representation found by principal manifolds
nicely reveals the class structure, to a degree comparable to the GTM. Linear PCA fails
completely.

17.7 Summary

Many data descriptive algorithms, such as k-means clustering, PCA, and principal
curves, can be seen as special instances of a quantization framework. Learning
is then perceived in terms of being able to represent (in our case, this means to
compress) data by a simple code, be it discrete or not.Quantization

Framework In deriving a feasible kernel based algorithm for this task, we first showed that
minimizing the quantization error is an ill-posed problem, and thus requires ad-
ditional regularization. This led to the introduction of regularized quantization
functionals that can be solved efficiently in practice. Through the use of manifolds
as a means of encoding, we obtained a new estimator: regularized principal man-
ifolds.

The expansion in terms of kernel functions and the treatment by regularization
operators made it easier to decouple the algorithmic part (finding a suitable man-
ifold) from the specification of a class of manifolds with desirable properties. In
particular, the algorithm does not crucially depend on the number of nodes used.

Bounds on the sample complexity of learning principal manifolds were given.
Their proofs made use of concepts from regularization theory and supervised
learning. More details on bounds involving entropy and covering numbers can
be found in Chapter 12 and [509].

There are several directions for future work using the quantization functional
approach; we mention the most obvious three.
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Figure 17.10 Organization of the latent
variable space for the oil flow data set
using principal manifolds in 3 dimen-
sions, with 63 216 nodes, kernel width
1, and regularization 0 01. The 3-
dimensional latent variable space is pro-
jected onto 2 dimensions for the purpose
of visualization. Note the good separa-
tion between the different flow regimes.
The map further suggests that there exist
5 subdivisions of the regime labelled .

The algorithm could be improved. In contrast to successful kernel algorithms,Open Problems
such as SVMs, the algorithm presented is not guaranteed to find a global mini-
mum. Is it possible to develop an efficient algorithm that does?

The algorithm is related to methods that carry out a probabilistic assignment
of the observed data to the manifold (see Section 17.4.2). Such a strategy often
exhibits improved numerical properties, and the assignments themselves can be
interpreted statistically. It would be interesting to exploit this fact with RPMs.

Finally, the theoretical bounds could be improved — hopefully achieving the
same rate as in [292] for the special case addressed therein, while still keeping the
better rates for more powerful regularizers.

17.8 Problems

17.1 (Sample Mean ) Show that the sample mean is indeed the minimizer of empirical
quantization function as defined in Example 17.1.

17.2 (Representer Theorem for RPMs ) Prove that for a regularized quantization
functional of the form

Rreg[ f ]
m

∑
i 1

c(xi f (zi)) 2
f 2 (17.54)

with zi : argmin z c(xi f (z)), the function at the minimum of (17.54) is given by

f (z)
m

∑
i 1

ik(zi z) where i (17.55)

Hint: consider the proof of Theorem 4.2. Now assume that there exists an optimal expan-
sion that is different from (17.55). Decompose f into f and f , and show that f 0.



17.8 Problems 541

17.3 (Estimating R[ f ] ) Denote by RLOO[ f ] the leave-one-out error (see also Sec-
tion 12.2) obtained for regularized quantization functionals. Show that this is an unbiased
estimator (see Definition 3.8) for R[ f ].

Discuss the computational problems in obtaining RLOO[ f ]. Can you find a cheap ap-
proximation for RLOO[ f ]? Hint: remove one pattern at a time, keep the assignment i for
the other observations fixed, and modify the encoding.

Can you find a sufficient statistic for k-means clustering with squared loss error? Hint:
express the leave-one-out approximation in closed form and compare it to the inter-cluster
variance. What do you have to change for absolute deviations rather than squared errors?

17.4 (Mixed Linear Programming Regularizers ) Show that minimizing the regu-
larized risk functional Rreg[ f ] with Ω[ f ] chosen according to (17.17) can be written as a
quadratic program. Hint: use a standard trick from optimization: replace max( 1 n)
by the set of inequalities ¯

i for i [n], and use ¯ in the objective function.
How does the regularized quantization functional look in the case of regularized princi-

pal manifolds?

17.5 (Pearls on a Chain ) Denote by f : [k] a mapping from k numbers to “clus-
ter centers” in , where the ith cluster is given by f (i) ∑n

j 1 jk( j i) and z j . Can
you find a regularized quantization functional for clustering? Hint: use a quadratic regu-
larizer.

How would you find a suitable algorithm to minimize Rreg[ f ]? What is the assumption
made about f when using such a regularizer? Can you find analogous settings for “nets”
rather than “chains”? Can you modify the regularizer such that the chain becomes more
and more “stiff” towards the end, thus effectively controlling the capacity?

17.6 (Coordinate Descent ) Denote by f : N a multivariate function. Prove
that coordinate descent strictly decreases f at each step. Find a case where this strategy
can be very slow. Find cases where it converges only to a local minimum. Under what
circumstances is coordinate descent fast (hint: use a quadratic function in two variables as
a toy example)?

17.7 (Covering Numbers in Compact Sets of d [90] ) Prove that in d-dimensional
compact sets S for any metric, the covering number ( S) is bounded by O( d). Hint:
compute the volume of the unit ball under the metric, and divide vol S by the volume of
the unit ball. Exploit scaling properties of volumes.

17.8 (Convergence Bounds without Bracket Covers ) Prove uniform convergence
bounds that do not require bracket covers, but instead make use of the fact that we are only
comparing manifolds at a finite number of points.

17.9 (Nodes for the GTM with GP Prior ) Assume we use the Generative Topo-
graphic Mapping algorithm with a Gaussian Process Prior on f and a discrete set for
the possible values of i. Show that the minimum of a Maximum a Posteriori estimate is
achieved if (xi) i. Hint: apply the representer theorem of Problem 17.2.
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17.10 (Semiparametric Manifolds ) Derive optimization equations for a semipara-
metric regularization functional Ω[ f ] (Section 4.8) in the case of Regularized Principal
Manifolds. Can you construct an estimator that smoothly blends over from Principal Com-
ponent Analysis to nonlinear settings, i.e., that depends smoothly on a parameter such that
for one value, one recovers PCA and for another one RPM. Hint: use hyperplanes in as
the parametric part.

Can you apply the same reasoning to the GTM? Caution: you may obtain improper
(that is, not normalizable) priors ( ).

17.11 (Laplacian Priors in the GTM ) Formulate the posterior probability for a
Generative Topographic Map, where we use exp( 1) as the prior probability rather
than a Gaussian Process prior on the weights. Can you derive the EM equations?



 

18 Pre-Images and Reduced Set Methods

Using a kernel k instead of a dot product in the input space corresponds to
mapping the data into a dot product space with a map Φ : , and taking
the dot product there (cf. Chapter 2);

k(x x ) Φ(x) Φ(x ) (18.1)

This way, all computations in are done implicitly. The price paid for this ele-
gance, however, is that the solutions to kernel algorithms are only obtained as
expansions in terms of input patterns mapped into feature space. For instance, the
normal vector of an SV hyperplane is expanded in terms of Support Vectors, just
as the Kernel PCA feature extractors are expressed in terms of training examples;

Ψ
m

∑
i 1

iΦ(xi) (18.2)

When evaluating an SV decision function or a Kernel PCA feature extractor,
this is normally not a problem: thanks to (18.1), taking the dot product between
Ψ and some mapped test point Φ(x) transforms (18.2) into a kernel expansion
∑i ik(xi x), which can be evaluated even if Ψ lives in an infinite-dimensional
space. In some cases, however, a more comprehensive understanding is required
of the exact connection between patterns in input space and elements of feature
space, given as expansions such as (18.2). This field is far from being understood,
and the current chapter, which partly follows [474], attempts to gather some ideas
elucidating the problem, and describes algorithms for situations where the above
connection is important.

We start by stating the pre-image problem. By this we refer to the problemOverview
of finding patterns in input space that map to specific vectors in feature space
(Section 18.1). This has applications for instance in denoising by Kernel PCA
(Section 18.2). In Section 18.3, we build on the methods for computing single pre-
images and construct so-called reduced set expansions, which approximate feature
space vectors. We distinguish between methods that construct the expansions by
selecting from the training set (Section 18.4), and methods that come up with
synthetic expansion patterns (Section 18.5). When applied to the solution vector
of an SVM, these methods can lead to significant increases in speed, which are
crucial for making SVMs competitive in tasks where speed on the test sets is a
major concern, such as face detection (Section 18.6).
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18.4 Reduced Set Selection

18.3 Reduced Sets

18.1 Pre−Images 18.2 Finding Approximate
Pre−Images

18.5 Reduced Set
Construction

18.6 Sequential Reduced
Set Evaluation

The present chapter provides methods that are used in a number of kernel al-
gorithms; background knowledge on the latter is therefore of benefit. Specifically,Prerequisites
knowledge of SV classification is required in Sections 18.4 and 18.6, and parts of
Section 18.4 additionally require knowledge of SV regression and of the basics of
quadratic programming (cf. Chapter 6). The reader should also be familiar with
the Kernel PCA algorithm (Section 14.2), which is used both as a tool and a subject
of study in this chapter: on one hand, it is used for constructing approximation
methods; on the other hand, it forms the basis of denoising methods, in which it is
combined it with pre-image construction methods.

18.1 The Pre-Image Problem

In Chapter 2, we introduced kernels and described several ways to construct
the feature map associated with a given kernel; the latter represent ways to get
from input space to feature space. We now study maps that work in the opposite
direction.

There has been a fair amount of work on aspects of this problem in the context
of reduced set (RS) methods [84, 87, 184, 400, 474]. For pedagogical reasons, we
postpone RS methods to Section 18.3, as they focus on a problem that is more
complex than the one we would like to start with.

18.1.1 Exact Pre-Images

Kernel algorithms express their solutions as expansions in terms of mapped input
points (18.2). Since the map Φ into the feature space is nonlinear, however, we
cannot generally assert that each such expansion has a pre-image under Φ; namely
a point z such that Φ(z) Ψ (Figure 18.1). If the pre-image exists, then it will
be easy to compute, as shown by the following result:

Proposition 18.1 (Exact Pre-Images [467]) Consider a feature space expansion Ψ
∑m

j 1 jΦ(x j), where x j . We assume that is a subset of N . If there exists z N

such that

Φ(z) Ψ (18.3)
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span Φ( )

Φ

Φ( )

Ψ

Figure 18.1 The pre-image
problem: points in the span
of the mapped input data are
not all necessarily images of
corresponding input patterns.
Therefore, points that can be
written as expansions in terms
of mapped input patterns (such
as a Kernel PCA eigenvector
or a SVM hyperplane normal
vector) cannot necessarily be
expressed as images of single
input patterns.

and an invertible function fk such that k(x x ) fk( x x ), then we can compute z as

z
N

∑
i 1

f 1
k

m

∑
j 1

jk(x j ei) ei (18.4)

where e1 eN is any orthonormal basis of input space.

Proof We expand z as

z
N

∑
i 1

z ei ei

N

∑
i 1

f 1
k (k(z ei))ei

N

∑
i 1

f 1
k

m

∑
j 1

jk(x j ei) ei (18.5)

This proposition gives rise to a number of observations. First, examples of kernels
that are invertible functions of x x include polynomial kernels,

k(x x ) ( x x c)d where c 0 d odd (18.6)

and sigmoid kernels,

k(x x ) ( x x Θ) where Θ (18.7)

A similar result holds for RBF kernels (using the polarization identity) — we only
require that the kernel allow the reconstruction of x x from k, evaluated on
certain input points, which we are allowed to choose (for details, cf. [467]).

The crucial assumption of the Proposition is the existence of the pre-image.Existence of
Pre-Images Unfortunately, there are many situations for which there are no pre-images. To

illustrate, we consider the feature map Φ in the form given by (2.21): Φ :
x k( x). Clearly, only points in feature space that can be written as k( x)

have a pre-image under this map. To characterize this set of points in a specific
example, consider the Gaussian kernels,

k(x x ) exp
x x 2

2 2 (18.8)
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In this case, Φ maps each input to a Gaussian centered on this point (see Fig-
ure 2.2). We already know from Theorem 2.18, however, that no Gaussian can be
written as a linear combination of Gaussians centered at different points. There-
fore, in the Gaussian case, none of the expansions (18.2), excluding trivial cases
with only one term, has an exact pre-image.

18.1.2 Approximate Pre-Images

The problem we initially set out to solve has turned out to be insolvable in the
general case. Consequently, rather than trying to find exact pre-images, we attempt
to obtain approximate pre-images. We call z N an approximate pre-image of Ψ if

(z) Ψ Φ(z) 2 (18.9)

is small.1

Are there vectors Ψ for which good approximate pre-images exist? As we shall
see, this is indeed the case. As described in Chapter 14, for n 1 2 p, Kernel
PCA provides projections

PnΦ(x) :
n

∑
j 1

Φ(x) v j v j (18.10)

with the following optimal approximation property (Proposition 14.1): Assume
that the v j are sorted according to nonincreasing eigenvalues j, with p being the
smallest nonzero eigenvalue. Then Pn is the n-dimensional projection minimizing
m

∑
i 1

PnΦ(xi) Φ(xi) 2 (18.11)

Therefore, PnΦ(x) can be expected to have a good approximate pre-image, pro-
vided that x is drawn from the same distribution as the xi; to give a trivial example,
x itself is already a good approximate pre-image. As we shall see in experiments,
however, even better pre-images can be found, which makes some interesting ap-
plications possible [474, 365]:Applications of

Pre-Images
Denoising. Given a noisy x, map it to Φ(x), discard components corresponding
to the eigenvalues n 1 m to obtain PnΦ(x), and then compute a pre-image
z. The hope here is that the main structure in the data set is captured in the first
n directions in feature space, and the remaining components mainly pick up the
noise — in this sense, z can be thought of as a denoised version of x.

Compression. Given the Kernel PCA eigenvectors and a small number of features
PnΦ(x) (cf. (18.10)) of Φ(x), but not x, compute a pre-image as an approximate
reconstruction of x. This is useful if n is smaller than the dimensionality of the
input data.

1. Just how small it needs to be in order to form a satisfactory approximation depends on
the problem at hand. Therefore, we have refrained from giving a formal definition.
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N

Ψ
(R  )

zΦ(  )
Φ

H

Figure 18.2 Given a vector Ψ , we
try to approximate it by a multiple of
a vector Φ(z) in the image of the input
space ( N ) under the nonlinear map Φ,
by finding z such that the projection dis-
tance of Ψ onto span(Φ(z)), depicted by
the straight line, is minimized.

Interpretation. Visualize a nonlinear feature extractor v j by computing a pre-
image.

In the present chapter, we mainly focus on the first application. In the next section,
we develop a method for minimizing (18.9), which we later apply to the case
where Ψ PnΦ(x).

18.2 Finding Approximate Pre-Images

18.2.1 Minimizing the Projection Distance

We start by considering a problem slightly more general than the pre-image prob-
lem. We are given a kernel expansion with Nx terms,

Ψ
Nx

∑
i 1

iΦ(xi) (18.12)

and seek to approximate it by Ψ Φ(z). For 1, this reduces to the pre-image
problem. Allowing the freedom that 1 makes sense, since the length of Ψ is
usually not crucial: in SV classification, for instance, it can be rescaled (along with
the threshold b) without changing the decision function, cf. Chapter 7.

First observe that rather than minimizing

Ψ Ψ 2
Nx

∑
i j 1

i jk(xi x j) 2k(z z) 2
Nx

∑
i 1

i k(xi z) (18.13)

we can minimize the distance between Ψ and the orthogonal projection of Ψ onto
span(Φ(z)) (Figure 18.2),

Ψ Φ(z)
Φ(z) Φ(z)

Φ(z) Ψ
2

Ψ 2 Ψ Φ(z) 2

Φ(z) Φ(z)
(18.14)

To this end, we maximize

Ψ Φ(z) 2

Φ(z) Φ(z)
(18.15)
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which can be expressed in terms of the kernel. The maximization of (18.15) over
z is preferable to that of (18.13) over z and , since the former comprises a lower-
dimensional problem, and since z and have different scaling behavior. Once the
maximum of (18.15) is found, it is extended to the minimum of (18.13) by setting
(cf. (18.14)) Ψ Φ(z) Φ(z) Φ(z) (Problem 18.6). The function (18.15) can
either be minimized using standard techniques for unconstrained nonlinear opti-
mization (as in [84]), or, for particular choices of kernels, using fixed-point itera-
tion methods, as shown below. Readers who are not interested in the algorithmic
details may want to skip Section 18.2.2, which shows that for a certain class of ker-
nels, the pre-image problem can be solved approximately using an algorithm that
resembles clustering methods.

18.2.2 Fixed Point Iteration Approach for RBF Kernels

For kernels that satisfy k(z z) 1 for all z (such as Gaussian kernels and other
normalized RBF kernels), (18.15) reduces to

Ψ Φ(z) 2 (18.16)

Below, we assume that N . For the extremum, we have

0 z Ψ Φ(z) 2 2 Ψ Φ(z) z Ψ Φ(z) (18.17)

To evaluate the gradient in terms of k, we substitute (18.12) to get

0
Nx

∑
i 1

i zk(xi z) (18.18)

which is sufficient for (18.17) to hold.
For k(xi z) k( xi z 2) (Gaussians, for instance), we obtain

0
Nx

∑
i 1

ik ( xi z 2)(xi z) (18.19)

k being the derivative of k, leading to

z
∑Nx

i 1 ik ( xi z 2)xi

∑Nx
i 1 ik ( xi z 2)

(18.20)

For the Gaussian kernel k(xi z) exp( xi z 2 (2 2)), we get

z
∑Nx

i 1 i exp( xi z 2 (2 2))xi

∑Nx
i 1 i exp( xi z 2 (2 2))

(18.21)

(note that for k(t) exp( t), we have k (t) exp( t)), and devise an iterationFixed Point
Iteration

zn 1
∑Nx

i 1 i exp( xi zn
2 (2 2))xi

∑Nx
i 1 i exp( xi zn

2 (2 2))
(18.22)
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The denominator equals Ψ Φ(zn) , and is thus nonzero in the neighborhood of the
extremum of (18.16), unless the extremum itself is zero. The latter only occurs if
the projection of Ψ on the linear span of Φ( N ) is zero, in which case it is pointless
to try to approximate Ψ. Numerical instabilities related to Ψ Φ(z) being small
can thus be approached by restarting the iteration with different starting values.

Interestingly, (18.22) can be interpreted in the context of clustering (e.g., [82]).Connection to
Clustering Iteration of this expression determines the center of a single Gaussian cluster,

trying to capture as many of the xi with positive i as possible, and simultaneously
avoids those xi with negative i. For SV classifiers, the sign of the i equals
the label of the pattern xi. It is this sign which distinguishes (18.22) from plain
clustering or parametric density estimation. The occurrence of negative signs is
related to the fact that we are not trying to estimate a parametric density but the
difference between two densities (neglecting normalization constants).

To see this, we define the sets pos i : i 0 and neg i : i 0 , and the
shorthands

ppos(z) ∑
pos

i exp( xi z 2 (2 2)) (18.23)

and

pneg(z) ∑
neg

i exp( xi z 2 (2 2)) (18.24)

The target (18.16) then reads (p pos(z) pneg(z))2; in other words, we are trying to
find a point z for which the difference between the (unnormalized) “probabilities”
of the two classes is maximized, and to estimate the approximation of (18.12) by a
Gaussian centered at z. Furthermore, note that we can rewrite (18.21) as

z
ppos(z)

ppos(z) pneg(z)
xpos

pneg(z)
pneg(z) ppos(z)

xneg (18.25)

where

xpos neg
∑pos neg i exp( xi z 2 (2 2))xi

∑pos neg i exp( xi z 2 (2 2))
(18.26)

18.2.3 Toy Examples

Let us look at some experiments, for which we used an artificial data set generated
from three Gaussians (standard deviation 0 1). Figure 18.3 shows the results of
performing kernel PCA on this data. Using the resulting eigenvectors, nonlinear
principal components were extracted from a set of test points generated from the
same model, and the points were reconstructed from varying numbers of principal
components. Figure 18.4 shows that discarding higher-order components leads to
removal of the noise — the points move towards their respective sources.

To obtain further intuitive understanding in a low-dimensional case, Figure 18.6
depicts the results of denoising a half circle and a square in the plane, using Kernel
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Figure 18.3 Kernel PCA toy
example with a Gaussian ker-
nel (see text). We plot lines
of constant feature value for
the first 8 nonlinear princi-
pal components extracted with
k(x x ) exp x x 2 0 1 .
The first 2 principal compo-
nents (top middle/right) sep-
arate the three clusters, com-
ponents 3–5 split the clusters,
and components 6–8 split them
again, orthogonal to the above
splits [474].

Figure 18.4 Kernel PCA de-
noising by reconstruction from
projections onto the eigenvec-
tors of Figure 18.3. We gener-
ated 20 new points from each
Gaussian, represented them in
feature space by their first n
1 2 8 nonlinear principal
components, and computed ap-
proximate pre-images, shown
in the upper 9 pictures (top
left: original data, top mid-
dle: n 1, top right: n 2,
etc.). Note that by discarding
higher order principal compo-
nents (through using a small
n), we removed the noise in-
herent in the nonzero variance

2 of the Gaussians. The lower
9 pictures show how the orig-
inal points “moved” in the de-
noising. Unlike the correspond-
ing case in linear PCA, where
where we obtain lines (see Fig-
ure 18.5), clusters shrink to
points in Kernel PCA [474].

Figure 18.5 Reconstructions
and point movements for lin-
ear PCA, based on the first
principal component [474].
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Kernel PCA nonlinear autoencoder Principal Curves linear PCA

Figure 18.6 Denoising in 2-d (see text). The data set (small points) and its denoised version
(solid lines) are depicted. For linear PCA, we used one component for reconstruction,
since two components yield a perfect reconstruction, and thus do not denoise. Note that
all algorithms except for the KPCA pre-image approach have problems in capturing the
circular structure in the bottom example (from [365]).

PCA (with Gaussian kernel), a nonlinear autoencoder (see Section 14.2.3), prin-
cipal curves (Example 17.6), and linear PCA. In all algorithms, parameter val-
ues were selected such that the best possible denoising result was obtained. The
figure shows that on the closed square problem, Kernel PCA does best (subjec-
tively), followed by principal curves and the nonlinear autoencoder; linear PCA
fails completely. Note however that all algorithms other than Kernel PCA provide
an explicit one-dimensional parametrization of the data, whereas Kernel PCA only
provides us with a means of mapping points to their denoised versions (in this
case, we used four Kernel PCA features, and hence obtained a four-dimensional
parametrization).

18.2.4 Handwritten Digit Denoising

The approach has also been tested on real-world data, using the USPS database of
handwritten digits (Section A.1). For each of the ten digits, 300 training examples
and 50 test examples were chosen at random. Results are shown in Figures 18.7
and 18.8. In the experiments, linear and Kernel PCA (with Gaussian kernels) were
performed on the original data. Two types of noise were added to the test patterns:

(i) Additive Gaussian noise with zero mean and standard deviation 0 5

(ii) ‘Speckle’ noise, where each pixel is flipped to black or white with probability
p 0 2

For the noisy test sets, the projections onto the first n linear and nonlinear com-
ponents were computed, and reconstruction was carried out in each case (using a
basis expansion in the linear case, and the pre-image method in the kernel case).
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Gaussian noise ‘speckle’ noise
orig.

noisy

n 1

P 4

C 16

A 64

256

n 1

K 4

P 16

C 64

A 256

Figure 18.7 Denoising of USPS data (see text). We first describe the left hand plot. Top: the
first occurrence of each digit in the test set. Second row: the digit above, but with added
Gaussian noise. Following five rows: the reconstruction achieved with linear PCA using
n 1 4 16 64 256 components. Last five rows: the results of the Kernel PCA approach using
the same number of components. In the right hand plot, the same approaches are illustrated
for ‘speckle’ noise (from [365]).

When the optimal number of components was used in both linear and Kernel
PCA, the Kernel PCA approach did significantly better. This can be interpreted as
follows: Linear PCA can extract at most N components, where N is the dimension-
ality of the data. Being a basis transform, all N components together fully describe
the data. If the data are noisy, a certain fraction of the components are devoted to
the extraction of noise. Kernel PCA, on the other hand, allows the extraction of
up to m features, where m is the number of training examples. Accordingly, Ker-
nel PCA can provide a larger number of features carrying information about the
structure in the data (in our experiments, m N). In addition, if the structure to
be extracted is nonlinear, then linear PCA must necessarily fail, as demonstrated
in the toy examples.

18.3 Reduced Set Methods

18.3.1 The Problem

In the MNIST benchmark data set of 60000 handwritten digits, SVMs have
achieved record accuracies (Chapter 11); they are inferior to neural nets in run-
time classification speed, however [87]. In applications for which the latter is an
issue, it is thus desirable to come up with methods to increase the speed by making
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1 2 4 8 16 32 64 128 256 512 1024

0.05

0.1

0.15

0.2

0.25

Kernel PCA
Linear PCA

Figure 18.8 Mean
squared error of the
denoised images vs.
# of features used,
for Kernel PCA and
linear PCA. Kernel
PCA exploits non-
linearities and has
the potential to uti-
lize more features
to code structure,
rather than noise.
Therefore, it outper-
forms linear PCA
denoising if a suf-
ficiently large num-
ber of features is
used.

the SV expansion more sparse (cf. Chapter 10). This constitutes a problem slightly
more general than the pre-image problem studied above: we no longer just look
for single pre-images, but for expansions in terms of several input vectors [84]. It
turns out that we can build on the methods developed in the previous section to
design an algorithm for this more general case (see Section 18.5).

Assume we are given a vector Ψ , expanded in terms of the images of input
patterns xi ,

Ψ
Nx

∑
i 1

iΦ(xi) (18.27)

with expansion coefficients i . Rather than looking for a single pre-image, we
try to approximate Ψ by a reduced set expansion [84],

Ψ
Nz

∑
i 1

iΦ(zi) (18.28)

with Nz Nx, i , and points zi . To this end, it was suggested in [84] that

Ψ Ψ 2
Nx

∑
i j 1

i jk(xi x j)
Nz

∑
i j 1

i jk(zi z j) 2
Nx

∑
i 1

Nz

∑
j 1

i jk(xi z j) (18.29)

be minimized. The crucial point is that even if Φ is not given explicitly, (18.29) can
be computed (and minimized) in terms of the kernel.

18.3.2 Finding the Coefficients

Evidently, the RS problem consists of two parts: the determination the RS vectors
zi, and the computation the expansion coefficients i. We start with the latter, as it
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is both easier and common to different RS methods.

Proposition 18.2 (Optimal Expansion Coefficients [474]) Suppose that the vectors
Φ(z1) Φ(zm ) are linearly independent. The expansion coefficients ( 1 m )
minimizing

m

∑
i 1

iΦ(xi)
m

∑
i 1

iΦ(zi) (18.30)

are given by

(Kz) 1Kzx (18.31)

where Kz
i j : Φ(zi) Φ(z j) and Kzx

i j : Φ(zi) Φ(x j) .

Note that if the Φ(zi) are linearly independent, as they should be if we want to use
them for approximation, then Kz has full rank. Otherwise, we can use the pseudo-
inverse, or select the solution that has the largest number of zero components.

Proof We evaluate the derivative of the distance in ,

j
Ψ

m

∑
i 1

iΦ(zi) 2 2Φ(z j)(Ψ
m

∑
i 1

iΦ(zi)) (18.32)

and set it to 0. Substituting Ψ ∑m
i 1 iΦ(xi), we obtain (using ( 1 m))

Kzx Kz (18.33)

hence

(Kz) 1Kzx (18.34)

No RS algorithm using the feature space norm as an optimality criterion can
improve on this result (cf. also Section 10.2.1). For instance, suppose we are given
an algorithm that computes the i and zi simultaneously. Proposition 18.2 can
then be used to recompute the optimal coefficients , which must yield a solution
at least as good. Algorithms may still be differentiated, however, by the way in
which they determine the vectors zi in the first place. In the next section, we
describe algorithms that simply select subsets of the xi, whereas methods detailed
in Section 18.5 use vectors that can be different to the original xi.

18.4 Reduced Set Selection Methods

Why should we expect to gain anything by selecting a subset of the expansion
vectors in order to get a sparser expansion? Indeed, doesn’t the SVM algorithm
already find the sparsest solution? Unfortunately, this is not the case. Since the
coefficients in an SVM expansion satisfy j [ C C] (cf. Chapter 7) for some
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positive value of the regularization constant C, there is reason to believe that the
SV expansion can be made sparser by removing this constraint on j [400].2

18.4.1 RS Selection via Kernel PCA

The idea for the first algorithm we describe arises from our observation that the
null space of the Gram matrix Ki j Φ(xi) Φ(x j) tells us precisely how many
vectors can be removed from an expansion while incurring zero approximation
error (assuming we correctly adjust the coefficients). In other words, it tell us
how sparse we can make a kernel expansion without changing it in the least
[467, 184].3 Interestingly, it turns out that this problem is closely related to Kernel
PCA (Chapter 14).

Let us start with the simplest case. Assume there exists an eigenvector 0 of
K with eigenvalue 0, hence K 0. Using Ki j Φ(xi) Φ(x j) , this reads
m

∑
j 1

Φ(xi) Φ(x j) j 0 for all i 1 m (18.35)

hence
m

∑
j 1

jΦ(x j) 0 (18.36)

Since 0, the Φ(x j) are linearly dependent, and therefore any of the Φ(x j)
with nonzero j can be expressed in terms of the others. Hence we may use the
eigenvectors with eigenvalue 0 to eliminate certain terms from any expansion in
the Φ(xj).

What happens if we do not have vanishing eigenvalues, as in the case of Gaus-
sian kernels (Theorem 2.18)? Intuitively, we anticipate that even though the above
reasoning is no longer holds precisely true, it should give a good approxima-
tion. The crucial difference, however, is that in order to get the best possible
approximation, we need to take into account the coefficients of the expansion
Ψ ∑m

j 1 jΦ(x j): if we incur an error by removing Φ(xn), for example, then this
error also depends on n. How do we then select the optimal n?

Clearly, we would like to find coefficients j that minimize the error we commit
by replacing nΦ(xn) with ∑ j n jΦ(x j);

( n) nΦ(xn) ∑ j n jΦ(x j)
2

(18.37)

To establish a connection to Kernel PCA, we make a change of variables. First,

2. For instance, a certain pattern might appear twice in the training set, yet the SV expan-
sion must utilize both copies since the upper bound constraint limits the coefficient of each
to C.
3. The Gram matrix can either be computed using only those examples that have a nonzero

j, or from a larger set containing further candidate expansion vectors.
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define j 1 for j n and j j n for j n. Hence the error (18.37) equals
n

2 ∑m
j 1 jΦ(x j) 2. Normalizing to obtain : , and thus n 1 ,

leads to the problem of minimizing

( n) n

n

2

K (18.38)

with respect to , where 1 (note that is invariant when is rescaled).
A straightforward calculation shows that we can recover the approximation co-
efficients for nΦ(xn) (namely, the values that are added to the j ( j n) when

nΦ(xn) is left out): these are j
n j

n
j n.

Rather than minimizing the nonlinear function (18.38), we now devise a com-
putationally attractive approximate solution. This approximation is motivated by
the observation that K alone is minimized for the eigenvector with minimal
eigenvalue, consistent with the special case discussed above (cf. (18.36)). In this
case, K min. More generally, if i is a normalized eigenvector of K with
eigenvalue i, then

(i n) n
i
n

2

i (18.39)

This can be minimized in O(m3) operations by performing kernel PCA and scan-
ning through the matrix ( (i n))in. The complexity can be reduced to O(m m2) by
only considering the smallest m eigenvalues, with m m chosen a priori. Hence,
we can eliminate Φ(xn), where n is chosen in a principled yet efficient way.

Setting all computational considerations aside, the optimal greedy solution to the
above selection problem, equivalent to (18.38), can also be obtained using Propo-
sition 18.2: we compute the optimal solution for all possible patterns that could be
left out (that is, we use subsets of x1 xm of size m 1 as z1 zm ) and
evaluate (18.32) in each case.

The same applies to subsets of any size. If we have the resources to exhaustively
scan through all subsets of size m (1 m m 1), then Proposition 18.2 provides
the optimal way of selecting the best expansion of a given size. Better expansions
can only be obtained if we drop the restriction that the approximation be written
in terms of the original patterns, as done in Section 18.5.

No matter how we end up choosing n, we approximate Ψ by

Ψ ∑
j n

jΦ(x j) nΦ(xn) ∑
j n

j
n j

n
Φ(x j) (18.40)

The whole scheme can be iterated until the expansion of Ψ is sufficiently sparse.
If we want to avoid having to find the smallest eigenvalue of K anew at each step,
then approximate schemes using heuristics can be conceived.

We now describe experiments conducted to demonstrate this set reductionExperiments
method. We determined the eigenvectors at each step using the Gram matrix com-
puted from the SVs, and n was selected according to (18.39). For the USPS hand-
written digit database, approximations were found to the SV expansions (7.25) of
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Table 18.1 Number of test errors for each binary recognizer and test error rates for 10-class
classification, using the RS method that selects patterns via Kernel PCA (Section 18.4.1).
Top: number of SVs in the original SV RBF-system. Bottom, first row: original SV system,
with 254 SVs on average; following rows: systems with varying average numbers of RS
patterns. In the system RSS-n, equal fractions of SVs were removed from each recognizer
such that on average, n RS patterns were left.

digit 0 1 2 3 4 5 6 7 8 9 ave.
#SVs 219 91 316 309 288 340 213 206 304 250 254

0 1 2 3 4 5 6 7 8 9 10-class

SV-254 16 13 30 17 32 22 11 12 26 17 4.4%
RSS-50 47 18 70 52 192 95 54 38 97 157 17.6%
RSS-75 23 15 36 30 65 47 21 29 56 41 7.0%
RSS-100 19 15 42 22 40 29 14 18 37 27 5.5%
RSS-150 18 12 28 21 35 32 9 15 23 14 4.5%
RSS-200 14 13 27 25 27 26 11 13 26 21 4.5%
RSS-250 15 13 27 24 32 28 11 14 25 18 4.3%

ten binary classifiers, each trained to separate one digit from the rest. A Gaussian
kernel k(x x ) exp( x x 2 (0 5 162)) was used. The original SV system has
on average 254 SVs per classifier. Table 18.1 shows the classification error results
for varying numbers of RS patterns (RSS-n means that for each binary classifier,
SVs were removed until on average n were left). On each line, the number of mis-
classified digits for each single classifier is shown, as is the error of the combined
10-class machine. The optimal SV threshold b was re-computed on the training set
after the RS approximation was found.

18.4.2 RS Selection via 1 Penalization

We next consider a method for enforcing sparseness inspired by 1 shrinkage
penalizers (cf. Chapter 3), following the discussion in [474]. In a way, this allows
us to benefit from the effect of 1 penalizers even if we do not want to use an 1

term as a regularizer, as was the case in LP-machines (Section 7.7).
Given an expansion ∑i iΦ(xi), we approximate it by ∑i iΦ(xi) through the

minimization of

m

∑
i 1

iΦ(xi)
m

∑
i 1

iΦ(xi)
2 m

∑
i 1

ci i (18.41)

over all i. Here, 0 is a constant determining the trade-off between sparseness
and the quality of approximation. The constants ci can for instance be set to 1 or

i (where is the mean of all i ). In the latter case, we hope for a sparser
decomposition, since more emphasis is put on shrinking terms that are already
small. This reflects the intuition that it is less promising to try to shrink very large
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terms. Ideally, we would like to count the number of nonzero coefficients, rather
than sum their moduli; the former approach does not lead to an efficiently solvable
optimization problem, however.

To dispose of the modulus, we rewrite i as

i : i i (18.42)

where i 0. In terms of the new variables, we end up with the quadratic
programming problem

minimize ∑
i j

( i i )( j j )Ki j (18.43)

∑
j

j c j 2∑
i

Ki j i j c j 2∑
i

Ki j i

subject to

j j 0 (18.44)

This problem can be solved using standard quadratic programming tools. The
solution (18.42) could be used directly as expansion coefficients. For optimal pre-
cision, however, we merely use it to select which patterns to use in the expansion
(those with nonzero coefficients), and re-compute the optimal coefficients accord-
ing to Proposition 18.2.

In many applications, we face the problem of simultaneously approximating aMulti-Class Case
set of M feature space expansions. For instance, in digit classification, a common
approach is to train M 10 binary recognizers, one for each digit. To this end,
the quadratic programming formulation (18.43) can be modified to find all M
expansions simultaneously, encouraging the use of the same expansion patterns
in more than one binary classifier [474].

These algorithms were evaluated on the same problem considered in the previ-Experiments
ous section. As with the results in Table 18.1, Table 18.2 shows that the accuracy
of the original system can be closely approached by selecting sufficiently many RS
patterns. The removal of about 40% of the Support Vectors leaves the test error
practically unchanged.

18.4.3 RS Selection by Sparse Greedy Methods

Another set of methods were recently proposed to select patterns from the training
set ([603, 514, 503], cf. also [580]). The basic idea, described in Section 10.2, is to start
with an empty expansion, and greedily select the patterns that lead to the smallest
error in approximating the remaining patterns. The resulting algorithms are very
computationally efficient and have led to fine results.

It bears mentioning, however, that in many cases, with Gaussian Process re-
gression being the exception (see Section 16.4 for more details), they do not take
into account the expansion coefficients i of the original feature space vector, and
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Table 18.2 Number of test errors for each binary recognizer and test error rates for 10-
class classification, using the RS method employing 1 penalization (Section 18.4.2) (where
ci i ). First row: original SV system, with 254 SVs on average; following rows: systems
with varying average numbers of RS patterns. In the system RSS2-n, was adjusted such
that the average number of RS patterns left was n (the constant , given in parentheses, was
chosen such that the numbers n were comparable to Table 18.1). The results can be further
improved using the multi-class method cited in Section 18.4.2. For instance, using about 570
expansion patterns (which is the same number that we get when taking the union of all SVs
in the RSS2 74 system) led to an improved error rate of 5 5%.

digit 0 1 2 3 4 5 6 7 8 9 10-cl.
SV-254 16 13 30 17 32 22 11 12 26 17 4.4%
RSS2-50 (3.34) 225 24 171 146 149 124 94 147 100 101 28.5%
RSS2-74 (2.55) 113 25 100 100 120 95 40 147 83 50 10.8%
RSS2-101 (1.73) 38 21 46 64 81 54 23 143 49 37 5.9%
RSS2-151 (0.62) 19 20 30 24 31 30 10 27 33 18 4.5%
RSS2-200 (0.13) 17 15 25 27 34 27 11 14 26 22 4.3%
RSS2-234 (0.02) 16 14 26 24 32 28 11 14 26 19 4.3%

thus do not always produce optimal results when the task is to approximate one
given vector. Indeed, they do not even start from an original solution vector, as
they compute everything in one pass. Therefore, they are not strictly speaking re-
duced set post-processing methods; we might equally well consider them to be sparse
training algorithms. These algorithms are dealt with in Section 10.2.

On the other hand, if the effective dimensionality of the feature space is low, as
is manifest in a rapid decay of the eigenvalues of the kernel matrix K, a sparse
approximation of just about any function with small RKHS norm will be possible.
In this case, which is rather frequent in practice, sparse approximation schemes
which find a reduced set of expansion kernels a priori will perform well. See
Section 10.2 for examples.

18.4.4 The Primal Reformulation

As discussed in Section 18.4, one of the reasons that SV expansions are not usually
as sparse as they should be is the restriction of their coefficients to the interval
[ C C]. This problem derives directly from the structure of the quadratic program
(QP) used to train an SVM. It is not the only problem caused by the QP, however.

A more fundamental reason for the SVM solution not being the sparsest possible
is that the set of SVs contains all the information necessary to solve the classification task,
as discussed in Section 7.8.2. This is a rather severe constraint, and is not enforced
in other kernel-based classifiers such as Relevance Vector Machines (Chapter 16).
It is partly this constraint that prevents SVMs from returning sparser solutions in
the first place.

In an attempt to address this problem, Osuna and Girosi [400] proposed what
they call the primal reformulation of the original SVC training problem (7.35). In
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their modification, they substitute the SV expansion w ∑i i yiΦ(xi) into (7.35) to
obtain:

minimize
0 b

1
2

m

∑
i j 1

i j yiy jk(xi x j)
C
m

m

∑
i 1

i (18.45)

subject to yi

m

∑
i 1

j y jk(xi x j) b 1 i for i 1 m (18.46)

This formulation uses positivity constraints on i and i — the inequalities in
(18.45) are to be read component-wise. We observe, however, that this formulation
no longer requires that i C.

Note, moreover, that the optimization runs over , and b, and that the con-
straints (18.46) are linear in these variables; thus, we are still dealing with a QP. Its
structure is not as appealing as that of the original form from an implementation
viewpoint, however. The more complicated constraints make it harder to come up
with algorithms that can solve large problems.

Although there is no a priori guarantee that this formulation will give sparser
expansions; the method was nonetheless successfully applied to several small real-
world problems [400]. The recommended starting point for the optimization is

0; other tricks for encouraging sparseness include the use of an 1 penalty
term as in (18.4.2).

18.4.5 RS Selection via SV Regression

A second approach proposed by [400], which is particularly appealing in terms of
its simplicity, uses SV regression to find RS vectors for SV classifiers. The idea is
to apply -SV regression to the data set generated by evaluating the real-valued
argument of the decision function,

g(x) ∑
i

i yik(xi x) b (18.47)

on the SVs; in other words, to

(xi g(xi)) i 0 i 1 m (18.48)

If the SVR training uses a large value of C (cf. Chapter 9), then (almost) all data
points should be approximated within the accuracy set by the user. Therefore,
the solution of the SVR algorithm has the same form as g (18.47) and can be used
as a drop-in replacement for g. Since the SVR solution does not typically use all
training examples (18.48), it is usually sparser than g. Note that when combined
with the -SV regression algorithm (Section 9.3), this approach allows a rather
more direct control of the size of the RS expansion (cf. Proposition 9.2).
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18.5 Reduced Set Construction Methods

So far, we have considered the problem of how to select a reduced set of expansion
vectors from the original set. We now return to the problem posed initially, which
includes the construction of new vectors to reach high set size reduction rates.

18.5.1 Iterated Pre-Images

Suppose we want to approximate a vector

Ψ1

m

∑
i 1

iΦ(xi) (18.49)

with an expansion of type (18.28) with Nz 1 and zi
N .4 To this end, we iterate

a procedure for finding approximate pre-images (in the case of Gaussian kernels,
for instance, this procedure is described in Section 18.2.2). This means that in step
m , we need to find a pre-image zm of

Ψm

m

∑
i 1

iΦ(xi)
m 1

∑
i 1

iΦ(zi) (18.50)

The coefficients are updated after each step according to Proposition 18.2 (if the
discrepancy Ψm 1 has not yet reached zero, then Kz is invertible).

The iteration is stopped after Nz steps; a number either specified in advance,
or obtained by checking if Ψm 1 (which equals Ψ1 ∑m

i 1 iΦ(zi) ) has fallen
below a specified threshold. The solution vector takes the form (18.28). A toy
example, using the Gaussian kernel, is shown in Figure 18.9.

For other kernel types, such as the polynomial kernels, we need to use a different
procedure for computing approximate pre-images. One way of dealing with the
problem is to minimize (18.15) directly. To achieve this, we can use unconstrained
nonlinear optimization techniques, as proposed by Burges [84].

Finally, note that in many cases, such as multiclass SVMs and multiple Kernel
PCA feature extractors, we may actually want to approximate several vectors si-
multaneously. This leads to rather more complex equations; cf. [474] for a discus-
sion.

18.5.2 Phase II: Simultaneous Optimization of RS Vectors

Once all individual pre-images have been computed in this way, we could go
ahead and apply the resulting RS expansion. It turns out, however, that it is still
possible to improve things using a second phase, in which we simultaneously

4. Note that reduced set selection methods can work on general inputs. The present re-
duced set construction method, on the other hand, needs vectorial data, as it relies on form-
ing linear combinations of patterns.
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Figure 18.9 Toy example of the reduced set construction approach obtained by iterating
the fixed-point algorithm of Section 18.2.2. The first image (top left) shows the SVM decision
boundary that we are trying to approximate. The following images show the approxima-
tions using Nz 1 2 4 9 13 RS vectors. Note that already the approximation with Nz 9
(bottom middle) is almost identical to the original SVM, which has 31 expansion vectors (SVs)
(from [437]).

optimize over all (zi i). Empirical observations have shown that this part of the
optimization is more computationally expensive than the first phase, by about
two orders of magnitude [84, 87]. In addition to this high computational cost, it
is numerically difficult to handle: the optimization needs to be restarted several
times to avoid getting trapped in local minima. At the end of phase II, it is
advisable to recompute the i using Proposition 18.2. Let us now take a look at
some experiments to see how well these methods do in practice.

18.5.3 Experiments

Table 18.3 shows that the RS construction method performs better than the RS
selection methods described above (Tables 18.1 and 18.2). This is because it is able
to utilize vectors different from the original support patterns in the expansion.
To speed up the process by a factor of 10, we have to use a system with 25
RS vectors (RSC-25). We observe in Table 18.3 that the classification accuracy
only drops moderately as a result, from 4.4% to 5.1%, which is still competitive
with convolutional neural networks on this database (Table 7.4). In addition,
we can further improve the system by adding the second phase described in
Section 18.5.2, in which a global gradient descent is performed in the space of all
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Table 18.3 Number of test errors for each binary recognizer and test error rates for 10-
class classification, using the RS construction method of Section 18.5. First row: original SV
system, with 254 SVs on average (see also Tables 18.1 and 18.2); following rows: systems
with varying numbers of RS vectors (RSC-n stands for n vectors constructed) per binary
recognizer, computed by iterating one-term RBF approximations (Section 18.5.1) separately
for each recognizer. Last row: a subsequent global gradient descent (Section 18.5.2) further
improves the results, as shown here for the RSC-25 system (see text).

digit 0 1 2 3 4 5 6 7 8 9 10-class

SV-254 16 13 30 17 32 22 11 12 26 17 4.4%
RSC-10 26 13 45 49 35 54 22 24 39 24 7.1%
RSC-20 27 11 38 30 35 43 12 16 30 25 5.6%
RSC-25 21 12 38 32 31 22 12 18 33 28 5.1%
RSC-50 18 10 33 28 32 23 12 15 35 27 5.0%

RSC-100 14 13 26 22 30 26 11 14 28 23 4.8%
RSC-150 13 14 28 32 27 24 12 14 29 26 4.7%
RSC-200 14 13 28 28 29 24 10 15 26 26 4.9%
RSC-250 12 13 26 26 32 25 11 14 26 24 4.6%
RSC2-25 14 14 31 22 30 23 11 14 26 17 4.7%

(zi i); this leads to an error rate of 4.7%. For the kernel considered, this is almost
identical to phases I II of Burges’s RS method, which yield 5.0% (for polynomial
kernels, the latter method leads to an error of 4.3% with the same increase in speed
[84]). Finally, Figure 18.10 shows the RSC-20 vectors of the 10 binary classifiers. As
an aside, note that unlike Burges’s method, which directly tackles the nonlinear
optimization problem, the present algorithm produces images that look like digits.

As in [87], good RS construction results were obtained even though the objective
function did not decrease to zero (in the RS construction experiments, it was
reduced by a factor of 2 to 20 in the first phase, depending on how many RS
vectors were computed; the global gradient descent yielded another factor of 2–
3). We conjecture that this is due to the following: In classification, we are not
interested in Ψ Ψ , but in sgn (∑Nx

i 1 ik(x xi) b) sgn (∑Nz
j 1 ik(x zi)

b̃) dP(x), where P is the underlying probability distribution of the patterns (cf.
[55]). This is consistent with the fact that the performance of an RS SV classifier
can be improved by re-computing an optimal threshold b.

The RS selection methods lead to worse results than RS construction; they are
simpler and computationally faster, however. Of the two RS selection methods de-
scribed (Tables 18.1 and 18.2), that using Kernel PCA is slightly superior at higher
reductions. The 1 penalization approach is computationally cheaper, however,
since unlike the Kernel PCA based algorithm, it does not remove the SVs one at a
time, and need not be iterated.

We conclude this section by briefly describing another study, which combinesMNIST
Experiments the virtual SV method (Chapter 11) with Burges’s RS algorithm [87]. Virtual SV

systems have yielded the most accurate results on the widely used MNIST hand-
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Figure 18.10 Illustration of all the reduced set vectors constructed by the iterative ap-
proach of Section 18.5.1 for n 20. The associated coefficients are listed above the images.
Top: recognizer of digit 0,. . . , bottom: recognizer of digit 9. Note that positive coefficients
(roughly) correspond to positive examples in the classification problem.

written character benchmark (Section A.1). They come with a computational cost,
however: the resulting classifiers tend to have more SVs than an ordinary SVM.
They are thus an ideal target for RS methods. Combining both procedures, an in-
crease in speed of order 50 was achieved over the Virtual SVM in the test phase,
with only a small decrease in performance (the test error increased from 1.0% to
1.1%, cf. [87]), leading to a system that is approximately as fast as convolutional
neural nets [320].

18.6 Sequential Evaluation of Reduced Set Expansions

As described above, RS algorithms typically work by finding RS vectors sequen-
tially. This implies that we can stop calculating additional RS vectors once the
approximation is satisfactory. There is, however, another implication that was re-
cently pointed out [437]: even if we choose to compute a comprehensive RS ex-
pansion, we might not always want to evaluate it in full for a given problem. For
instance, if after evaluating the first three RS vectors of a SV classifier we can al-
ready see the classification outcome is very likely ‘class 1,’ then it is not necessary
to evaluate the remaining RS vectors. Romdhani et al. [437] applied this idea, to-
gether with the reduced set construction approach of Section 18.5.1, to the problem
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Figure 18.11 First 10 reduced set vectors. Note that all vectors can be interpreted as either
faces (such as the first one) or anti-faces (the second one) [437]..

Figure 18.12 From left to right: input image, followed by patches that remain after the
evaluation of 1 (13.3% patches remaining), 10 (2.6%), 20 (0.01%), and 30 (0.002%) filters. Note
that in these images, the pixels representing the full patch are displayed when it yields
a positive classification at its center. This explains the apparent discrepancy between the
above percentages and the visual impression [437].

of face detection.
In face detection, run time classification speed is a major requirement. This is

due to the fact that we essentially need to look at all locations in a given test image
in order to detect all faces that are present. The standard approach is to scan a
binary classifier (trained on the task of distinguishing faces from non-faces) over
the entire image, looking at one image patch at a time [446, 399]. To make things
worse, we must usually consider the possibility that faces occur at widely different
scales, which necessitates several such scans.

In their experimental investigation of this problem, Romdhani et al. obtain an
initial SVM with 1742 SVs. Using the method of Section 18.5.1, these were reduced
to 60 RS vectors. The first ten reduced set vectors are shown in Figure 18.11.

For each possible cut-off n 1 60, a threshold was computed which ensured
the false negative5 rate of the classifier, when run with only the first n RS vectors,
was sufficiently small. At the nth step, an RS expansion with n vectors was scanned
over the image. Note that this only entailed computation of one additional kernel
per image location, since the first n 1 evaluations were cached. Furthermore, the
nth scan only had to cover those areas of the image that were not yet discarded as
clear non-faces. For the data set considered, most of the image parts could typically
be discarded with a single RS vector (cf. Figure 18.12); on average, each image
location was “looked at” by 2 8 RS vectors.

This method is not limited to face detection. It could be used in any task for

5. By false negatives, we refer to faces that are erroneously classified as non-faces.
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which kernel expansions need to be evaluated quickly. The method demonstrates
that RS algorithms can assist in incorporating a speed-accuracy trade-off in a
rather natural way — the longer we are prepared to wait, the more accurate the
result we get (be it classification or function value estimation).

18.7 Summary

Algorithms utilizing positive definite kernels construct their solutions as expan-
sions Ψ ∑m

i 1 iΦ(xi) in terms of mapped input patterns. The map Φ is often
unknown, however, or is too complex to provide any intuition about the solution
Ψ. This has motivated efforts to reduce the complexity of the expansion, as sum-
marized in this chapter.

As an extreme case, we first described how to approximate Ψ by a single Φ(z) (in
other words, how to find an approximate pre-image of Ψ) and gave a fixed-point
iteration algorithm to perform this task. The procedure was successfully applied
to the problem of statistical denoising via Kernel PCA reconstruction.

In situations where no good approximate pre-image exists, we can still re-
duce the complexity of Ψ ∑Nx

i 1 iΦ(xi) by expressing it as a sparser expansion,
∑Nz

i 1 iΦ(zi) (Nz Nx). We described methods for computing the optimal coeffi-
cients i, and for obtaining suitable patterns zi, either by selecting among the xi

or by iterating the above pre-image algorithm to construct synthetic patterns zi.
This led to rather useful algorithms for speeding up the evaluation of kernel ex-
pansions, such as SV decision functions. We reviewed applications of these algo-
rithms in OCR and face detection. Comparing the RS construction and RS selec-
tion methods, we observe that the greatest speed gains are usually achieved using
construction methods. These are computationally more expensive, however, and
require the input data to lie to N .

In the case of face detection, we described a sequential approach that requires
on average less than 3 kernel evaluations per image patch, making it competitive
with the fastest available systems.

Both the pre-image and the reduced set procedures are thus not only of theoret-
ical interest for feature space methods, but also lead to practical applications. The
proposed methods are applicable to a variety of feature space algorithms based on
positive definite kernels. For instance, we could also speed up SV regression ma-
chines and Kernel PCA feature extractors. We expect further possibilities to open
up in future, as kernel methods are applied in an increasing range of learning and
signal processing problems.
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18.8 Problems

18.1 (Exact Pre-Images for RBF Kernels [467] ) Generalize Proposition 18.1 to ker-
nels which are functions of x x .

18.2 (Exact Pre-Images for Gaussian Kernels ) Use the reasoning following (18.8)
to argue that a greedy approach, such as the iterated pre-image method from Section 18.5.1,
does not necessarily find the optimal reduced set solution. Argue that this supports the use
of a “phase II” approach (Section 18.5.2; cf. Section 18.2).

18.3 (Justification of Approximate Pre-Images ) Use the Cauchy-Schwarz inequal-
ity to show that if Ψ Φ(z) 2 (cf. (18.9)) is small, then for any v , the dot product
Ψ v can be approximated by Φ(z) v . Argue that this is all that is needed for a kernel

algorithm.
Specialize to the case where v has a pre-image x.

18.4 (Approximate Single Pre-Images ) Consider the normal vector of a SV hyper-
plane in feature space. Using your favorite kernel, argue that it is usually impossible to
find a single pre-image for the normal, as otherwise, the resulting class of decision func-
tion would only have one term in the kernel expansion, which is not adequate for most
complex problems.

18.5 (Reconstruction from Principal Components ) Devise an alternative to the
suggested method for computing approximate pre-images from examples expressed in
terms of their first principal components in feature space. For instance, use a suitable
multi-output regression method for estimating the reconstruction mapping from the first
q (q m) kernel-based principal components to the inputs. Use the method for denoising.

18.6 (Optimal Coefficient in the 1-Pattern Case ) Prove that the maximum of (18.15)
can be extended to the minimum of (18.13) by setting

Ψ Φ(z) Φ(z) Φ(z) (18.51)

Discuss the relationship to Proposition 18.2.

18.7 (Data-Dependent RS Formulations ) Change the RS objective function Ψ
Ψ 2 to ∑i (Ψ Ψ ) Φ(xi)

2. Argue that this takes into account the distribution of the
data points xi in a sensible way. Which of the algorithms in the present chapter can be
generalized to use this objective function? Try to devise efficient algorithms to minimize it.

18.8 (Speedup via Faster Evaluation of the Full Expansion ) In [421], a method
was considered which speeds up the evaluation of an m-term kernel expansion to log m by
using tree structures.

(i) Apply this method, and compare the performance to the RS methods described in the
present chapter.
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(ii) Can you combine this approach with those taken in the present chapter by designing
RS algorithms which produce expansions that lend themselves well to the approach of
[421]?

18.9 (Minimum Support Solutions ) Can you use the minimum support methods
of Mangasarian [346] to devise reduced set methods?

18.10 (Reduced Sets via Clustering ) Discuss how you could speed up SVMs by
clustering the input data, for instance using the k-means algorithm [152]. Would you use
the cluster centers as training examples? If yes, how would you label them? Can you think
of modifications to clustering algorithms that would make them particularly suited to a
reduced set approach?

18.11 ( 1 Penalization for Multi-Class RS Expansions [474] ) Generalize the ap-
proach of Section 18.4.2 to the case where you are trying to simultaneously approximate
several feature space expansions with few RS vectors (overall).

18.12 (RS Construction for Degree 2 Monomial Kernels [84] ) Consider the ker-
nel k(x x ) x x 2 on N N . Denote by S the symmetric matrix with elements

Sjn :
Nx

∑
i 1

i[xi] j[xi]n (18.52)

Prove that ( z) : ∑Nx
i 1 iΦ(xi) Φ(z) 2 is minimized for ( z) satisfying

Sz z z z (18.53)

Prove, moreover, that with this choice of ( z),

( z) ∑
jn

S jn
2 z z 2 (18.54)

Therefore, one should choose the first pre-image z to be the eigenvector of S for which the
eigenvalue is largest in absolute value, scaled such that z z . In this case (cf.
(18.53)), 1.

Generalize this argument to Nz 1, showing that the RS vectors that follow should be
the next eigenvectors (in terms of the absolute size of the eigenvalues) of S. Argue that this
shows that using at most N terms, the RS expansion can be made exact.

18.13 (Direct Approximation of SVC Decision Functions ) The RS algorithms
described approximate a SVC decision function by approximating the weight vector nor-
mal to the hyperplane and then recomputing the threshold. Can you come up with an RS
approach that addresses the problem in a rather more direct way, using a cost function
which looks at the approximation of the resulting decision boundary (cf. [55])?



 

A Addenda

Das also war des Pudels Kern!
Ein fahrender Skolast? Der Kasus macht mich lachen.

J. W. Goethe’s Faust

A.1 Data Sets

In the present section, we describe three of the datasets used. They are available
from http://www.kernel-machines.org/data.html.

The US Postal Service (USPS) database (see Figure A.1) contains 9298 handwrit-USPS Set
ten digits (7291 for training, 2007 for testing), collected from mail envelopes in
Buffalo [318]. Each digit is a 16 16 image, represented as a 256-dimensional vec-
tor with entries in the range 1 to 1. Preprocessing consisted of smoothing with a
Gaussian kernel of width 0 75.

It is known that the USPS test set is rather difficult — the human error rate is
2.5% [79]. For a discussion, see [496]. Note, moreover, that some of the results re-
ported in the literature for the USPS set were obtained with an enhanced training
set. For instance, [148] used an enlarged training set of size 9709 containing some
additional machine-printed digits. The authors note that this improves the accu-
racy on the test set. Similarly, [65] used a training set of size 9840. Since there are
no machine-printed digits in the commonly used test set (size 2007), this addition
distorts the original learning problem to a situation where results become some-
what hard to interpret. In our experiments, we only used the original 7291 training
examples. Results on the USPS problem can be found in Table 7.4.

The MNIST database (Figure A.2) contains 120000 handwritten digits, dividedMNIST Set
equally into training and test sets. The database is a modified version of NIST
Special Database 3 and NIST Test Data 1. Both training and test set consist of patterns
generated by different writers. The images are first size normalized to fit into a
20 20 pixel box, and then centered in a 28 28 image [319].

Most of the test results on the MNIST database given in the literature [e.g.
320, 319] for do not use the full MNIST test set of 60000 characters. Instead, a
subset of 10000 characters is used, consisting of the test set patterns from 24476 to
34475. To obtain results that can be compared to the literature, we also use this test
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Figure A.1 The first 100 USPS training images, with class labels (from [467]).
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Figure A.2 The first 100 MNIST training images, with class labels (from [467]).
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Figure A.3 The first 100 small-MNIST training images, with class labels (from [467]).

set, although the larger one would be preferable from the point of view of obtain-
ing more accurate estimates of the true risk. The error rates on the 10000 element
test set are estimated to be reliable within about 0 1% [64]. The MNIST bench-
mark dataset is available from http://www.research.att.com/ yann/ocr/mnist/.
MNIST results are listed in Table 11.2.

The USPS database has been criticized (Burges, LeCun, private communication;
[64]) as not providing the most adequate classifier benchmark. First, it only comes
with a small test set; and second, the test set contains a number of corrupted pat-
terns, which not even humans can classify correctly. The MNIST database, which
is the classifier benchmark currently used in the AT&T and Bell Labs learning re-
search groups, does not have these drawbacks; moreover, its training set is much
larger. In some cases, however, it is useful to be able to study an algorithm on a
smaller database. First, this can save computation time, and second, this allows
the study of learning from smaller sample sizes. We thus generated a smaller ver-
sion of the MNIST database which we used in some experiments. It is smaller inSmall MNIST Set
two respects: First, the patterns have a resolution of 20 20, obtained from the
28 28 patterns by downsampling (combined with a Gaussian smoothing of stan-
dard deviation 0.75 pixels, to avoid aliasing effects). Second, it only comprises a
subset of the training set, namely the first 5000 patterns. We define the same 10000
test examples as above as our test set. We refer to this database as the small MNIST
database (Figure A.3).
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The Abalone database from the UCI repository [56] contains 4177 patterns. ItAbalone
is an integer regression problem, the labels are the different ages of Abalones.
For most practical purposes, it is treated as a generic regression problem in the
examples of this book. The data is rescaled to zero mean and unit variance
coordinate-wise, and the gender encoding (male/female/infant) is mapped into

(1 0 0) (0 1 0) (0 0 1) .

A.2 Proofs

Proof Ad (i): By the KKT conditions, 0 implies 0, hence (7.52) becomesProposition 7.5
an equality (cf. (7.46)). Thus, at most a fraction of all examples can have i 1 m.
All examples with i 0 satisfy i 1 m (if not, i could grow further to reduce

i).

Ad (ii): SVs can contribute at most 1 m to (7.52), hence there must be at least m
of them.

Ad (iii): This part of the proof is somewhat technical. Readers who prefer to skip
it may instead consider the following sloppy argument: The difference between (i)
and (ii) lies only in the points that sit exactly on the edge of the margin, since these
are SVs with zero slack variables. As the training set size tends to infinity, however,
only a negligible fraction of points can sit exactly on the margin, provided the
distribution is well-behaved.
For the formal proof, note that it follows from the condition on P(x y) that apart
from some set of measure zero (arising from possible singular components), the
two class distributions are absolutely continuous and can be written as integrals
over distribution functions. As the kernel is analytic and non-constant, it cannot
be constant in any open set, otherwise it would be constant everywhere. There-
fore, the class of functions f constituting the argument of the sgn in the SV de-
cision function ((7.53); essentially, functions in the class of SV regression func-
tions) transforms the distribution over x into distributions such that for all f
and all t , lim 0 P( f (x) t ) 0. At the same time, we know that the
class of these functions has well-behaved covering numbers, hence we get uni-
form convergence: for all 0, sup f P( f (x) t ) P̂m( f (x) t ) con-
verges to zero in probability, where P̂m is the sample-based estimate of P (that
is, the proportion of points that satisfy f (x) t ). But then for all 0,
lim 0 limm P(sup f P̂m( f (x) t ) ) 0. Hence, sup f P̂m( f (x) t 0)
converges to zero in probability. Using t thus shows that the fraction of
points exactly on the margin almost surely tends to zero, hence the fraction of SVs
equals that of margin errors. Combining (i) and (ii) then shows that both fractions
converge almost surely to .

Additionally, since (7.51) means that the sums over the coefficients of positive
and negative SVs respectively are equal, we conclude that Proposition 7.5 actually
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holds for both classes separately, with 2. As an aside, note that by the same
argument, the number of SVs on each side of the margin asymptotically agree.

Proof Since the slack variable of xm satisfies m 0, the KKT conditions (Chap-Proposition 7.7
ter 6) imply m 1 m. If is sufficiently small, then transforming the point into
xm : xm w results in a slack that is still nonzero, m 0, hence we have

m 1 m m. Updating the m, and keeping all other primal variables un-
changed, we obtain a modified set of primal variables that is still feasible.

We next show how to obtain a corresponding set of feasible dual variables. To
keep w unchanged, we need to satisfy
m

∑
i 1

i yixi ∑
i m

i yixi mymxm (A.1)

Substituting xm xm w and (7.57), we note that a sufficient condition for this to
hold is that for all i m, i i i yi mym

Since by assumption i is only nonzero if i (0 1 m), then i will be in (0 1 m)
if i (0 1 m), provided is sufficiently small, and it will equal 1 m if i 1 m.
In both cases, we end up with a feasible solution , and the KKT conditions are
still satisfied. Thus (cf. Chapter 6), (w b) are still the hyperplane parameters of the
solution.

Proof Ad (i): The constraints (9.43) and (9.44) imply that at most a fraction ofProposition 9.2
all examples can have ( )

i C m. All examples with ( )
i 0 (in other words,

those outside the tube) certainly satisfy ( )
i C m (if not, ( )

i could grow further
to reduce ( )

i ).

Ad (ii): By the KKT conditions, 0 implies 0. Hence, (9.44) becomes an
equality (cf. (9.37)).1 Since SVs are those examples for which 0 ( )

i C m, the
result follows (using i i 0 for all i, (9.58)).

Ad (iii): The strategy of proof is to show that asymptotically, the probability of a
point lying on the edge of the tube vanishes. The condition on P(y x) means that

sup
f t

Ex y P f (x) t y x ( ) (A.2)

for some function ( ) that approaches zero as 0. Since the class of SV
regression estimates f has well-behaved covering numbers, we have [14, Chapter
21] that for all t,

P sup
f

P̂m( f (x) t y 2) P( f (x) t y ) c1c m
2 (A.3)

where P̂m is the sample-based estimate of P (that is, the proportion of points that
satisfy f (x) y t ), and c1 c2 may depend on and . Discretizing the

1. In practice, we can alternatively work with (9.44) as an equality constraint, provided that
is chosen small enough ( 1) to ensure that it does not pay to make negative.
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values of t, taking the union bound (Chapter 5), and applying (A.2) shows that the
supremum over f and t of P̂m( f (x) y t 0) converges to zero in probability.
Thus, the fraction of points on the edge of the tube almost surely converges to 0.
Consequently the fraction of SVs equals that of errors. Combining (i) and (ii) then
shows that both fractions converge almost surely to .

Proof We proceed in a manner similar to the proof of proposition 17.8, but useProposition 17.9
( c d) and 2 to bound R[ femp]

R[ femp] R[ f ] R[ femp] Remp[ femp] Remp[ femp] R[ f ] (A.4)

R[ fi] Remp[ fi] Remp[ femp] R[ f ] (A.5)

2 max
f V f

R[ f ] Remp[ f ] (A.6)

where V is the -cover of of size ( L ( d
2)), fi V , and clearly Remp[ femp]

Remp[ f ]. The application of Hoeffding’s inequality and the union bound, and the
change of to , then prove the claim.

Proof The proof uses a clever trick from [292], however without the difficulty ofProposition 17.10
also having to bound the approximation error. Since by hypothesis Λ is compact,
we can use Proposition 17.9. We have

R[ femp] R[ f ]
0

P R[ femp] R[ f ] d

u 2 ( ( c d) 1)
u

e
m( )2

2ec d

u
2ec

um
( ( c d) 1) e

mu2
2ec

2ec ln( ( c d) 1)
m

2ec
m ln( ( c d) 1) (A.7)

Here we use x exp( t2 2)dt exp( x2 2) x in the second step. The third in-
equality is derived by substituting

u
2ec

m
ln ( ( c d) 1) (A.8)

For part 1, we set m 1 2 and obtain

R[ femp] R[ f ] O m 1 2 ln 2 m (A.9)

For part 2, (A.7) implies (for some constants c c 0)

R[ femp] R[ f ] c 2m 1 2 c 2m 1 2 (A.10)

The minimum is obtained for c m 1 ( 2) for some c 0. Hence the overall
term is of order O(m

1
2 ), as required.
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The beginner. . . should not be discouraged if. . . he finds that he does not have the prerequi-
sites for reading the prerequisites.

P. Halmos1

In this chapter, we introduce mathematical results that might not be known to
all readers, but which are sufficiently standard that they not be put into the actual
chapters.

This exposition is almost certainly incomplete, and some readers will inevitably
happen upon terms in the book that are unknown to them, yet not explained here.
Consequently, we also give some further references.

B.1 Probability

B.1.1 Probability Spaces

Let us start with some basic notions of probability theory. For further detail, we
refer to [77, 165, 561]. We do not try to be rigorous; instead, we endeavor to give
some intuition and explain how these concepts are related to our present interests.

Assume we are given a nonempty set , called the domain or universe. We refer toDomain
the elements x of as patterns. The patterns are generated by a stochastic source.
For instance, they could be handwritten digits, which are subject to fluctuations in
their generation best modelled probabilistically. In the terms of probability theory,
each pattern x is considered the outcome of a random experiment.

We would next like to assign probabilities to the patterns. We naively think of
a probability as being the limiting frequency of a pattern; in other words, how
often, relative to the number of trials, a certain pattern x comes up in a random
experiment, if we repeat this experiment infinitely often?

It turns out to be convenient to be slightly more general, and to talk about the
probability of sets of possible outcomes; that is, subsets C of called events. WeEvent
denote the probability that the outcome of the experiment lies in C byProbability

1. Quoted after [429].
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P x C (B.1)

If ϒ is a logical formula in terms of x, meaning a mapping from to true false ,
then it is sometimes convenient to talk about the probability of ϒ being true. We
will use the same symbol P in this case, and define its usage as

P ϒ(x) : P x C where C x ϒ(x) true (B.2)

Let us also introduce the shorthand

P(C) : P x C (B.3)

to be read as “the probability of the event C.” If P satisfies some fairly natural
conditions, it is called a probability measure. It is also referred to as the (probability)
distribution of x.Distribution of x

In the case where N , the patterns are usually referred to as random variables
(N 1) or random vectors (N 1). A generic term we shall sometimes use is random
quantity.2

To emphasize the fact that P is the distribution of x, we sometimes denote it as
Px or P(x).3 To give the precise definition of a probability measure, we first need to
be a bit more formal about which sets C we are going to allow. Certainly,

C (B.4)

should be a possibility, corresponding to the event that necessarily occurs (“sure
thing”). If C is allowed, then its complement,

C : C (B.5)

should also be allowed. This corresponds to the event “not C.” Finally, if C1 C2

are events, then we would like to be able to talk about the probability of the event
“C1 or C2 or . . . ”, hence

i 1

Ci (B.6)

should be an allowed event.

Definition B.1 ( -Algebra) A collection of subsets of is called a -algebra on if-Algebra

(i) ; in other words, (B.4) is one of its elements;

(ii) it is closed under complementation, meaning if C , then also (B.5); and

(iii) it is closed under countable4 unions: if C1 C2 , then also (B.6).

2. For simplicity, we are somewhat sloppy in not distinguishing between a random variable
and the values it takes. Likewise, we deviate from standard usage in not having introduced
random variables as functions on underlying universes of events.
3. The latter is somewhat sloppy, as it suggests that P takes elements of as inputs, which
it does not: P is defined for subsets of .
4. Countable means with a number of elements not larger than that of . Formally, a set



B.1 Probability 577

The elements of a -algebra are sometimes referred to as measurable sets.

We are now in a position to formalize our intuitions about the probability measure.

Definition B.2 (Probability Measure) Let be a -algebra on the domain . A func-
tion

P : [0 1] (B.7)

is called a probability measure if it is normalized,Probability
Measure

P( ) 1 (B.8)

and -additive, meaning that for sets C1 C2 that are mutually disjoint (Ci Cj

if i j), we have

P
i 1

Ci ∑
i 1

P(Ci) (B.9)

As an aside, note that if we drop the normalization condition, we are left with
what is called a measure.Measure

Taken together, ( P) are called a probability space. This is the mathematicalProbability Space
description of the probabilistic experiment.

B.1.2 IID Samples

Nevertheless, we are not quite there yet, since most of the probabilistic statements
in this book do not talk about the outcomes of the experiment described by
( P). For instance, when we are trying to learn something about a regularity
(that is, about some aspects of P) based on a collection of patterns x1 xm

(usually called a sample), we actually perform the random experiment m times,Sample
under identical conditions. This is referred to as drawing an iid (independent and
identically distributed) sample from P.IID Sample

Formally, drawing an iid sample can be described by the probability space
( m m Pm). Here, m denotes the m-fold Cartesian product of with itself (thus,
each element of m is an m-tuple of elements of ), and m denotes the smallest -
algebra that contains the elements of the m-fold Cartesian product of with itself.
Likewise, the product measure Pm is determined uniquely by

Pm((C1 Cm)) :
m

∏
i 1

P(Ci) (B.10)

Note that the independence of the “iid” is encoded in (B.10) being a product of
measures on , while the identicality lies in the fact that all the measures on are
one and the same.

is countable if there is a surjective map from onto this set; that is, a map with range
encompassing the whole set.
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By analogy to (B.2), we sometimes talk about the probability of a logical formula
involving an m-sample,5

P ϒ(x1 xm) : Pm( (x1 xm) m ϒ(x1 xm) true ) (B.11)

So far, we have denoted the outcomes of the random experiments as x for
simplicity, and have referred to them as patterns. In many cases studied in this
book, however, we will not only observe patterns x but also targets y .
For instance, in binary pattern recognition, we have 1 . The underlying
regularity is now assumed to generate examples (x y). All of the above applies to
this case, with the difference that we now end up with a probability measure on

, called the (joint) distribution of (x y).

B.1.3 Densities and Integrals

We now move on to the concept of a density, often confused with the distribution.
For simplicity, we restrict ourselves to the case where N ; in this instance, is
usually taken to be the Borel -algebra.6

Definition B.3 (Density) We say that the nonnegative function p is the density of the
distribution P if for all C ,

P(C)
C

p(x)dx (B.12)

If such a p exists, it is uniquely determined.7

Not all distributions actually have a density. To see this, let us consider a distri-
bution that does. If we plug a set of the form C x into (B.12), we see that
P( x ) 0; that is, the distribution assigns zero probability to any set of the form

x . We infer that only distributions that assign zero probability to individual
points can have densities.8

It is important to understand the difference between distributions and densities.
The distribution takes sets of patterns as inputs, and assigns them a probability
between 0 and 1. The density takes an individual pattern as its input, and assigns
a nonnegative number (possibly larger than 1) to it. Using (B.12), the density can be
used to compute the probability of a set C. If the density is a continuous function,
and we use a small neighborhood of point x as the set C, then P is approximately

5. Note that there is some sloppiness in the notation: strictly speaking, we should denote
this quantity as Pm — usually, however, it can be inferred from the context that we actually
mean the m-fold product measure.
6. Readers not familiar with this concept may simply think of it as a collection that contains
all “reasonable” subsets of N .
7. Almost everywhere; in other words, up to a set N with P(N) 0.
8. In our case, we can show that the distribution P has a density if and only if it is absolutely
continuous with respect to the Lebesgue measure on N , meaning that every set of Lebesgue-
measure zero also has P-measure zero.
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the size (i.e. , the measure) of the neighborhood times the value of p; in this case,
and in this sense, the two quantities are proportional.

A more fundamental concept, which exists for every distribution of a random
quantity taking values in N , is the distribution function,9Distribution

Function
F : N [0 1] (B.13)

z F(z) P [x]1 [z]1 [x]N [z]N (B.14)

Finally, we need to introduce the notion of an integral with respect to a measure.
Consider a function f : N . We denote by

C
f (x)dP(x) (B.15)

the integral of a function with respect to the distribution (or measure) P, provided
that f is measurable. For our purposes, the latter means that for every interval
[a b] , f 1([a b]) (the set of all points in N that get mapped to [a b]) is an
element of . Component-wise extension to vector-valued functions is straightfor-
ward.

In the case where P has a density p, (B.15) equals

C
f (x)p(x)dx (B.16)

which is a standard integral in N , weighted by the density function p.
If P does not have a density, we can define the integral by decomposing the

range of f into disjoint half-open intervals [ai bi), and computing the measure
of each set f 1([ai bi)) using P. The contribution of each such set to the integral
is determined by multiplying this measure with the function value (on the set),
which by construction is in [ai bi). The exact value of the integral is obtained by
taking the limit at infinitely small intervals. This construction, which is the basic
idea of the Lebesgue integral, does not rely on f being defined on ; it works for
general sets as long as they are suitably endowed with a measure.

Let us consider a special case. If P is the empirical measure with respect toEmpirical
Measure x1 xm,10

Pm
emp(C) :

C x1 xm

m
(B.17)

which represents the fraction of points that lie in C, then the integral takes the form

C
f (x)dPm

emp(x)
1
m

m

∑
i 1

f (xi) (B.18)

As an aside, note that this shows the empirical risk term (1.17) can actually be
thought of as an integral, just like the actual risk (1.18).

9. We use to denote the logical “and” operation, and [z]i to denote the ithcomponent of z.
10. By we denote the number of elements in a set.
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If P is a probability distribution (rather than a general measure), then two more
special cases of interest are obtained for particular choices of functions f in (B.15).
If f is the identity on N , we get the expectation E [x]. If f (x) (x E [x])2 (onExpectation,

Variance,
Covariance

), we obtain the variance of x, denoted by var(x). In the N-dimensional case, the
functions fi j(x) (xi E[xi])(x j E[x j]) lead to the covariance cov(xi x j). For a data
set x1 xm , the matrix (cov(xi x j))i j is called the covariance matrix.

B.1.4 Stochastic Processes

A stochastic process y on a set is a random quantity indexed by x . This means
that for every x, we get a random quantity y(x) taking values in , or more gener-
ally, in a set . A stochastic process is characterized by the joint probability distri-
butions of y on arbitrary finite subsets of ; in other words, of (y(x1) y(xm)).11

A Gaussian process is a stochastic process with the property that for any
x1 xm , the random quantities (y(x1) y(xm)) have a joint Gaussian

distribution with mean and covariance matrix K. The matrix elements Ki j are
given by a covariance kernel k(xi x j).

When a Gaussian process is used for learning, the covariance function k(xi x j) :
cov(y(xi) y(x j)) essentially plays the same role as the kernel in a SVM. See Section
16.3 and [587, 596] for further information.

B.2 Linear Algebra

B.2.1 Vector Spaces

We move on to basic concepts of linear algebra, which is to say the study of
vector spaces. Additional detail can be found in any textbook on linear algebra
(e.g., [170]). The feature spaces studied in this book have a rich mathematical
structure, which arises from the fact that they allow a number of useful operations
to be carried out on their elements: addition, multiplication with scalars, and the
product between the elements themselves, called the dot product.

What’s so special about these operations? Let us, for a moment, go back to our
earlier example (Chapter 1), where we classify sheep. Surely, nobody would come
up with the idea of trying to add two sheep, let alone compute their dot product.
The set of sheep does not form a vector space; mathematically speaking, it could
be argued that it does not have a very rich structure. However, as discussed in
Chapter 1 (cf. also Chapter 2), it is possible to embed the set of all sheep into a
dot product space such that we can think of the dot product as a measure of

11. Note that knowledge of the finite-dimensional distributions (fdds) does not yield com-
plete information on the properties of the sample paths of the stochastic process; two dif-
ferent processes which have the same fdds are known as versions of one another.
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the similarity of two sheep. In this space, we can perform the addition of two
sheep, multiply sheep with numbers, compute hyperplanes spanned by sheep,
and achieve many other things that mathematicians like.

Definition B.4 (Real Vector Space) A set is called a vector space (or linear space)Vector Space
over if addition and scalar multiplication are defined, and satisfy (for all x x x ,
and )

x (x x ) (x x ) x (B.19)

x x x x (B.20)

0 x 0 x (B.21)

x x x 0 (B.22)

x (B.23)

1x x (B.24)

( x) ( )x (B.25)

(x x ) x x (B.26)

( )x x x (B.27)

The first four conditions amount to saying that ( ) is a commutative group.12

We have restricted ourselves to vector spaces over . The definition in the complex
case is analogous, both here and in most of what follows. Any non-empty subset
of that is itself a vector space is called a subspace of .

Among the things we can do in a vector space are linear combinations,Linear
Combination m

∑
i 1

ixi where i xi (B.28)

and convex combinations,Convex
Combination m

∑
i 1

ixi where i 0 ∑
i

i 1 xi (B.29)

The set ∑m
i 1 ixi i is referred to as the span of the vectors x1 xm.Span

A set of vectors xi, chosen such that none of the xi can be written as a linear
combination of the others, is called linearly independent. A set of vectors xi that
allows us to uniquely write each element of as a linear combination is called a
basis of . For the uniqueness to hold, the vectors have to be linearly independent.Basis
All bases of a vector space have the same number of elements, called the
dimension of .Dimension

The standard example of a finite-dimensional vector space is N , the spaceN

of column vectors ([x]1 [x]N) , where the denotes the transpose. In N ,

12. Note that (B.21) and (B.22) should be read as existence statements. For instance, (B.21)
states that there exists an element, denoted by 0, with the required property.
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addition and scalar multiplication are defined element-wise. The canonical basis
of N is e1 eN , where for j 1 N, [e j]i i j. Here i j is the Kronecker
symbol;Kronecker i j

i j
1 if i j

0 otherwise.
(B.30)

A somewhat more abstract example of a vector space is the space of all real-
valued functions on a domain , denoted by . Here, addition and scalar multi-
plication are defined by

( f g)(x) : f (x) g(x) (B.31)

( f )(x) : f (x) (B.32)

We shall return to this example below.
Linear algebra is the study of vector spaces and linear maps (sometimes calledLinear Map

operators) between vector spaces. Given two real vector spaces 1 and 2, the
latter are maps

L : 1 2 (B.33)

that for all x x , satisfy

L( x x ) L(x) L(x ) (B.34)

It is customary to omit the parentheses for linear maps; thus we normally write Lx
rather than L(x).

Let us go into more detail, using (for simplicity) the case where 1 and 2 are
identical, have dimension N, and are written . Due to (B.34), a linear map L is
completely determined by the values it takes on a basis of . This can be seen by
writing an arbitrary input as a linear combination in terms of the basis vectors e j,
and then applying L;

L
N

∑
j 1

je j

N

∑
j 1

jLe j (B.35)

The image of each basis vector, Le j, is in turn completely determined by its expan-
sion coefficients Ai j, i 1 N;

Le j

N

∑
i 1

Ai jei (B.36)

The coefficients (Ai j) form the matrix A of L with respect to the basis e1 eN .Matrix
We often think of linear maps as matrices in the first place, and use the same
symbol to denote them. The unit (or identity) matrix is denoted by 1. Occasionally,
we also use the symbol 1 as the identity map on arbitrary sets (rather than vector
spaces).

In this book, we assume elementary knowledge of matrix algebra, including the
matrix product, corresponding to the composition of two linear maps,Matrix Product
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(AB)i j

N

∑
n 1

AinBn j (B.37)

and the transpose (A )i j : Aji.Transpose
The inverse of a matrix A is written A 1 and satisfies AA 1 A 1 A 1. TheInverse and

Pseudo-Inverse pseudo-inverse A satisfies AA A A. While every matrix has a pseudo-inverse,
not all have an inverse. Those which do are called invertible or nonsingular, and
their inverse coincides with the pseudo-inverse. Sometimes, we simply use the
notation A 1, and it is understood that we mean the pseudo-inverse whenever A
is not invertible.

B.2.2 Norms and Dot Products

Thus far, we have explained the linear structure of spaces such as the feature space
induced by a kernel. We now move on to the metric structure. To this end, we
introduce concepts of length and angles.

Definition B.5 (Norm) A function : 0 that for all x x and
satisfies

x x x x (B.38)

x x (B.39)

x 0 if x 0 (B.40)

is called a norm on . If we replace the “ ” in (B.40) by “ ,” we are left with what isNorm
called a semi-norm.

Any norm defines a metric d viaMetric

d(x x ) : x x ; (B.41)

likewise, any semi-norm defines a semi-metric. The (semi-)metric inherits certain
properties from the (semi-)norm, in particular the triangle inequality (B.39) and
positivity (B.40).

While every norm gives rise to a metric, the converse is not the case. In this
sense, the concept of the norm is stronger. Similarly, every dot product (to be
introduced next) gives rise to a norm, but not vice versa.

Before describing the dot product, we start with a more general concept.

Definition B.6 (Bilinear Form) A bilinear form on a vector space is a function

Q :

(x x ) Q(x x ) (B.42)

with the property that for all x x x and all , we have

Q(( x x ) x ) Q(x x ) Q(x x ) (B.43)

Q(x ( x x )) Q(x x) Q(x x ) (B.44)
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If the bilinear form also satisfies

Q(x x ) Q(x x) (B.45)

for all x x , it is called symmetric.

Definition B.7 (Dot Product) A dot product on a vector space is a symmetricDot Product
bilinear form,

:

(x x ) x x (B.46)

that is strictly positive definite; in other words, it has the property that for all x ,

x x 0 with equality only for x 0 (B.47)

Definition B.8 (Normed Space and Dot Product Space) A normed space is a vec-
tor space endowed with a norm; a dot product space (sometimes called pre-Hilbert
space) is a vector space endowed with a dot product.

Any dot product defines a corresponding norm via

x : x x (B.48)

We now describe the Cauchy-Schwarz inequality: For all x x ,Cauchy-Schwarz

x x x x (B.49)

with equality occurring only if x and x are linearly dependent. In some instances,
the left hand side can be much smaller than the right hand side. An extreme case
is when x and x are orthogonal, and x x 0.Orthogonality

One of the most useful constructions possible in dot product spaces are orthonor-
mal basis expansions. Suppose e1 eN, where N , form an orthonormal set; thatBasis Expansion
is, they are mutually orthogonal and have norm 1. If they also form a basis of ,
they are called an orthonormal basis (ONB). In this case, any x can be written
as a linear combination,

x
N

∑
j 1

x e j e j (B.50)

The standard example of a dot product space is again N . We usually employ
the canonical dot product,

x x :
N

∑
i 1

[x]i[x ]i x x (B.51)

and refer to N as the Euclidean space of dimension N. Using this dot product and
the canonical basis of N , each coefficient x e j in (B.50) just picks out one entry
from the column vector x, thus x ∑N

j 1[x] je j.
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A rather useful result concerning norms arising from dot products is the
Pythagorean Theorem. In its general form, it reads as follows:Pythagorean

Theorem

Theorem B.9 (Pythagoras) If e1 eq are orthonormal (they need not form a basis),
then

x 2
q

∑
i 1

x ei
2 x

q

∑
i 1

x ei ei

2

(B.52)

Now that we have a dot product, we are in a position to summarize a number of
useful facts about matrices.

It can readily be verified that for the canonical dot product, we have

x Ax A x x (B.53)

for all x x

Matrices A such that A A are called symmetric. Due to (B.53), they canSymmetric
Matrices be swapped between the two arguments of the canonical dot product without

changing its value

Symmetric matrices A that satisfy

x Ax 0 (B.54)

for all x are called positive definite (cf. Remark 2.16 for a note on this terminol-
ogy)

Another interesting class of matrices are the unitary (or orthogonal) matrices. A
unitary matrix U is characterized by an inverse U 1 that equals its transpose U .
Unitary matrices thus satisfy

Ux Ux U Ux x U 1Ux x x x (B.55)

for all x x ; in other words, they leave the canonical dot product invariant

A final aspect of matrix theory of interest in machine learning is matrix diago-
nalization. Suppose A is a linear operator. If there exists a basis v1 vN of
such that for all i 1 N,

Avi ivi (B.56)

with i , then A can be diagonalized: written in the basis v1 vN, we have
Ai j 0 for all i j and Aii i for all i. The coefficients i are called eigenvalues,Eigenvalue and

Eigenvector and the vi eigenvectors, of A
Let us now consider the special case of symmetric matrices. These can always
be diagonalized, and their eigenvectors can be chosen to form an orthonormal
basis with respect to the canonical dot product. If we form a matrix V with these
eigenvectors as columns, then we obtain the diagonal matrix as VAV .
Rayleigh’s principle states that the smallest eigenvalue min coincides with the



586 Mathematical Prerequisites

minimum of

R(v) :
v Av
v v

(B.57)

The minimizer of R is an eigenvector with eigenvalue min. Likewise, the largest
eigenvalue and its corresponding eigenvector can be found by maximizing R.
Functions f : I , where I , can be defined on symmetric matrices A with
eigenvalues in I. To this end, we diagonalize A and apply f to all diagonal
elements (the eigenvalues).
Since a symmetric matrix is positive definite if and only if all its eigenvalues are
nonnegative, we may choose f (x) x to obtain the unique square root A of a
positive definite matrix A.

Many statements about matrices generalize in some form to operators on spaces
of arbitrary dimension; for instance, Mercer’s theorem (Theorem 2.10) can be
viewed as a generalized version of a matrix diagonalization, with eigenvectors
(or eigenfunctions) j satisfying k(x x ) j(x ) d (x ) j j(x).

B.3 Functional Analysis

Functional analysis combines concepts from linear algebra and analysis. Conse-
quently, it is also concerned with questions of convergence and continuity. For a
detailed treatment, cf. [429, 306, 112].

Definition B.10 (Cauchy Sequence) A sequence (x i)i : (xi)i (x1 x2 ) in a
normed space is said to be a Cauchy sequence if for every 0, there exists an nCauchy Sequence
such that for all n n n, we have xn xn .

A Cauchy sequence is said to converge to a point x if xn x 0 as n .

Definition B.11 (Completeness, Banach Space, Hilbert Space) A space is called
complete if all Cauchy sequences in the space converge.

A Banach space is a complete normed space; a Hilbert space is a complete dot productBanach / Hilbert
Space space.

The simplest example of a Hilbert space (and thus also of a Banach space) is
again N . More interesting Hilbert spaces, however, have infinite dimensionality.
A number of surprising things can happen in this case. To prevent the nasty ones,
we generally assume that the Hilbert spaces we deal with are separable,13 which
means that there exists a countable dense subset. A dense subset is a set S such that
each element of is the limit of a sequence in S. Equivalently, the completion of

13. One of the positive side effects of this is that we essentially only have to deal with one
Hilbert space: all separable Hilbert spaces are equivalent, in a sense that we won’t define
presently.
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S equals . Here, the completion S is obtained by adding all limit points of Cauchy
sequences to the set. 14

Example B.12 (Hilbert Space of Functions) Let C[a b] denote the real-valued contin-
uous functions on the interval [a b]. For f g C[a b],

f g :
b

a
f (x)g(x) dx (B.58)

defines a dot product. The completion of C[a b] in the corresponding norm is the Hilbert
space L2[a b] of measurable functions15 that are square integrable;L2[a b]

b

a
f (x)2 dx (B.59)

This notion can be generalized to L2( N P). Here, P is a Borel measure on N , and the
dot product is given by

f g :
N

f (x)g(x) dP(x) (B.60)

One of the most useful properties of Hilbert spaces is that as in the case of finite-
dimensional vector spaces, it is possible to compute projections. Before stating the
theorem, recall that a subset M of is called closed if every convergent sequence
in with elements that lie in M also has its limit in M. Any closed subspace of a
Hilbert space is itself a Hilbert space.

Theorem B.13 (Projections in Hilbert Spaces) Let be a Hilbert space and M be aProjections
closed subspace. Then every x can be written uniquely as x z z , where z M
and z t 0 for all t M. The vector z is the unique element of M minimizing x z ;
it is called the projection Px : z of x onto M. The projection operator P is a linear map.

Another feature of Hilbert spaces is that they come with a useful generaliza-
tion of the concept of a basis. Recall that a basis is a set of vectors that allows
us to uniquely write each x as a linear combination. In the context of infinite-
dimensional Hilbert spaces, this is quite restrictive (note that linear combinations
(B.28) always involve finitely many terms) and leads to bases that are not count-
able. Therefore, we usually work with what is called a complete orthonormal system
or an orthonormal basis (ONB).16 Formally, this is defined as an orthonormal set SOrthonormal

Basis in a Hilbert space with the property that no other nonzero vector in is orthog-
onal to all elements of S.

14. Note that the completion is denoted by the same symbol as the set complement. Math-
ematics is full of this kind of symbol overloading, which adds to the challenge.
15. These are not strictly speaking individual functions, but equivalence classes of func-
tions that are allowed to differ on sets of measure zero.
16. These systems are often referred to as bases in the context of Hilbert spaces. This is
slightly misleading, since they are not bases in the vector space sense.
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Separable Hilbert spaces possess countable ONBs, which can be constructed
using the Gram-Schmidt procedure. Suppose vi i Λ is a linearly independent setGram-Schmidt

Orthonormaliza-
tion

of vectors with a span dense in , with Λ being a countable index set. A countable
ONB e1 e2 can then be constructed as follows:

e1 : v1 v1

e2 : (v2 P1v2) v2 P1v2

e3 : (v3 P2v3) v3 P2v3

...
... (B.61)

Here, we use the shorthand Pn for the operator

Pnx :
n

∑
i 1

ei x ei (B.62)

It is easy to show that Pn projects onto the subspace spanned by e1 en.
If the v1 v2 are not linearly independent, then it is possible that vn 1

Pnvn 1 0, which means vn 1 can be expressed as a linear combination of
v1 vn. In this case, we simply leave out vn 1 and proceed with vn 2, shifting
all subsequent indices by 1.

Using an ONB, we can give basis expansions in infinite-dimensional HilbertONB Expansion
spaces, which look just like basis expansions in the finite-dimensional case. For
separable Hilbert spaces, the index set Λ is countable.

Theorem B.14 (ONB Expansions & Parseval’s Relation) Let e i i Λ be an ONB of
the Hilbert space . Then for each x ,

x ∑
i Λ

ei x ei (B.63)

and

x 2 ∑
i Λ

ei x 2 (B.64)

Note that this generalizes the Pythagorean Theorem to the infinite-dimensional
case.

Let us describe an application of this result, with the dual purpose of demon-
strating a standard trick from functional analysis, and mathematically justifying a
crucial step in the “kernelization” of many algorithms. In Kernel PCA, we need toKernel PCA
solve an eigenvalue problem of the form (cf. (14.7))

v Cv (B.65)

and we know a priori that all solutions v lie in the span of x1 xm . In Chap-
ter 14, we argued that this means we may instead consider the set of equations

xn v1 xn v2 for all n 1 m (B.66)

where we use the shorthand v1 v and v2 Cv.
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We are now in a position to prove this formally. It suffices to consider the case
where the x1 xm are orthonormal. If they are not, we first apply the Gram-
Schmidt procedure to construct an orthonormal set e1 en . The latter is a
basis for the span of the xi, hence each xi can be written as a linear combination of
the ei. Conversely, each ei can be written as a linear combination of the xi by con-
struction (cf. (B.61)). Therefore, (B.66) is actually equivalent to the corresponding
statement for the orthonormal set e1 en .

In the orthonormal case, the Parseval relation (B.64), applied to the completion
of the span of the xi (which is a Hilbert space), implies that (we replace x v1 v2)

v1 v2
2

m

∑
i 1

( xi v1 xi v2 )2 (B.67)

Therefore v1 v2 if and only if (14.8) holds true. In a nutshell, the ONB expansion
coefficients are unique and completely characterize each vector in a Hilbert space.

We next revisit the L2 space. Since we will be using the complex exponential, we
consider for a moment the case where is a Hilbert space over rather than .

Example B.15 (Fourier Series) The collection of functions17Fourier Series

eix

2

e ix

2

e2ix

2

e 2ix

2
(B.68)

is an ONB for L2[0 2 ]. As a consequence of Theorem B.14, we can thus expand any
f L2[0 2 ] as

lim
M

1
2

M

∑
n M

cneinx (B.69)

where the Fourier coefficients cn are given by18

cn
1
2

2

0
e inx f (x) dx (B.70)

B.3.1 Advanced Topics

We now move on to concepts that are only used in a few of the chapters; these
mainly comprise results that build on [606]. We define normed spaces N

p as fol-N
p Spaces

lows: As vector spaces, they are identical to N , but are endowed in addition with
p-norms. For 1 p , these p-norms are defined as

x N
p

: x p

N

∑
j 1

xj
p

1 p

; (B.71)

17. Here i is the imaginary unit 1.
18. Comparing this to (B.60), we note that there is an unexpected minus sign in e inx .
This is due to the fact that in the complex case, the dot product (B.60) includes a complex
conjugation in the first argument.
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for p , as

x N : x max
j 1 N

xj (B.72)

We use the shorthand p to denote the case where N . In this case, it is
understood that p contains all sequences with finite p-norm. For N , the max
in (B.72) is replaced by a sup.

Often the above notations are also used in the case where 0 p 1. In that case,
however, we are no longer dealing with norms.

Suppose is a class of functions f : . The N norm of f with respect to
a sample X (x1 xm) is defined as

f X : max
i 1 m

f (xi) (B.73)

Likewise,

f X
p

( f (x1) f (xm) m
p

(B.74)

Given some set with a -algebra, a measure on , some p in the range
1 p , and a function f : , we defineLp Spaces

f Lp( ) : f p : f (x) pd (x)
1 p

(B.75)

if the integral exists, and

f L ( ) : f : ess sup
x

f (x) (B.76)

Here, ess sup denotes the essential supremum; that is, the smallest number that
upper bounds f (x) almost everywhere.

For 1 p , we define

Lp( ) : f : f Lp( ) (B.77)

Here, we have glossed over some details: in fact, these spaces do not consist of
functions, but of equivalence classes of functions differing on sets of measure
zero. An interesting exception to this rule are reproducing kernel Hilbert spaces
(Section 2.2.3). For these, we know that point evaluation of all functions in the
space is well-defined: it is determined by the reproducing kernel, see (2.29).

Let (E G) be the set of all bounded linear operators T between the normed
spaces (E E) and (G G); in other words, operators such that the image of
the (closed) unit ball,

UE : x E x E 1 (B.78)

is bounded. The smallest such bound is called the operator norm,

T : sup
x UE

Tx G (B.79)
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[484] J. Schürmann. Pattern Classification: a unified view of statistical and neural approaches. Wiley, New
York, 1996.

[485] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.
[486] M. Seeger. Bayesian methods for support vector machines and Gaussian processes. Master’s

thesis, University of Edinburgh, Division of Informatics, 1999.
[487] J. Segman, J. Rubinstein, and Y. Y. Zeevi. The canonical coordinates method for pattern defor-

mation: Theoretical and computational considerations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14:1171–1183, 1992.

[488] B. Seifert, T. Gasser, and A. Wolf. Nonparametric estimation of residual variance revisited.
Biometrika, 80:373–383, 1993.

[489] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Monograph on Applied
and Computational Mathematics. Cambridge University Press, 1999.

[490] A. Shashua. On the relationship between the support vector machine for classification and
sparsified Fisher’s linear discriminant. Neural Processing Letters, 9(2):129–139, 1999.

[491] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization
over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):1926–1940, 1998.

[492] J. Shawe-Taylor and N. Cristianini. Margin distribution and soft margin. In A. J. Smola, P. L.
Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages
349–358, Cambridge, MA, 2000. MIT Press.

[493] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary
languages. Pacific Journal of Mathematics, 41:247–261, 1972.

[494] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy. Improvements to SMO
algorithm for SVM regression. Technical Report CD-99-16, Dept. of Mechanical and Production
Engineering, Natl. Univ. Singapore, Singapore, 1999.

[495] K. Sim. Context kernels for text categorization. Master’s thesis, Australian National University,
2001.

[496] P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation
distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information
Processing Systems 5. Proceedings of the 1992 Conference, pages 50–58, San Mateo, CA, 1993.
Morgan Kaufmann.

[497] P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop — a formalism for specifying
selected invariances in an adaptive network. In J. E. Moody, S. J. Hanson, and R. P. Lippmann,
editors, Advances in Neural Information Processing Systems 4, San Mateo, CA, 1992. Morgan
Kaufmann.

[498] Y. Singer. Leveraged vector machines. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors,
Advances in Neural Information Processing Systems 12, pages 610 – 616. MIT Press, 2000.

[499] J. Skilling. Maximum Entropy and Bayesian Methods. Cambridge University Press, 1988.
[500] M. Slater. A note on Motzkin’s transposition theorem. Econometrica, 19:185–186, 1951.
[501] A. J. Smola. Regression estimation with support vector learning machines. Diplomarbeit,

Technische Universität München, 1996.
[502] A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998. GMD

Research Series No. 25.
[503] A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In T. K. Leen, T. G.

Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13. MIT Press,
2001.

[504] A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans. Advances in Large Margin Classifiers.
MIT Press, Cambridge, MA, 2000.

[505] A. J. Smola, A. Elisseeff, B. Schölkopf, and R. C. Williamson. Entropy numbers for convex
combinations and MLPs. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 369–387, Cambridge, MA, 2000. MIT Press.

[506] A. J. Smola, T. Frieß, and B. Schölkopf. Semiparametric support vector and linear programming
machines. NeuroCOLT Technical Report NC-TR-98-021, Royal Holloway College, University of
London, UK, 1998.

[507] A. J. Smola, T. Frieß, and B. Schölkopf. Semiparametric support vector and linear programming
machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information



612 References

Processing Systems 11, pages 585–591, Cambridge, MA, 1999. MIT Press.
[508] A. J. Smola, O. Mangasarian, and B. Schölkopf. Sparse kernel feature analysis. Tech-

nical Report 99-04, Data Mining Institute, University of Madison, Wisconsin, 1999.
ftp://ftp.cs.wisc.edu/dmi/tech-reports/99-04.ps; Neural Computation. Submitted.

[509] A. J. Smola, S. Mika, B. Schölkopf, and R. C. Williamson. Regularized principal manifolds.
Journal of Machine Learning Research, 1:179–209, 2001. http://www.jmlr.org.

[510] A. J. Smola, N. Murata, B. Schölkopf, and K.-R. Müller. Asymptotically optimal choice of -loss
for support vector machines. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceedings of
the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing,
pages 105–110, Berlin, 1998. Springer Verlag.
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p-norm, 589
-property, 80, 206, 238, 262

optimal , 82
-algebra, 576

k-means, 520
p-convex hulls, 445
p-norm, 589

adaptive loss, 80
AdaTron, 316
alignment, 57
almost everywhere, 578
annealed entropy, 140
automatic relevance determination,

477

Banach space, 586
barrier method, 178
basis, 581

canonical, 582
expansion, 584
Hilbert space, 587
orthonormal, 584

Bayes
classifier, 5
point, 226
rule, 474

Bernoulli trial, 129
best element of a set, 179
bias-variance dilemma, 126
bilinear form, 583, 584
bound

Chernoff, 129
concentration, 360
covering number, 396
entropy number, 397
generalization error, 10, 138, 394

Hoeffding, 129
leave-one-out, 198, 367, 369
margin, 194
McDiarmid, 360
PAC-Bayesian, 381
risk, 138
span, 370

bracket cover, 533

cache, 286
capacity, 9, 139, 433
case, 1
Cauchy sequence, 586
Cauchy-Schwarz inequality, 584
characteristic function, 626
chunking, 300
classification, 191

C-SV, 205
-SV, 206

binary, 2
Gaussian process, 486
LP, 214
multi-class, 211

compact, 393
complexity, 128
compression, 518, 546
concentration of measure, 360
condition, 159
conditional probability, 474
conjugate gradient descent, 160, 162
consistency, 131
constraint, 13
continuous, 275

Lipschitz, 275
uniformly, 275

contrast function, 445
convergence
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Cauchy, 586
in probability, 130
uniform, 133

convex
combination, 581
set, 150

intersection of, 151
convexity constraint, 444
convolution, 46
coordinate descent, 526
covariance, 580

function, 30
matrix, 428, 580

centered, 442
Cover’s Theorem, 200
covering number, 136, 393
cross-validation, 217

data
iid, 8, 252
snooping, 128
test, 8
training, 1
validation, 217

dataset
Abalone, 293, 497, 572
Boston housing, 272
DNA, 416
MNIST, 569
oil flow, 537
Santa Fe, 273
separable, 191
small MNIST, 571
TIS recognition, 416
USPS, 244, 294, 440, 463, 556, 569

decision function, 4, 15, 190
decomposition algorithm, 22
deflation method, 161
denoising, 546
density, 578

class-conditional, 465
estimation, 68, 549

dimension, 581
dimensionality reduction, 434

Dirac , 626
direct sum, 411
discriminant

Fisher, 457
kernel Fisher, 457

QP, 459
distribution, 576

function, 579
domain, 1, 29, 575
dot product, 2, 584

canonical, 2
Frobenius, 57
space, 584

dual
problem, 169
representation, 6
Wolfe, 171

eigenvalue, 585
eigenvector, 585
empirical risk minimization, 127
entropy number, 393
equivalence relation, 57
ERM, see empirical risk minimization
error

false negative, 63, 565
false positive, 63
margin, 194, 206
misclassification, 62
punt, 211
reject, 211
test, 8
training, 8

essential supremum, 590
estimator, 72

almost unbiased, 199
M, 67
minimax, 148
quantile, 265
trimmed mean, 264

event, 575
evidence, 474
example, 578
expectation, 580



Index 619

extreme point, 153, 447

fat shattering dimension, 392
feasible point, 166
feature, 428

extraction, 431, 443
map, 32, 93

continuity, 41
empirical kernel, 42
GNS, 425
kernel PCA, 43
Mercer, 36
normalized, 413
pairwise, 44
reproducing kernel, 32

monomial, 26
polynomial, 26
product, 26
space, 3, 39, 429

equivalence, 39
infinite-dimensional, 47
RKHS, 35

Fisher
information, 72

matrix, 419
score, 419

Fletcher-Reeves method, 163

Gamma
distribution, 506
function, 107

Gaussian
approximation, 478
kernel, 45
process, 481

Generalized Portrait, 11
generative model, 529
generative topographic map, 530
Gibbs classifier, 381
global minimum, 152
gradient descent, 157, 315

conjugate, 160
Gram-Schmidt orthonormalization,

588

graphical model, 418
greedy selection, 291
growth function, 9, 140, 393

Heaviside function, 303
hidden Markov model, 418
Hilbert space, 35, 586

reproducing kernel, 36
separable, 586

hit rate, 286
Hough transform, 225
Huber’s loss, 76
hyperparameter, 475
hyperplane, 4

canonical, 12
optimal, 11
separating, 11, 168, 189
soft margin, 16
supporting, 237

iid sample, 577
implementation, 279
induction principle, 127
input, 1
instance, 1
integral operator, 30
interior point, 295

method, 175
interval cutting, 155
invariance

translation, 46
unitary, 46

Karush-Kuhn-Tucker conditions, 13,
166

differentiable, 170
necessary, 169

kernel, 2, 30
B-spline, 46
R-convolution, 411
admissible, 30
alignment, 57
ANOVA, 272, 411
Bayes, 57
codon-improved, 417
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conditionally positive definite,
49, 53, 118

conformal transformation, 408
direct sum, 411
DNA, 417
examples, 45
feature analysis, 443
Fisher, 418
for structured objects, 411
Gaussian, 45, 46, 402, 411
Hilbert space representation, 29
infinitely divisible, 53
inhomogeneous polynomial, 46
jittered, 354
Laplacian, 402
locality-improved, 417
locally linear embedding, 436
map, see feature map
Mercer, 30
monomial, 27
natural, 418, 419
nonnegative definite, 30
on a -algebra, 47
on a group, 424
optimal, 423
PCA, 41, 92, 588
pd, 31
polynomial, 27, 45, 56
positive definite, 30, 34
properties, 45
RBF, 46
regularization interpretation, 94
reproducing, 30, 33
scaling, 216
set, 47
sigmoid, 45
sparse vector, 412
spline, 98
strictly positive definite, 31
symmetric, 2
tanh, 45
tensor product, 410
trick, 15, 34, 195, 201, 429

KKT, see Karush-Kuhn-Tucker condi-
tions

KKT gap, 170, 282
Kronecker delta, 582
Kuhn-Tucker conditions, see Karush-

Kuhn-Tucker conditions

label, 1
Lagrange multiplier, 13
Lagrangian, 13, 166

SVM, 318
pseudocode, 320

Laplace approximation, 488
Laplacian Prior, 501
Laplacian process, 499
learning

from examples, 1
machine, 8
online, 320

leave-one-out, 250
machine, 370
mean field approximation, 377

Lie group, 337
likelihood, 69
linear

combination, 581
independence, 581
map, 582

Lipschitz continuous, 534
LLE, see locally linear embedding
locally linear embedding, 436
log-likelihood, 419
logistic regression, 63, 471
loss function, 18, 19, 62, 394

-insensitive, 18, 251
-tube, 251

hinge, 324
zero-one, 8

LP machine, 120, 214
luckiness, 384

MAP, see maximum a posteriori esti-
mate

map
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injective, 181
surjective, 577

margin, 142, 192
-, 253

and flatness, 253
coding interpretation, 194
computational considerations,

204
of canonical hyperplane, 192
VC bound, 194
vs. training with noise, 192

matrix, 582
adjoint, 46
condition of a, 68, 159
conditionally positive definite,

49
decoding, 213
diagonalization, 585
Gram, 30, 430
inverse, 583
inversion lemma, see Sherman-

Woodbury-Morrison formula
kernel, 30
natural, 419
nonsingular, 583
orthogonal, 585
positive definite, 30, 585
product, 582
pseudo-inverse, 583
strictly positive definite, 31
symmetric, 585
tangent covariance, 346, 350
transposed, 583
unitary, 585

Maurey’s Theorem, 398
maximum a posteriori estimate, 476
maximum likelihood, 69
measurable

function, 579
set, 577

measure, 577
empirical, 579

metric, 583
semi, 583

Minimum Description Length, 194
multidimensional scaling, 436

network
neural, 202
RBF, 203

Newton’s method, 156
noise

heteroscedastic, 269, 276
input, 192
parameter, 194
pattern, 192

norm, 583
operator, 590
semi, 583

notation table, 625

objective function, 13
observation, 1
OCR, see optical character recogni-

tion
offset, see threshold
online learning, 320
operator, 582

bounded, 590
compact, 393
norm, 590

optical character recognition, 22, 211,
440

optimization
constrained, 165
constraint qualification, 167
optimality conditions, 166
problem

dual, 199
infeasible, 173

sequential minimal, 234
orthonormal set, 584
outlier, 236
output, 1
overfitting, 127

parameter optimization, 217
Parzen windows, 6, 233
pattern, 1
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pattern recognition, 2
PCA, see principal component analy-

sis
Peano curve, 531
perceptron, 193
Polak-Ribiere method, 163
pre-image

approximate, 546
exact, 544

precompact, 393
prediction, 288
predictor corrector method, 163
principal component analysis, 427,

442
kernel, 20, 431
linear, 428
nonlinear, 429, 434
oriented, 348

principal curves, 435, 522
length constraint, 524

principal manifold, 517
prior, 472

data dependent, 500
improper, 477

probability, 575
conditional, 464, 474
distribution, 576
measure, 577
posterior, 464
space, 575

programming problem
dual, 14, 15, 19, 171
linear, 172
primal, 12, 16, 18
quadratic, 172

projection pursuit, 445
kernel, 445

proof, see pudding
pudding, see proof

quadratic form, 30
Quantifier Reversal Lemma, 388
quantile, 80, 450

multidimensional, 229

quantization error, 518
empirical, 519
expected, 518

random
evaluation, 181
quantity, 576
subset, 179
subset selection, 290
variable, 576
vector, 576

rank-1 update, 290
Rayleigh Coefficient, 457
reduced KKT system, 176, 296
reduced set, 258, 544

Burges method, 561
construction, 561
expansion, 553
method, 22
selection, 554

regression, 19
C-SV, 253

-LP, 268
-SV, 260

regularization, 87, 363, 433
operator, 93

Fisher, 420
for polynomial kernels, 110
for translation invariant ker-

nels, 96
natural, 420

regularized principal manifold, 517
algorithm, 526

regularized quantization functional,
522

Relevance Vector Machine, 258, 506
replacing the metric, 160
Representer Theorem, 89
restart, 285
risk, 127

actual, 8
Bayes, 9
bound, 138
empirical, 8, 127
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frequentist, 9
functional, 89, 139
regularized, 479

robust estimator, 76
RPM, see regularized principal mani-

folds
RS, see reduced set
RVM, see Relevance Vector Machine

sample, 7, 577
complexity, 395
iid, 577
mean, 519

score
function, 72
map, 419

semi-norm, 583
semiparametric models, 115
Sequential Minimal Optimization,

305
classification, 307
regression, 308
selection rule, 311

SGMA, see sparse greedy matrix ap-
proximation

shattering, 9, 136
coefficient, 136

Sherman-Woodbury-Morrison, 299,
489

significant figures, 178
similarity measure, 2
slack variable, 16, 205
SMO, see Sequential Minimal Opti-

mization
snooping, 128
soft margin loss, 63
space

Banach, 586
dot product, 584
Hilbert, 586
linear, 581
normed, 584
probability, 575
vector, 581

version, 225
span, 581

of an SVM solution, 371
sparse coding, 500
sparse decomposition, 443
sparse greedy

algorithm, 183
approximation, 461, 493
matrix approximation, 288

sparsity, 120, 460
SRM, see structural risk minimization
stability, 361
statistical manifold, 418
stochastic process, 580
stopping criterion, 282
structural risk minimization, 138
subset selection, 302
Support Vector, 6, 14, 197, 202

bound, 210
essential, 210
expansion, 14, 255
in-bound, 210
mechanical interpretation, 14
novelty detection, 227
pattern recognition, 15
pattern recognition

primal reformulation, 559
quantile estimation, 227
regression, 17
regression using , 19
set, 21
single-class-classification, 227
virtual, 22, 337

SV, see Support Vector
symbol list, 625
symmetrization, 135

target, 1
Taylor series expansion, 155
tensor product, 410
test error, 66
text categorization, 221
threshold, 17, 203, 205, 209, 298, 310
topological space, 41
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training
example, 8
Gaussian Processes, 488
kernel PCA, 429
KFD, 460
sparse KFA, 447
SVM, 279

transduction, 66

union bound, 135, 535
unit ball, 590
USPS, see dataset

variable
dual, 13
primal, 13

variance, 580
VC

dimension, 9, 141, 391
real-valued functions, 141

entropy, 9, 139
vector quantization, 243, 520
version space, 225
virtual example, 335
virtual SV, 337

whitening, 347
working set, 301



 

Notation and Symbols

the set of reals
the set of natural numbers, 1 2
the input domain

N (used if is a vector space) dimension of
xi input patterns
yi target values yi , or (in pattern recognition) classes yi 1
m number of training examples
[m] compact notation for 1 m
i j indices, by default running over [m]
X a sample of input patterns, X (x1 xm)
Y a sample of output targets, Y (y1 ym)

feature space
Φ feature map, Φ :
xi a vector with entries [xi] j; usually a mapped pattern in , xi Φ(xi)
w weight vector in feature space
b constant offset (or threshold)
k (positive definite) kernel
K kernel matrix or Gram matrix, Ki j k(xi x j)
E [ ] expectation of a random variable (Section B.1.3)
P probability of a logical formula
P(C) probability of a set (event) C
p(x) density evaluated at x

( d) covering number of a set in the metric d with precision
( ) normal distribution with mean and variance

parameter of the -insensitive loss function

i Lagrange multiplier or expansion coefficient

i Lagrange multiplier
vectors of Lagrange multipliers

i slack variables
vector of all slack variables

Q Hessian of a quadratic program
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x x dot product between x and x
2-norm, x : x x

p p-norm , x p : ∑N
i 1 xi

p 1 p
, N

-norm , x : maxN
i 1 xi on N , x : supi 1 xi on

ln logarithm to base e
log2 logarithm to base 2
f a function or 1

a family of functions

f (x y) margin of function f on the example (x y), i.e., y f (x)

f margin of f on the training set, i.e., minm
i 1 f (xi yi)

h VC dimension
C regularization parameter in front of the empirical risk term

regularization parameter in front of the regularizer
x [a b] interval a x b
x (a b] interval a x b
x (a b) interval a x b
A 1 inverse matrix (in some cases, pseudo-inverse)
A transposed matrix (or vector)
A adjoint matrix (or: operator, vector),

i.e., transposed and complex conjugate
(x j) j or (x j) shorthand for a sequence (x j) (x1 x2 )

p sequence spaces, 1 p (Section B.3.1)
Lp( ) function spaces, 1 p (Section B.3.1)
IA characteristic (or indicator) function on a set A

i.e., IA(x) 1 if x A and 0 otherwise
1 unit matrix, or identity map (1(x) x for all x)
C cardinality of a set C (for finite sets, the number of elements)

ϒ regularization operator

i j Kronecker (Section B.2.1)

x Dirac , satisfying x(y) f (y)dy f (x)
O(g(n)) a function f (n) is said to be O(g(n)) if there exists a constant C

such that f (n) Cg(n) for all n
o(g(n)) a function is said to be o(g(n)) if there exists a constant c

such that f (n) cg(n) for all n
rhs/lhs shorthand for “right/left hand side”

the end of a proof
easy problem
intermediate problem
difficult problem
open problem


